
Rewriting Queries with Negated Atoms
Appendixes

Enrique Matos Alfonso and Giorgos Stamou

National Technical University of Athens (NTUA)
gardero@image.ntua.gr

Appendix A

Theorem 1. Let C(1) and C(2) be two clashing clauses with resolvent C ′ and C(3) a
clashing clause with C ′. Lets assume that C(3) only clashes with one of the two other
clauses and without loss of generality we can assume that clause will be C(2). Then we
have that

Res(Res(C(1), C(2)), C(3)) = Res(C(1), Res(C(2), C(3))) . (1)

Proof. The proof of the theorem can be done by replacing the resolvents with the equi-
valent set expression as defined in the general resolution rule. Lets assume the clauses
C(1) and C(2) clash on the sets L1 and L2 :

Res(C(1), C(2)) = (C(1)σ \ L1σ) ∪ (C(2)σ \ L2σ) (2)

and that the clauses C(2) and C(3) clash on the set L′
2 and L3 :

Res(C(2), C(3)) = (C(2)σ′ \ L′
2σ

′) ∪ (C(3)σ′ \ L3σ
′) , (3)

with
σ = mgu(L1 ∪ L2) (4)

and
σ′ = mgu(L′

2 ∪ L3) . (5)

Notice that on the clause Res(C(1), C(2)) the elements that were introduced by
C(2) are affected by the unifier σ therefore when we try to resolve that clause with C(3)

the clashing literals will be L′
2σ and L3 yielding another mgu:

γ′ = mgu(L′
2σ ∪ L3) . (6)

We start by rewriting the left part of (1):

((C(1)σ \ L1σ) ∪ (C(2)σ \ L2σ))γ
′ \ L′

2σγ
′ ∪ (C(3)γ′ \ L3γ

′) ,

where C(3)σ = C(3) and L3σ = L3 because the clause C(3) does not share variables
with C(1) or C(2). Therefore,

((C(1)σ \ L1σ) ∪ (C(2)σ \ L2σ))γ
′ \ L′

2σγ
′ ∪ (C(3)σγ′ \ L3σγ

′) .



Now since L′
2σγ

′ = L3σγ
′, using (5) we get

σγ′ = σ′γ . (7)

Also, because of (7) and (4) we can affirm that L1σ
′γ = L2σ

′γ .
The unifier γ needs to be an mgu for the problem L1σ

′ and L2σ
′ :

γ = mgu(L1σ
′ ∪ L2σ

′) , (8)

otherwise it would mean that there is a different unifier γ0 � γ such that

γ0 = mgu(L1σ
′ ∪ L2σ

′) . (9)

Implying there is another substitution γ1 such that σ′γ0 = σγ1 and consequently
(L′

2σ)γ
1 = (L3σ)γ

1 .
Yet, because of (6) can affirm that γ′ � γ1 and also σγ′ � σγ1 which would mean

that σ′γ � σ′γ0 and also γ � γ0 which ensures that γ will be more general than all the
other unifiers of the problem. Thus (8) holds.

Additionally, we know C(1) does not clash with C(3) so C(1)σγ′ does not contain
L′
2σγ

′ nor C(3)σγ′ contains L2σγ
′ :

((C(1)σγ′ \ L1σγ
′ \ L′

2σγ
′) ∪ (C(2)σγ′ \ L2σγ

′ \ L′
2σγ

′)) ∪ (C(3)σγ′ \ L3σγ
′) ,

((C(1)σγ′ \ L1σγ
′) ∪ (C(2)σγ′ \ L2σγ

′ \ L′
2σγ

′)) ∪ (C(3)σγ′ \ L3σγ
′) ,

(C(1)σγ′ \ L1σγ
′) ∪ (C(2)σγ′ \ L2σγ

′ \ L′
2σγ

′) ∪ (C(3)σγ′ \ L3σγ
′ \ L2σγ

′) ,

(C(1)σγ′ \ L1σγ
′) ∪ ((C(2)σγ′ \ L′

2σγ
′) ∪ (C(3)σγ′ \ L3σγ

′)) \ L2σγ
′ .

