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Preface

On behalf of the organizing committee of the 2016 IEEE Conference on Computational Intelli-
gence and Games (CIG2016), we welcome you to Santorini for our 12th meeting. The conference
program includes three keynote talks from the industry and academia: Anton Nijholt (NL) from
the University of Twente, Tom Schaul (LU) from Google DeepMind, and Innes McKendrick
(UK) from Hello Games. In addition the program includes two tutorials which will be presented
during the first day of the conference: Antonios Liapis and Michael Cook on Designing Games
around AI and Christoph Salge, Tobias Mahlmann and Christian Guckelsberger on Intrinsic
motivation in general game-playing and NPCs.

Moreover, we have eight exciting competitions: StarCraft, Fighting Game, Geometry
Friends, The General Video Game, Angry Birds, Ms. Pacman Vs Ghosts, Artificial Text
Adventurer, and Visual Doom. In addition, a special session on Game Analytics, organized by
Anders Drachen, Rafet Sifa, and Julian Runge is included in the program.

In total we received 113 papers from 30 countries. All papers were peer reviewed by at least
three domain experts and 43/92 (acceptance rate: 46.7%) were accepted for oral presentation
and publication in the proceedings. The program also includes 6 vision papers, 4 competition
papers, 4 demo papers and 11 posters.

We hope that you will enjoy the conference and your stay in Santorini. We would also like
to thank ICCS for its sponsorship and the program committee members for their contribution
to making this happen.

September 15, 2016 Kostas Karpouzis,
General Chair

Program chairs
Tommy Thompson,

Proceedings chair

Gillian Smith and Georgios N. Yannakakis,
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Abstract—Hierarchical Task Network Planning is an Auto-
mated Planning technique. It is, among other domains, used in
Artificial Intelligence for video games. Generated plans cannot
always be fully executed, for example due to nondeterminism
or imperfect information. In such cases, it is often desirable to
re-plan. This is typically done completely from scratch, or done
using techniques that require conditions and effects of tasks to
be defined in a specific format (typically based on First-Order
Logic). In this paper, an approach for Plan Reuse is proposed
that manipulates the order in which the search tree is traversed
by using a similarity function. It is tested in the SimpleFPS
domain, which simulates a First-Person Shooter game, and shown
to be capable of finding (optimal) plans with a decreased amount
of search effort on average when re-planning for variations of
previously solved problems.

I. INTRODUCTION

The problem of deciding what tasks should be executed
by an agent in a real-time video game can be addressed in
a number of different ways. Commonly used techniques [1],
[2] are Finite State Machines, Behavior Trees, Utility-based
decision making systems, and Automated Planning. One of
the first well-known applications of Automated Planning in
video games is in F.E.A.R. [3].

Hierarchical Task Network (HTN) Planning [4], [5] is an
automated planning technique that has seen some use in video
games. HTN Planning has been used to control a team of
bots in the game Unreal Tournament 2004 [6], to generate
scripts offline for the game The Elder Scrolls IV: Oblivion
[7], in serious gaming [8], [9], and in the adversarial real-
time strategy game µRTS [10]. Examples of commercial video
games that are known to use HTN Planners are Killzone 3 and
Transformers 3: Fall of Cybertron [11].

Generated plans cannot always be successfully executed,
because HTN Planners are not able to predict the actions of
other agents or deal with imperfect information and nondeter-
minism in the environment without incorporating extensions
[12], [13]. Existing systems using HTN Planning in video
games typically construct new plans from scratch whenever a
plan fails during execution [8]. Planning systems outside the
context of video games do the same in some cases [14], but
there is also work describing more sophisticated approaches
[15]–[20]. These approaches require conditions and effects
of tasks on the environment to be explicitly defined in a
predefined format (typically based on First-Order Logic).

This paper proposes an approach for reusing old plans of
an HTN Planner that does not require conditions and effects

to be explicitly defined, but allows for them to be defined
in functions that are essentially black boxes from the point
of view of the Planner. The main purpose of reusing plans
is to speed up the process of finding a new plan. Another
motivation for reusing plans is to increase the likelihood of
finding a plan that is similar to a partially executed previous
plan. In video games this can reduce the number of times that
an agent abruptly changes behavior, and therefore increase the
believability of the agent’s behavior. It is tested on problems
from the SimpleFPS [21] domain, using the Unreal Engine
4 (UE4) game engine as test environment. UE4 is the latest
version of a commercial and widely-used game engine. Ex-
periments have been carried out to measure the effect of Plan
Reuse on the search effort required to find optimal plans. The
effect of Plan Reuse on the quality of plans returned when
terminating a search process early has also been measured.

The remainder of the paper is structured as follows. Sec-
tion II provides background information on HTN Planning. In
Section III, the implementation of the HTN Planning algorithm
is described. The approach used for reusing old plans is
described in Section IV. A description of the experiments can
be found in Section V. Finally, Section VI concludes the paper
and provides ideas for future research.

II. HIERARCHICAL TASK NETWORK PLANNING

A Hierarchical Task Network (HTN) Planning Problem [4],
[5], [22] can be defined as a tuple P = (S, T,O,M), where
S is the current World State, T is the current Task Network,
O is the set of Operators, andM is the set of Methods. More
specifically, S is a description of the environment in which the
agent is located, and should contain all the information that
is relevant for the planning process. T is a collection of tasks
that need to be accomplished by the agent, where tasks can
be constrained to require accomplishment before certain other
tasks in the network. A task can be either primitive, meaning
that it directly corresponds to an action that the agent can
execute, or compound, meaning that it represents a higher-
level plan that needs to be decomposed into a Task Network.
S and T change during the planning process.

Every Operator o ∈ O represents the execution of a single
primitive task tp. Given S, o defines conditions that must hold
in S for tp to be applicable in S, defines how S changes
if tp is applied (executed by the agent) in S, and defines a
nonnegative cost for applying tp. Similarly, every Method m ∈
M represents the execution of a single compound task tc.

2016 IEEE Conference on Computational Intelligence and Games (CIG’16) 1



Fig. 1. Example Task Network. An arrow pointing from one task to another
task means that the first task is constrained to require execution before the
second task (the first task is a predecessor of the second task). Boxes with a
double line are compound tasks, boxes with a single line are primitive tasks.

Fig. 2. Example Method. “Take Out ?Enemy” is the compound task for
which this method is defined, where “?Enemy” is a variable. The boxes with
dashed lines denote task networks. The two arrows pointing away from this
compound task point to task networks that the original compound task can be
decomposed into, under certain conditions. The left decomposition consists
of only a single compound task, whereas the right decomposition consists of
an ordered sequence of two primitive tasks.

Given S, m defines all the different Task Networks that tc
can be decomposed into. O and M remain constant during
the planning process.

An HTN Planning system is expected to take a Problem P
as input, and produce a valid plan Π as output. A plan Π is
a valid plan for P if it is an ordered list of primitive tasks
that can be obtained by consecutively applying Methods and
Operators from M and O to the tasks in T in an order that
satisfies the constraints of T , until T is empty. Applying an
Operator o removes the corresponding primitive task tp from
T , appends it to Π, and changes S as defined by o. Applying
a Method m replaces the corresponding compound task tc in
T with a subnetwork that is a valid decomposition according
to m in S (m can have more than one valid decomposition
in any given state S). A decomposition is a Task Network
that must be fully executed for the original compound task to
be considered executed, and can be viewed as a lower-level
description of the more abstract compound task.

An example of a Task Network is depicted in Figure 1. An
agent can execute this Task Network by first taking out two
defenders, then picking up an enemy flag, and then returning
home (to his own base). It does not matter in which order the
two enemy defenders are taken out, but they both need to be
taken out before the agent can pick up the enemy flag. The
two tasks to take out defenders are compound tasks, meaning
that they cannot be executed directly but need to be refined
further. An example method to do so is depicted in Figure 2.
This method defines that the compound task to take out an

enemy can be decomposed into a single compound task to
snipe the enemy under the condition that the agent has a Sniper
Rifle, or it can be decomposed into an ordered sequence of
two primitive tasks under the condition that the agent has a
weapon. If neither condition is satisfied, the compound task
cannot be decomposed and therefore cannot be executed.

In this description of the HTN Planning formalism, it has
only been specified what information needs to be defined by
the various structures (such as Operators and Methods), and
not how this should be specified. Many existing planners, such
as SHOP2, define world states, conditions and effects in (a
subset of) First-Order Logic. The framework described in this
paper makes no assumptions about the form in which this
information is defined, and allows for it to be implemented
directly in C++ functions and variables, as described in more
detail in Section III. It means that there are few restrictions
on what can be specified in an HTN Planning problem. It is
possible to define planning problems where the tasks are not
totally ordered, and variables are allowed. Such problems can
become undecidable [23].

III. HTN PLANNER

This section describes the implementation of the HTN
Planner plugin that has been developed for Unreal Engine 4.

A. Planning Problem Definition

Many HTN Planners, like SHOP2 [22], define the struc-
tures of an HTN Planning problem, such as Operators, using
formalisms based on logical expressions. The HTN Planner
described in this paper does not use such a logic-based
formalism, but instead uses a similar approach as SHPE [24].
Instead of defining all the relevant information of a planning
problem using logical expressions, it is defined directly using
C++ functions and variables. The main motivation for this
approach is that it does not require an inference engine, and
is expected to require less processing time [24].

For primitive and compound tasks, two base classes are
provided with a number of virtual functions that can be
implemented in subclasses to define domain-specific tasks.
A primitive task tp has the following functions that can
be overridden; ApplyTo(S), which should be implemented to
apply any effects of tp to a world state S; ExecuteTask(), which
should be implemented to execute tp during real gameplay
(as opposed to during the planning process); GetCost(S),
which can be implemented to return the cost of applying tp
in the world state S; and IsApplicable(S), which should be
implemented to return a boolean value indicating whether or
not tp is applicable in a world state S. A compound task tc
only has a single function to override; FindDecompositions(S),
which should be implemented to return a list T , where every
T ∈ T is a Task Network that is a valid decomposition of
tc in the world state S. Note that, in this implementation, the
concepts of Operators and Methods as mentioned in Section II
are no longer used, and any information that these structures
contained is instead located directly in the corresponding
primitive and compound tasks.
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Algorithm 1 The HTN Planning algorithm
1: function INITIALIZE(T0, S0)
2: Fringe ← [(T0, S0,∅, 0)]
3: BestCost ←∞

4: function FINDPLAN
5: while Fringe 6= ∅ and TIMEAVAILABLE() do
6: (Ti, Si,Πi, Ci)← Fringe.NEXT()
7: if Ti is empty then
8: BestPlan ← Πi

9: BestCost ← Ci

10: continue
11: for all t ∈ Ti without predecessors do
12: if t is primitive then
13: if t.ISAPPLICABLE(Si) then
14: T ′ ← Ti.REMOVE(t)
15: S′ ← t.APPLYTO(Si)
16: Π′ ← [Πi, t]
17: C′ ← Ci + t.GETCOST(Si)
18: Fringe.ADD((T ′, S′,Π′, C′))
19: else
20: D ← t.FINDDECOMPOSITIONS(Si)
21: for all D ∈ D do
22: T ′ ← Ti.REPLACE(t,D)
23: Fringe.ADD((T ′, Si,Πi, Ci))

B. Finding a Plan

The HTN Planner is expected to take a Task Network T0 and
an initial World State S0 as input, and produce a valid plan Π
as output, as described in Section II. The algorithm that has
been implemented to do this is similar to the algorithm used
by SHPE [24] and SHOP2 [22]. It performs a search through
the space of all (partially) decomposed networks, starting from
T0. The intuition behind it is that T0 is a highly abstract Task
Network, containing a relatively large number of compound
tasks, and it is gradually simplified by decomposing compound
tasks and moving primitive tasks from the network into the
plan. Primitive actions are inserted into the plan in the same
order in which they are intended to be executed after planning.

Pseudocode for this algorithm can be found in Algorithm 1.
The algorithm is initialized with a single tuple (T0, S0,∅, 0)
in the Fringe. The Fringe is the collection of nodes in the
search tree that have not been processed yet. Every element
in this collection contains the Task Network of tasks that have
not yet been completed, the current world state, the (partial)
plan constructed so far, and the execution cost so far.

In each iteration, one node (Ti, Si,Πi, Ci) is removed from
the Fringe, and every task t ∈ Ti that does not have any
predecessors is processed. A predecessor of t is a task that
is constrained by Ti to require processing before t. All tasks
that are allowed to be executed directly according to Ti are
processed, and all other tasks are not yet processed.

If t is a primitive task that is applicable in Si, t is applied
to Si, appended to Πi, and removed from Ti. This results
in a single new tuple that is placed in the Fringe. If t is a
compound task, one new tuple is placed in the Fringe for
every valid decomposition D of t in Si. In this case, Ti is
modified in every new tuple by replacing t in Ti with D.

In the planner described in this paper, the Fringe has been
implemented as a stack. This means that the algorithm acts as
a depth-first search. Many other planners, such as SHOP2 and
SHPE, are also implemented in this way.

C. Branch-and-bound and Heuristic Cost Estimation

A branch-and-bound optimization can speed up the search
algorithm described above when searching for an optimal
solution. Immediately after taking a tuple (Ti, Si,Πi, Ci) from
the Fringe in line 6 of Algorithm 1, the cost Ci for executing
the partial solution Πi is compared to the cost of the best
solution found so far (BestCost). If at this stage Ci ≥ BestCost,
Πi cannot lead to an improvement on the best solution found
so far, and the algorithm can immediately continue with the
next element of the Fringe. This is the same branch-and-bound
optimization as described in [22], [24].