Then, using (7) we get:

(C(1)σ′γ \ L1σ
′γ) ∪ ((C(2)σ′γ \ L′

2σ
′γ) ∪ (C(3)σ′γ \ L3σ

′γ)) \ L2σ
′γ

and we can extract γ because σ′ is a unifier of L′
2 and L3 so it will not affect the set

subtraction operations based on L′
2 and L3:

C(1)γ \ L1γ ∪ ((C(2)σ′ \ L′
2σ

′) ∪ (C(3)σ′ \ L3σ
′))γ \ L2σ

′γ ,

leading to:
(C(1)γ \ L1γ) ∪Res(C(2), C(3))γ \ L2σ

′γ ,

where we know γ is the mgu for L1 and L2σ
′ . Thus, finally we get the right part of

(1):
Res(C(1), Res(C(2), C(3))) .

ut



Appendix B

Lemma 1. The answers of the elements qi of the constraint saturation of a query Cq are
also answers of the original query q i.e. ∀i ans(qi, (R, C),D) ⊆ ans(q, (R, C),D) .

Clearly since the elements qi were built using a linear resolution derivation starting
with a clause corresponding to ¬q and using as side clauses the clauses corresponding
to the constraints C of our system, we can affirm that C |= qi → q . Therefore,
whenever we have that () ∈ ans(qi, (R, C),D) then we it will also be the case that
() ∈ ans(q, (R, C),D) .

Theorem 2. For a knowledge base (R, C) and a strongly disconnected query q with
respect to the knowledge base, if C contains all the possible rewritings of the queries
corresponding to the constraints in it then the constraints saturation Cq contains all the
answers of q:

ans(q, (R, C),D) = ans(Cq, (R, C),D) for all D .

Proof. Lemma 1 ensures ans(Cq, (R, C),D) ⊆ ans(q, (R, C),D) . Then, we need to
focus on proving ans(q, (R, C),D) ⊆ ans(Cq, (R, C),D) .

The proof is based on showing that a resolution derivation starting in ¬q and ending
in the empty clause can be rearranged using Theorem 1 so that the first resolution steps
are applied using constraints from C. After those steps we can affirm that the clause will
correspond to a query in the constraint saturation of q, so there will also be a resolution
derivation starting from a clause corresponding to a query in Cq and ending in the empty
clause i.e. () ∈ ans(q, (R, C),D)→ () ∈ ans(Cq, (R, C),D) .

Suppose that:
() ∈ ans(q, (R, C),D) (10)

and
() /∈ ans(Cq, (R, C),D) . (11)

We can affirm using (10) that (R, C),D |= q and it ensures the existence of a linear
resolution derivation starting with the clause C(0) = ¬q, ending in the empty clause ⊥

C(0), C(1), . . . , C(m′),⊥ .

that uses the clauses corresponding to (R, C),D and ¬q .
The only way to reach the empty clause is by performing resolution with respect to

the clauses corresponding to the facts D that have the following shape: [a(t′)] . They
decrease the size of the clauses in the linear resolution derivation. The initial clause has
also positive atoms (corresponding to the negated atoms in the original query) and the
only way to get rid of them is by doing resolution with respect to one of the literals in a
clause that corresponds to a constraint. Such step will decrease the number of positive
atoms in the clause of the derivation and probably will introduce more negative atoms.
Since our query has m negated atoms, in our derivation we need at least m resolution
steps to get rid of the positive literals.

If we take a closer look at those resolution steps i1, . . . , im′ involving constraint
clauses we can try to reorganize them so that they are performed as early as possible.



In case the constraint clause used at step ij can resolve with the initial clause C(0) we
can perform the step on position 1 and shift the other steps of the linear derivation. The
resulting clause at step ij will be the same.

On the other hand, if some resolution steps with clauses corresponding to rules
need to be applied before we could apply a certain resolution step with a constraint
clause, then based on Theorem 1 we could re-arrange those resolution steps by applying
resolution first to the constraint clause and then the resulting clause can be used to apply
resolution to the initial clause, resulting in the same clause at step ij . Note that this
modification turns the linear derivation into a tree but the shape of the derivation is not
relevant. The clause that we obtain by applying resolution between the constraint clause
and the rules will have only negative literals. So it will be equivalent to a constraint
C ′ that can be deduced by the system i.e. R, C |= C ′ . But since C contains all its
rewritings, we know that there will be a constraint C ′′ ∈ C such that C ′′ � C ′ . In that
case, the query corresponding to C ′ is a rewriting of the query corresponding to C ′′.

In case C ′′ clashes with C(0) , instead of using C ′ in the resolution derivation we
could use C ′′ which is a side clause that can resolve with the initial query and such step
can again be inserted at position 1. On the other hand, if C ′′ does not clashes with C(0)

it means that the resolution with C ′ yields a query that is also less general than C ′′ .
Therefore, the resulting rewriting will have answers when a constraint of the system is
violated i.e. the resulting rewriting would be inconsistent.