An admissible heuristic function h(Ti, Si) that estimates the
future cost of executing the remaining Task Network Ti given
a current world state Si can be used to improve the branch-
and-bound optimization. Given such a function, the algorithm
can prune partial solutions where Ci + h(Ti, Si) ≥ BestCost.

Such a heuristic function can incorporate domain-specific
knowledge, but if two extra restrictions are placed on the
problem definition it is also possible to define a domain-
independent heuristic function. The first of these restrictions is
that the cost of executing a primitive task cannot depend on the
world state in which it is executed. The second restriction is
that compound tasks cannot be defined in such a way that they
can result in an infinitely long sequence of decompositions
(which is possible when using recursion in the definition
of compound tasks). Under these restrictions, the following
domain-independent heuristic function h(Ti) is well-defined:

h(Ti) =
∑
t∈Ti

h(t) (1)

h(tp) = Cost(tp) (2)

h(tc) = min
D∈D

h(D) (3)

In Equation 1, the world state Si has been omitted as an
argument because it cannot provide any information for a
domain-independent heuristic. The heuristic function h(t) for
a single task t used in Equation 1 is defined by Equation 2
for the case where t is primitive, or Equation 3 for the case
where t is compound. In Equation 3, D denotes the set of all
possible decompositions of tc in any possible world state.

IV. PLAN REUSE

In this section, an approach for reusing old plans to more
efficiently find new plans for similar problems is described.
This approach does not require effects and conditions of tasks
to be explicitly defined in a predefined format.

When an HTN Planner has previously found a plan for some
planning problem, and is later required to find a plan for a new
planning problem that is similar to the previous problem, it
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is expected to be possible to make use of the old solution
to speed up the planning process. Existing approaches for
reusing or repairing plans in an HTN Planner [15]–[20] require
effects and conditions of tasks to be defined in a predefined
format (typically using First-Order Logic). In most cases, this
is because they analyze dependencies between the conditions
and effects of tasks and store this information in graphs or
other structures. These approaches are not compatible with
the implementation of the planner as described in Section III,
where the conditions of tasks and the effects of tasks on the
world state are implemented in functions that are black boxes
from the point of view of the Planner. The following approach
does not have this problem.

Let Pold = (Sold, T old,O,M) be an old planning problem
for which an optimal plan Πold was generated using the HTN
Planning algorithm as described in the previous section. Let
Pnew = (Snew, Tnew,O,M) be a new planning problem for
which the HTN Planner needs to find a solution Πnew. O and
M are equivalent for the two problems, so the same sets of
primitive and compound tasks are defined. The assumption is
made that Sold and Snew are in some sense similar, and that
T old and Tnew are also in some sense similar. Finally, the
assumption is made that an optimal solution Πnew will, due
to the previous assumptions, also be similar to Πold.

The intuition behind the approach is that it is likely to find
higher quality solutions first if branches of the search tree that
led to Πold are prioritized when traversing the new search tree
to look for Πnew. Similar ideas have also previously been used
in game-tree search algorithms for abstract games [25], [26].
There are two benefits to finding high quality solutions as soon
as possible. The first benefit is that, if in a real-time setting
such as a video game the planning process is terminated early,
a higher quality plan will be available. The second benefit
is that the upper bound on the cost of the optimal plan is
lowered more quickly, and therefore the branch-and-bound
optimization can prune larger parts of the search space.

A. Search Tree Structure

Because the approach for plan reuse relies on manipulating
the order in which the planning algorithm traverses branches
of the search tree, it is useful to first take a closer look at the
structure of this search tree.

An example of a search tree for a simple planning prob-
lem, with only a single compound task in the initial Task
Network, is depicted in Figure 3. A node Ni in the search
tree encapsulates a tuple (Ti, Si,Πi, Ci) as found in Algo-
rithm 1. When Ni is visited (returned by Fringe.Next() and
processed as seen in the pseudocode), a set of successor nodes
Successors(Ni) can be generated. For example, in Figure 3,
Successors(A) = {B,E}. Successors(Ni) is empty if Ni

gets pruned by the branch-and-bound optimization, or if Ni

is a leaf node. A leaf node is either a solution node if Ti
is empty, or a failed node if Ti is non-empty and does not
contain any tasks without predecessors that can be executed
in Si. In the figure, D and G are solution nodes.

Fig. 3. Example search tree. Every circle represents a node in the search tree.
The boldface letters are used to refer to specific nodes in the text. The Task
Network of tasks that still need to be solved is shown under this identifier for
every node. Ci are compound tasks, and Pi are primitive tasks. The text on
every branch describes the change that is applied on that transition between
two nodes. Nodes D and G have empty Task Networks.

If Successors(Ni) is non-empty, Ni has at least one succes-
sor node. If Ti is totally ordered, meaning that there is exactly
one task t ∈ Ti that does not have any predecessors, there will
be exactly one successor node if t is primitive, and there can
be more than one successor node if t is compound. Traversing
a branch in this situation can be viewed as committing to solve
t in a certain, concrete way. If Ti is not totally ordered, there
is one set of branches for every task t ∈ Ti that does not
have any predecessors, and within these sets it is again true
that there is exactly one branch if t is primitive, and there can
be more branches if t is compound. In this case, traversing
a branch corresponds to selecting a task t and then choosing
a concrete way to solve that task t. All Task Networks that
appear in Figure 3 are totally ordered.

B. Similarity-Based Branch Reordering

The proposed approach for Plan Reuse requires a similarity
function Sim(Πold, Ni), which computes a measure of simi-
larity between Πold and a current node Ni in the search tree.
The information available in Ni is the tuple (Ti, Si,Πi, Ci).
The approach described in this paper only makes use of Πi,
which simplifies the similarity function to Sim(Πold,Πi).

The example search tree in Figure 3 depicts how the Task
Network T changes in every node, and a description of the
processing that is done to generate successor nodes is placed
on every branch. When a compound task is processed to
generate a successor, only the contents of T change. This
means that, in Figure 3, nodes A, B, C and E all share the same
plan Π. When a primitive task is processed, the description on
the branch indicates how Π changes. This means that nodes
D, F and G all have different plans from the other nodes.

Suppose that, at some point in the planning process that
generated Πold, the compound task C1 was solved using the
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path in the right-hand side of the figure. Without any changes
to the definition of a plan Π, any function Sim(Πold,Πi)
returns the same results for the nodes A, B, C and E because
they share the same plan. This means that F is the first node in
which it can be recognized that a path is being continued that
was a part of the optimal solution of Πold. The first change
made to the planning algorithm is to redefine the concept of
a plan Π to also append compound tasks to Π as they are
processed. With this change, it is already possible to recognize
in nodes B and E that they have some similarity with Πold

(they all contain the compound task C1). In node C, it can
then be recognized that an “incorrect” path is traversed (C2

has been added which does not occur in Πold), and in node
F it can be recognized that the “correct” path is continued,
leading to different levels of similarity.

The similarity function proposed in this paper is the function
that computes the longest Currently Matching Streak (CMS).
Intuitively, it is the function that finds the length of the longest
sequence of consecutive tasks in Πold that also occurs at the
end of the current (partial) plan Π. More formally, let Π[i]
denote the ith task in a plan Π. Let m denote the number
of tasks in a plan Π. The similarity measure CMS(Πold,Π)
is then defined as the maximum possible value n such that,
for some index x, Πold[x] = Πi[m], and Πold[x − n + j] =
Πi[m − n + j] for all j where 1 ≤ j < n. A score of 0 is
assigned if Πi[m] does not occur anywhere in Πold.

For example, let Πold = [A,B,C,D,E], Πi = [A,B,C]
and Πj = [A,B,C,X,D,E]. Then CMS(Πold,Πi) = 3,
because the entire sequence of tasks of Πi also occurs as
a consecutive sequence in Πold. Πj also contains the same
sequence, but in Πj the sequence is followed by a non-
matching task X , and then followed by another streak of
length 2 that occurs in Πold. Therefore, CMS(Πold,Πj) = 2.

This similarity measure “rewards” streaks of consecutive
tasks that also occurred in the same order in Πold, and
also instantly punishes appending a non-matching task to an
existing matching streak by resetting the score to 0. It is used
to sort nodes for processing as follows. A node Ni is processed
before a node Nj if CMS(Πold,Πi) > CMS(Πold,Πj). If
CMS(Πold,Πi) = CMS(Πold,Πj) = 0, the CMS scores of
the closest ancestor nodes with non-zero CMS scores are used
instead of the CMS scores of the nodes themselves. Finally,
ties are broken by using the same ordering as a regular DFS.
An example search tree is depicted in Figure 4. The numbers
in this figure indicate the order in which parts of the subtree
are processed.

C. Domain-Specific Ordering

The approach for reordering branches based on a similarity
measure as described above is expected to be better than an
arbitrary ordering of branches in cases where the new planning
problem is related to the old planning problem. In reality,
however, the branches typically are not ordered arbitrarily but
are already ordered more efficiently based on domain-specific
knowledge. For example, if a compound task is processed to
find an item of a specific type somewhere in a map, and

Fig. 4. Example search tree with plan reuse. Circles represent individual
nodes, and triangles represent arbitrarily large subtrees. The numbers indicate
the order in which nodes or subtrees are processed. Thick lines represent
branches where a “correct” choice was made, meaning a task was added that
continued a current matching streak or started a new streak.

one valid decomposition is created for every item of that
type, these branches can be ordered according to the distance
between the agent and those items. Branches for items that
are already nearby are then explored first.

When there is already a good ordering of branches based
on domain-specific knowledge, Plan Reuse can be detrimental,
especially if it is also uncertain if a new planning problem is
really similar to an old problem. Two approaches are proposed
to reduce the likelihood of Plan Reuse having detrimental
effects in the presence of domain-specific ordering, at the cost
of also reducing the potential gains of Plan Reuse.

The first approach is the introduction of a parameter M
denoting the Minimum Streak Length required for branches to
be reordered according to their CMS score. Any CMS score
that is less than M is simply set to 0. This makes the plan reuse
less aggressive, which means there are fewer potential gains,
but it is also more likely that a matching streak of tasks can
actually be continued when it already has a sufficient length.

The second approach is to make the search probabilistic.
This idea is inspired by a probabilistic approach for resuing
plans in classical planning [27]. A parameter p is introduced,
where 0 ≤ p ≤ 1, which defines the probability with which
the planner temporarily ignores parts of the search tree that are
prioritized according to Plan Reuse, and instead searches parts
that are not prioritized in a DFS manner. This idea has been
implemented as follows. Whenever the planning algorithm
processes a leaf node, the algorithm is set in a mode where
it ignores prioritized nodes with probability p, and it is set
in a mode where it does not ignore prioritized nodes with
probability 1 − p. Nodes are considered to be prioritized if
and only if they are on a path that contains some node with
CMS > 0. The reason for continuing to run in the same
mode until a leaf node is processed is to avoid switching
modes too often. Nodes that are pruned by the branch-and-
bound optimization are not considered to be leaf nodes. The
parameter value p = 0 means that the ordering of Plan Reuse
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always overrides the ordering of domain-specific heuristics,
and p = 1 means that Plan Reuse is not used. With 0 < p < 1,
lower values for p are more suitable for cases where Plan
Reuse is expected to be more reliable than domain-specific
heuristics, and higher values are more suitable otherwise.

V. EXPERIMENTS

This section describes the setup and the results of the exper-
iments that have been carried out to evaluate the performance
of the approach for Plan Reuse.1

A. Experimental Setup

SimpleFPS [21] is a planning domain that has been designed
to simulate planning problems in FPS games. Originally it
was defined as a classic planning domain, but it has also
been translated into an HTN Planning domain and used for
the evaluation of the HTN Planner SHPE [24]. Even though
SimpleFPS is only a simulation of an FPS game, and not a
real game, the generated planning problems are not necessarily
less complex. With an average optimal plan length of 32 in the
experiments described below, the problems can be estimated to
be an order of magnitude more complex than those observed
in real games [28].

Problems of this planning domain have been randomly
generated and used to evaluate the performance of Plan Reuse
in comparison to the same planning algorithm without Plan
Reuse. The experiments have been carried out inside UE4.
This means that any overhead involved in implementing and
running a planner inside a game engine, as opposed to running
it in isolation, is included in the results. The results were
obtained using an Intel Core i5 CPU (2.67GHz), running on
Windows 7. During the planning processes in these experi-
ments, the memory usage of the entire plugin (including the
SimpleFPS map data and the constant memory usage of the
planner when idle) was at most in the order of 1 MB.

The original version of SimpleFPS is deterministic (after
random problem generation), and assumes that the agent has
access to perfect information. This means that these problems
do not require any re-planning. For these experiments, the
problems have been changed such that all doors in the maps
are assumed to be unlocked initially, and the agent only obtains
the information that a door is locked if the agent attempts
to move through it. This means that the planner typically
finds invalid solutions first, and problems often require re-
planning when new information is obtained. To evaluate the
performance of Plan Reuse, these “re-planning episodes” have
been performed both with and without Plan Reuse. The
previous plan is used as Πold for Plan Reuse, but first pre-
processed to remove all tasks that have already been executed.

Furthermore, the SimpleFPS domain was changed to punish
the agent with an extra cost (equivalent to 50 “normal” tasks)
for plans in which it chose for a different attacking approach
from the original plan, where the three possible attacking

1The implementation of the planner used in these experiments, and
a more detailed description of the implementation, are available at
https://github.com/DennisSoemers/HTN Plan Reuse.