The other possible resolution step involving a C(0) would be to revolve it with itself
but our query is strongly disconnected with respect to the knowledge base as hypothesis
to avoid those cases.

We will end up in a derivation with at least m initial resolution steps with respect
to constraint clauses. After those steps we will have a clause that needs to correspond
to a query that is less general than one of the queries in the constraints saturation Cq . It
implies that also there is a resolution derivation that ends in the empty clause and starts
with a clause corresponding to the negation of a query in Cq i.e. () ∈ ans(Cq, (R, C),D)
which contradicts (11) and proves our theorem. ut

Appendix C

Figure 1 shows a description of the COMPLETO system and its main workflow.

Installing the Software

The software is contained in a jar1 file and it needs to be executed by a java2 compiler:

java -jar completo.jar \
[other options]

The option -Xmx can help us increase the memory assigned to the process.

1 http://image.ntua.gr/completo/completo.jar
2 version 1.8 or more recent.



COMPLETO

TBox
(OWL)

Constrains
Rewritings

a) Constraints Rewriting Process

COMPLETO

ABox
(OWL)

MySQL
DB

b) OWL to MySQL ABox Exporting Process

COMPLETO

queries

Query
Rewritings

Instances
retrieved

c) Query Rewriting and Instances Retrieval

Fig. 1. Diagram of the COMPLETO system



Running the Experiments

For running the experiments we need to know how to execute the main actions provided
by the COMPLETO system. The TBoxes3 and the ontologies with assertions4 used in the
experiments can be downloaded to provide the necessary inputs to the system.

Constraints Rewriting. Given a owl ontology with constraints in it, we can generate
a file with the rewriting of the constraints. The command to execute is the following:

java -jar completo.jar \
-o [ontology path] \
(-q [queries path] -nconcepts) \
-c [constraints path]

where the path for the constraints should refer to a non existing file where all the rewrit-
ing of the constraints will be written as queries. Also, if we want to generate a queries
file with the negation of all the concepts in the ontology we then use -q [queries
path] -nconcepts. Files with queries have the following format:

Q(?X) <- -AdministrativeStaff(?X).
Q(?X) <- -Article(?X).
Q(?X) <- -AssistantProfessor(?X).
Q(?X) <- -AssociateProfessor(?X).

and files with constraints have boolean queries describing the constraints:

_answer <- College(?X), ResearchGroup(?X).
_answer <- College(?X), researchProject(?X, ?_u0).
_answer <- AdministrativeStaff(?X), Article(?X).
_answer <- AdministrativeStaff(?X), Book(?X).

where negated atoms come with a minus “-” sign, variables with a “?” sign before the
identifier. Queries files can also be built manually.

OWL to MySQL ABox Exporting Process. In order to generate a SQL database with
the assertions contained in an owl ontology we need to run:

java -jar completo.jar \
-o [ontology path] -eabox \
-aboxname [abox SQL name]

The command will create a SQL database using MySQL software. The database will
be used in the instance retrieval process for the queries. Additionally, we need a con-
figuration file (sqlconfig.properties) containing some important data used to
establish the connection to MySQL:

3 http://image.ntua.gr/completo/tbox.zip
4 http://image.ntua.gr/completo/ontofile.zip



username=[username]
password=[password]
url=[url:port of the installed MySQL instance]

Also, for big databases we will need to increase the limits of the thread stack and
max allowed packet on the configurations files of MySQL.

Query Rewriting and Instance Retrieval. The main task in the experiments is related
to rewriting queries and finding the instances of the result in SQL databases. In order to
execute the task we need to use the following command:

java -jar completo.jar \
-o [ontology path] -q [queries path] \
(-qi [index of the query to be rewritten]) \
-c [constraints path] -aboxname [abox SQL name] \
(-apath [path to output the answers of the queries])

where all the queries in the file will be rewritten one by one unless an index is specified
with the -qi option is specified and in such a case only the query in the corresponding
index will be rewritten.

In case we are only interested in the rewritings of the queries we should provide the
file to output the rewritings and remove the information about the Abox:

java -jar completo.jar \
-o [ontology path] -q [queries path] \
(-qi [index of the query to be rewritten]) \
-c [constraints path] \
(-qrewritings [path to output the rewritings])