TABLE I
EFFECTS OF PLAN REUSE IN TOTAL

Parameter Values ∆Nodes Processed ∆Time

M = 10, p = 0 -7.04% -11.11%
M = 10, p = 0.25 -11.51% -18.60%
M = 20, p = 0 -1.70% +1.86%

M = 20, p = 0.25 -1.18% +3.53%
M = 30, p = 0 -2.81% -2.41%

M = 30, p = 0.25 -2.43% -0.98%

approaches are melee, ranged and stealth. This means that
if, for example, the old plan involved picking up a knife that
turns out to be behind a closed door, it is unlikely that a new
optimal plan will instead involve picking up a gun somewhere
else. With this change, the likelihood of parts of Πold still
being useful for a new optimal solution is increased. It is still
possible that there also is a second knife somewhere in a more
convenient location, so there also still are problems where Plan
Reuse can be detrimental.

Six different variants of Plan Reuse have been tested based
on the approach described in Section IV, with different values
for the parameters M and p. For M , the values 10, 20 and
30 have been tested. The optimal value for this parameter
is domain-specific though, and different values may be more
suitable for different problems. The value M = 1 has also
shortly been tested, but was found to be too aggressive, and
has not been included in the results. For p, the values 0 and
0.25 have been tested, where p = 0 means the use of Plan
Reuse is not probabilistic. The value of p = 0.25 was chosen
after a smaller number of tests, but is also close to 0.3, which
is one of the values used for a similar parameter in [27].

B. Results

A total of 209 problems were completely processed by all
variants of Plan Reuse, of which 10 problems were proven not
to have any solutions. There were 22 problems that were not
solved by any of the variants because they were terminated due
to taking too much time. Planning processes were terminated
early and declared a failure if no solution was found at all
within 75 seconds, or no optimal solution within 150 seconds.

Table I shows the total change in the number of nodes
processed and the amount of time spent planning of all the
planning problems added together. It shows that especially the
two most aggressive variants of Plan Reuse, with M = 10,
perform well. The variants with M = 20 have a weak
performance. This is largely caused by one specific problem,
which is one of the largest problems in the set, where Plan
Reuse with M = 20 turned out to be highly detrimental. The
mean change in the absolute number of nodes processed by
the variant with M = 10 and p = 0.25 is significant according
to a paired, two-tailed Student’s t-test with a significance level
of 0.05 (p-value ≈ 0.037).

Figure 5 shows the difference in plan quality that Plan Reuse
makes as a function of the search effort. In this figure, all
planning problems have been mapped to a single measure of
search effort and a single measure of plan quality. Informally,
if a plot has a point y at x = 0.5, that variant of Plan Reuse
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Fig. 5. The change in relative solution quality obtained by adding Plan Reuse
as a function of relative search effort.

changes the plan quality by y% on average if a planning
process is interrupted after half the search effort that planning
without Plan Reuse would require to find the optimal solution.
A point x on the x-axis denotes that x× n number of nodes
have been processed, where n is the number of nodes that
were required to find (but not necessarily prove) the optimal
solution when planning without Plan Reuse. A point y on the
y-axis denotes the difference in the average quality of the best
solution found so far between planning with and without Plan
Reuse. The quality of a solution is defined as C∗

C × 100%,
where C is the cost of that solution and C∗ is the cost of an
optimal solution for that problem.

All the plots show a decrease close to x = 1. This is simply
because all variants of Plan Reuse have at least some problems
where Plan Reuse is detrimental, and x = 1 denotes exactly
the amount of search effort that planning without Plan Reuse
requires for all problems. So, x = 1 denotes the point in time
where it is no longer possible to do any better than planning
without Plan Reuse, and it is only possible to do worse. The
figure shows that all the variants of Plan Reuse are above the
x-axis (indicating an improvement in average plan quality of
up to 8%) until x approaches 1. The variants with lower values
for M show larger improvements on average. All variants peak
with low amounts of search effort, indicating that Plan Reuse is
especially beneficial if solutions are required in a short amount
of time (for instance, in real-time). For the variants with M <
30, the changes in quality are significant (p-value < 0.05).
There appears to be less variance in the changes in quality for
the variants with p = 0.25 (p-value < 0.01).

C. Unchanged Problems Removed

The results for the problems as described above include all
the problems on which none of the variants of Plan Reuse
made any difference at all in the number of nodes processed
compared to re-planning without Plan Reuse. On some of these
problems, Plan Reuse cannot have any effect because the value
for M is too conservative. This is a side effect of avoiding
detrimental cases, and therefore these problems have not been
excluded from the results above.

TABLE II
EFFECTS OF PLAN REUSE IN TOTAL - NO UNCHANGED PROBLEMS

Parameter Values ∆Nodes Processed ∆Time

M = 10, p = 0 -11.57% -18.26%
M = 10, p = 0.25 -18.92% -29.89%
M = 20, p = 0 -2.79% +1.68%

M = 20, p = 0.25 -1.93% +4.26%
M = 30, p = 0 -4.62% -4.81%

M = 30, p = 0.25 -3.99% -2.75%
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Fig. 6. The change in relative solution quality obtained by adding Plan Reuse
as a function of relative search effort. (No unchanged problems)

However, these unchanged problems can also include prob-
lems where M was not set too high, but Plan Reuse simply did
not result in any significant changes in the ordering, such as
trivial problems where the domain-specific ordering is (nearly)
optimal. For planning domains where such planning problems
are not expected to occur, it can be interesting to look at
the results obtained by removing the problems that remained
unchanged by all variants of Plan Reuse from the sets.

The results with these unchanged problems (117 problems)
removed can be found in Table II and Figure 6. On this set
of problems, Plan Reuse reduces the total number of nodes
processed by up to 18.92% and the processing time by up to
29.89% (both for M = 10, p = 0.25). The peak increase in
average plan quality is up to 20% at a relative search effort
of 20% (M = 20, p = 0.25). The p-values of these results are
nearly identical to those of the corresponding results including
unchanged problems.

VI. CONCLUSION AND FUTURE WORK

In this paper, an approach has been proposed for reusing
previously found plans in an HTN Planner when presented
with new planning problems that are similar to one that was
previously solved. Unlike existing approaches, it does not
require conditions and effects of the domain to be specified in
a pre-determined form, but allows for them to be implemented
in black box functions. The main idea behind the approach is
to manipulate the order in which the search tree is traversed
by using a similarity function for plans.
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Plan Reuse has been shown to be capable of reducing the
average number of nodes required to find optimal solutions
for SimpleFPS planning problems [21] that are likely to
have similar solutions to previously solved problems, and
also reduce the computation time. It has also been shown to
improve the average quality of plans when using the planning
algorithm as an anytime algorithm.

For future work, it would be interesting to investigate
whether it is possible to estimate whether Plan Reuse will be
likely to be beneficial or detrimental for a specific planning
problem before the planning process is started. A direction of
future research is to do this automatically by, for instance,
computing a similarity measure between the old and the
new planning problem. If this likelihood can be estimated
accurately, Plan Reuse can be turned off in problems where
it is expected not to be beneficial, and it can be turned on in
problems where it is expected to be beneficial.

Furthermore, it could be interesting to investigate if Plan
Reuse finds plans that are more similar to the old plan in
cases where there are multiple plans that are all optimal
with respect to the cost function. This has been mentioned
as a motivation for Plan Reuse in the paper, because it can
reduce the likelihood of an agent abruptly changing behavior
in a video game and therefore increase the believability of
the behavior. It has not been investigated in this paper’s
experiments because the SimpleFPS problems were found to
typically have a low number of different optimal solutions. The
planner and approach for Plan Reuse have also briefly been
tested in an alpha version of the game of Unreal Tournament,
which uses Unreal Engine 4. These tests are not described in
more detail because the planning problems were too simple
for Plan Reuse to make a noticeable difference. Experiments
with more complex planning problems in later versions of the
game, or in other games, could be done in future research.

Finally, a direction for future work would be to look into
different variants of similarity measures. For instance, the
CMS measure could be changed to have a lower value when
appending a non-matching task to an existing streak, instead
of resetting the score entirely to 0.
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C. L. López, G. Röger, J. Thayer, and R. Zhou, Eds. AAAI Press,
2012, pp. 17–25.
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Abstract—Social dilemmas force individuals to choose between

cooperation, which benefits a group, and defection which ben-

efits the individual. The unfortunate outcome in most social

dilemmas is mutual defection where nobody benefits. Researchers

frequently use mathematical games such as public goods games to

help identify circumstances that might improve cooperation levels

within a population. Altruistic punishment has shown promise

in these games. Many real-world social dilemmas are expressed

via a tragedy of the commons metaphor. This paper describes an

investigation designed to see if altruistic punishment might work

in tragedy of the commons social dilemmas. Simulation results

indicate not only does it help resolve a tragedy of the commons

but it also effectively deals with the associated first-order and

second-order free rider problems.

I. INTRODUCTION

Social dilemmas arise whenever individuals must choose
between self-interests and collective interests. The study of
social dilemmas has dramatically increased over recent years
because they describe many real-world pressing problems such
as overfishing, use of public lands and energy consumption.
In such social dilemmas individuals can choose to “cooperate”
by putting their self-interests aside for the collective good or
“defect” by putting their self-interests first even if it means
the collective benefits are reduced. Social dilemmas have
two conflicting characteristics: (1) individuals who defect get
higher rewards regardless of what others decide, but (2) mutual
cooperation yields greater returns for all individuals than if
everyone defects. The unfortunate outcome of most social
dilemmas is everyone defects and the group suffers.

Mathematical games provide an ideal framework for study-
ing social dilemmas. These N -player games (N > 2) start with
a random allocation of individuals in a population choosing to
cooperate or defect and then observing how those population
choices evolve over time. The objective is to gain insight
into why humans make particular choices. The most widely
studied such game is a Public Goods Game (PGG). Another
less studied game (but the author would argue a more realistic
social dilemma model) is the Tragedy of the Commons (TOC).
The difference between these two social dilemmas will be
discussed in the next section.

Nowak [1] posited five rules that could promote cooperation
in populations: direct reciprocity, indirect reciprocity, network
reciprocity, kin selection, and group selection. These rules
possibly explain the emergence of cooperation in pairwise

interactions but they are practically too simplistic to explain
it in large groups. A more holistic approach is needed. For
example, indirect reciprocity, which is based on reputation,
probably has little effect after 2 or 3 interaction rounds. Direct
reciprocity, where individuals make decisions in reaction to
other players’ previous interactions, are unlikely to explain
how an individual makes decisions in a group where say half of
the other individuals cooperated while the other half defected.
Moreover, Nowak’s rules only deal with personal perspectives.
In other words, they are responses to past decisions other play-
ers made; they do not consider deliberate actions players might
take to influence the future choices other players make. One
such deliberate action is altruistic punishment where players
punish others who did not cooperate in previous rounds, while
incurring a personal cost to inflict this punishment.

Altruistic punishment has been studied in PGGs, but little
work has explored how it affects TOC social dilemmas. TOC
is fundamentally different than a PGG so it is interesting to
see how altruistic punishment might help resolve a TOC. This
issue was investigated and our results are reported in this
paper. These results indicate that altruistic punishment can help
resolve a TOC.

The paper is organized as follows, In Section II the differ-
ence between a PGG and TOC are explained and some past
work on altruistic punishment in PGGs is presented. Section
III describes our model while Section IV presents experimental
results. Section V discusses how altruistic punishment should
be implemented to help resolve TOC social dilemmas and
provides recommendations for future work.

II. BACKGROUND

Altruistic punishment has been applied to PGGs but not in
a TOC. These two social dilemmas have a prisoner’s dilemma
schema, but they are not the same so it is important to explain
the difference. The evolution of player strategies in a finite
population is governed by discrete replicator equations which
are also described in this section.

A. PGG and TOC

In each round of a PGG N players independently decide
whether to cooperate by contributing a fixed amount y to a
common pool or defect by contributing nothing. An external
benefactor multiplies the pool by a factor r < N and
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then equally distributes this increased amount to every player
whether or not they contributed. Defectors are therefore free
riders because they benefit from the contributions of others.

In each round of a TOC N players use or consume a fixed
resource. This resource is periodically renewed. Cooperators
limit their consumption to help preserve the resource whereas
defectors maximize their consumption regardless of how the
resource is affected. But by limiting their consumption coop-
erators make more of the resource available for the defectors.
Thus defectors free-ride by exploiting the goodwill of others.
A TOC is considered “resolved” if the resource remains
viable—i.e., it is preserved for future use. A population of
all cooperators resolves a TOC.

Definition 1. A good is non-excludable if everyone can use
it.

An example of non-excludability is national defense. Ev-
eryone benefits from national defense whether or not they pay
the taxes needed to finance it. Cooperators pay taxes whereas
defectors are free riders who pay little or no taxes.

Definition 2. Diminishable goods are finite and can be com-
pletely depleted unless replenished.

One characteristic of diminishable goods is use by one
individual denies use by another individual. A good example
is fisherman in the Tasman Sea. The amount of fish is finite so
any fish caught by one fisherman cannot by caught by another
fisherman. Cooperators voluntarily limit the amount they catch
to keep the fish population viable. Defectors are free riders
because they exploit the benevolence of cooperators because
there are now more fish available to take.

The inevitable outcome for a PGG or a TOC is everybody
defects. Both a PGG and a TOC are non-excludable because
everyone is allowed to participate. However, a PGG is not
diminishable because regardless of the number of rounds and
regardless of the amount contributed, it is assumed the external
benefactor always has sufficient funds to increase the pool
amount and distribute it. Conversely, in a TOC the resource
is diminishable because it is finite and, unless replenished,
will eventually become depleted. That difference may appear
subtle, but the distinction is important: players are rivals only
in the TOC. In a PGG a payoff given to one player does
not reduce the payoff to another player because the pool is
distributed equally. However, in a TOC the shared resource is
finite so any amount consumed by one player is not available
to another player. TOC is thus a zero-sum game while a PGG
is not.

B. Altruistic Punishment

Diminishable goods and the associated rivalry are important
distinctions between a PGG and a TOC social dilemma. Those
distinctions lead to different motivations for punishment.

Definition 3. Altruistic punishment is punishment inflicted
on free riders even if costly to the punisher and even if the
punisher receives no material benefits from it.

The motivation behind punishing defectors is to convince
them it is better to cooperate. In a PGG the motivation is purely
self-serving: the more others cooperate the larger the pool and
the higher the payoff to existing cooperators. Conversely, the
motivation for punishment in a TOC is for the collective good:
the more others cooperate the higher the likelihood the public
good will be preserved. This raises an important question.
If the motivation behind the punishment is different in the
two social dilemmas, will punishment have a similar affect on
cooperation levels in both social dilemmas?

Altruistic punishment is easily added to a PGG. There
are now three strategies: cooperators (C) who contribute an
amount y to a common pool; defectors (D) who contribute
nothing; and punishers (P ) who also contribute y but, at some
small cost ↵ > 0 to impose a fine on defectors. Let ⇡(z) be
the return to a player z 2 {C,D, P}. Then with a population
size N and multiplication factor r the payoffs each round are

⇡(z) =

8
><

>:

rky/N �m� defector
rky/N cooperator
rky/N � ↵ punisher

(1)

where k is the number of cooperators, m is the number
of punishers, � is the imposed punishment (e.g., a fine)
per punisher and ↵ is the fixed cost paid for inflicting a
punishment.. Notice the punisher acts like a cooperator, but
receives a slighter lower return because of the cost paid to
inflict punishment on the defectors. The returns are identical
if there are no defectors in the population because the cost is
incurred if and only if punishment is administered.

There are a number possible PGG variations. For example,
in Eq. (1) the punishment for a defector depends on the
number of punishers but the cost ↵ to the punisher is the
same regardless of how many defectors are punished. This
cost could be changed to say `↵ where ` is the number of
defectors. Also, punishment could be added to cooperators to
address the so-called 2nd order free rider problem with an
associated additional cost to the punisher. (These additional
punishment forms and costs are incorporated into our TOC
experiments.)

Human experiments have shown altruistic punishment has
a positive affect on cooperation levels in PGGs. Fehr and
Gächter [2] had 240 university students participate in two
sets of 6-round PGGs: one set with punishment and one set
without. They found that 72% of above average contributors
punished below average contributors. They found cooperation
levels were considerably higher (⇡ 40%) with punishment re-
gardless of whether the set of games with punishment preceded
the set without punishment or vice versa. Furthermore, they
found contribution levels either remained constant or slightly
increased over time with punishment but tended to decrease
over time with no punishment1.

1Fehr and Gächter also believed Nowak’s 5 rules were too simplistic to
explain group behavior.
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Fig. 1. A 2-simplex showing two trajectories representing the evolution of an
infinite population of three strategies. The green trajectory starts at point A and
terminates a fixed point on the x1–x2 boundary. The final population mixture
contains only type 1 and type 2 strategies with more type 2 strategies. The red
trajectory starts at point B and ends at the x3 vertex. This final population
has been taken over by type 3 strategies.

C. Replicator Equations

How do we represent the evolution of the population over
time? A convenient representation is a simplex, Figure 1 shows
a 2-D simplex, which is suitable for three strategies. Let
xi 2 [0, 1] be the frequency of strategy i where

P
i xi = 1.0.

Each point in the simplex represents a mixture of three
strategies in an infinite size population—i.e., every point has
coordinates [x1 x2 x3]. Trajectories in the simplex reflect how
the population evolves over time. This evolution is governed
by replicator equations which are 1st-order differential equa-
tions of the form

ẋi = xi

�
Fi � F̄

�
(2)

where Fi is the fitness of strategy i and F̄ is the mean fitness
of the population. If the term in parenthesis is positive, then
strategy i increases; if negative it decreases; and if zero it does
not change. The population size is infinite so a trajectory can
pass through any point in the simplex.

Figure 1 shows two trajectories. Trajectories are smooth
because their path is described by a differential equation. The
green trajectory begins at point A and terminates on the x1–
x2 boundary. This is a fixed point where the final population
consists of (mostly) x2 strategies but some x1 strategies. The
red trajectory begins at point B and terminates at the x3 vertex.
That final population consists solely of x3 strategies.

Human populations, however, are always finite. Let ki, i 2
{C,P,D} be the number of players choosing strategy i. In a
finite population of size N the frequency of strategy i at time
t is p

t
i = ki/N . Then the population evolution over time is

now given by the discrete replicator equation

p

t+1
i = p

t
i

✓
⇡

t
i

⇡̄

t

◆
(3)

Fig. 2. A 2-simplex for a finite population with N = 20. Only the points
shown represent an integer number of strategies where

P
i ki = N . A

trajectory can only move between these points.

where where ⇡

t
i is the return for strategy i at time t. The term

inside the parenthesis is the ratio of the return of strategy i to
the average population return ⇡̄

t. If the term is greater than
1.0 then strategy i grows in the population; if equal to 1.0 it
remains the same; and if less than 1.0 it decreases.

But there is a problem. Eq. (3) can be rewritten (after
multiplying both sides by N ) as

k

t+1
i = k

t
i

✓
⇡

t
i

⇡̄

t

◆
(4)

The problem is there is no guarantee the term in parenthesis
is an integer which means the left hand side of Eq. (4) may
not be an integer. Clearly k1 + k2 + k3 = N is required.
To overcome this problem the quantization algorithm below
(from [3]) was used. The algorithm takes {pt+1

i } and N and
returns k

0
i where

P
k

0
i = N .

1) Compute

k

0
i =

⌅
Npi +

1
2

⇧
, N

0 =
P
i
k

0
i

2) Let d = N

0�N . If d = 0, then go to step 4. Otherwise,
compute the errors �i = k

0
i �Npi.

3) If d > 0, decrement the d k

0
i’s with the largest �i values.

If d < 0, increment the |d| k0i’s with the smallest �i

values.
4) Return [k01 k

0
2 k

0
3] and exit.

For this investigation we use a 2-D simplex to represent the
population evolution. But in finite populations only certain
points are valid because there are only a finite number of
points where

P
i ki = N . Figure 2 shows a 2-D simplex for

a finite population with N = 20. The trajectories showing the
population evolution are piecewise linear since only transitions
between these points are allowed.

III. THE TOC MODEL

The model has N = 20 players. We adopt the same notion
used in the previous section where ki is the number of players
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in the population using strategy i 2 {C,P,D} and p

t
i = ki/N

is the corresponding frequency at time t. (For convenience the
t will be dropped when there is no ambiguity.) Each round
each player consumes an amount of a finite resource, which is
assumed to have an initial capacity 50000 “units” (an arbitrary
unit of measure). C and D players consume 40 units while
D players consume 50 units. The slight higher consumption
rate for D players reflects a greedier, self-serving approach.
After 10 rounds the remaining resource capacity is increase by
20%. If the population is composed entirely of C or P players
the total consumption over 10 rounds would be 20 · 10 · 40 =
8000 units. A 20% increase boosts the capacity to slightly
over 50000 before starting the next 10 rounds. This slight
increase over 50000 keeps the resource capacity viable even
if a small number of defectors are present. The game continues
for a fixed number of rounds or until the resource is depleted,
whichever comes first.

The return is 39 units per round for C or P players and
82 units per round for D players. There is a strong incentive
to consume more since the return for defecting is more than
twice that of not defecting.

IV. EXPERIMENTAL RESULTS

All simulations were conducted with N = 20. The rewards
for each strategy i were

⇡(i) =

8
><

>:

82� k2� defectors
39 cooperators
39� ck3↵ punishers

(5)

where � is the defector’s punishment and ↵ = 1.0 is the
cost a punishers pays. The constant c equals 1 if there are
defectors in the population or 0 otherwise. This constant
ensures punishers pay costs only when defectors are present.
Notice punishments and costs are additive since each punisher
imposes a punishment � on a defector and pays a cost ↵ for
every defector punished.

The returns in Eq. (5) are slightly different from Eq. (1)
because the former is for a TOC game and the latter for
a PGG. The returns in a PGG are based on a contribution
amount y, a multiplication factor r and the frequency of
cooperators. In the TOC the constants 82 and 39 represent
player consumption rates which only depend on the strategy
played. The punishment for defection is the same in both
games. Eq. (5) has an additional penalty for cooperator free
riding and a corresponding additional cost for the punisher.

Figure 3 shows the population evolution for an initial strat-
egy distribution of [p1 p2 p3] = [0.35 0.35 0.30] corresponding
to k1 = k2 = 7 and k3 = 6. The replicator equations show
for low � values the punishment isn’t high enough to prevent
defectors from taking over the population. The punishment
becomes high enough to coerce defectors to switch strategy
as � approaches 7. The trajectory with � = 7.1 terminates
at an interior fixed point. (Fixed points are discussed in the
next section.) The trajectory with � = 10.0 terminates at
the p1–p2 boundary which means there are no defectors left

Fig. 3. Evolution of a finite populations (N = 20) for various punishment
values (�). Punisher cost is ↵ = 1. Initial distribution for all trajectories is
[p1 p2 p3] = [0.35 0.35 0.30] which corresponds to k1 = k2 = 7 and
k3 = 6. Payoffs are 39, 39 and 82 for C,P and D players respectively. For
� ⇡ 7 or less defectors eventually take over the population.

in the population. Consequently, c = 0 yielding the same
payoffs for a punisher and a cooperator. In that case there
is no distinction between the two players and the TOC was
completely resolved.

Figure 4 shows just two trajectories from Figure 3. The
black dashed line is parallel to the p2–p3 boundary. Every
point on this dashed line has p1 = 0.35 (k1 = 7). Similarly
the red dashed line is parallel to the p1–p3 boundary and every
point on it has p2 = 0.35. Notice the trajectory with � = 7.1
exactly overlaps the red dashed line. This means the number of
punishers did not change from the initial value of k2 = 7. Thus
all defectors who switched strategies became cooperators. The
trajectory with � = 10.0 intersects the p1–p2 boundary to the
right of where the dashed black line intersects that boundary
indicating the cooperator frequency increased. But it intersects
to the left of where the red dashed line intersects indicating
the punisher frequency also increased. Thus in this case some
defectors switched to cooperators while others switched to
punishers2.

There are actually two ways of inflicting more punishment
on defectors: fix k2 and increase � or fix � and increase
k2. To explore this latter case more thoroughly we conducted
an experiment with various initial values of k2 while fixing
the initial value of k3 at 7. For all runs � = 6.9 which
Figure 3 indicates was too small to prevent the population
from being taken over by defectors. Figure 5 shows 7 and
even 8 punishers were not enough to prevent the take over
by defectors. However, for k2 � 9 the population contains
enough punishers to coerce defectors to switch strategies.

2The initial population had k1 = 7, k2 = 7 and k3 = 6 whereas the final
population had k1 = 11, k2 = 9 and k3 = 0.
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Fig. 4. Evolution of a finite populations (N = 20) for � = 7.1 and
10.0. Dashed lines represent constant strategy frequencies for p1 (black) and
p2 (red). The initial distribution is [p1 p2 p3] = [0.35 0.35 0.30]. These
trajectories are the same as those in Figure 3.

Fig. 5. Effect of varying the frequency of punishers with fixed punishment
� = 6.9 and k3 = 6 (cf., Figure 3). Numbers indicate the initial number of
punishers. Punisher cost is ↵ = 2.

V. DISCUSSION

The 2-D simplex was used for trajectories showing how
strategies evolve in the population. These trajectories were
generated from the discrete replicator equations. Strategy
frequencies will not change any further if the trajectory hits
a fixed point. This simplex contains several fixed points. For
instance, it is easy to prove every vertex is a fixed point. All
interior fixed points are caused by the quantization process.
Consider the red trajectory in Fig 3. That trajectory hits a
fixed point at pi = [0.528 0.341 0.131] which corresponds to
k1 = 10, k2 = 7 and k3 = 3. Plugging those pi values into the
quantization algorithm returns the same population mixture.
The location of these interior fixed points will change as N

increases and completely disappear as N ! 1. However,
there are some natural fixed points on one simplex boundary

(other than at the vertices) which do not disappear and the
exact number grows with N . For infinite population sizes every
point on this boundary is a fixed point.

Theorem. Every point on the p1–p2 boundary of the 2-D
simplex is a fixed point.

Proof. Suppose at time ⌧ a trajectory intersects a point on the
p1–p2 boundary. Then k3 = 0 and by Eq. (4) remains so for all
t � ⌧ . This makes c = 0 in Eq. (5) so the return to a punisher
or a cooperator is the same. The proof follows because with
identical returns there is no incentive to change strategies.

Referring back to Figure 3, the initial population mixture
was [p1 p2 p3] = [0.35 0.35 0.30]. � = 6.9 wasn’t a sufficient
punishment to prevent defectors from eventually taking over
the population. This poses an interesting question: if the
punishment were subsequently increased would this induce
defectors to switch strategies?

To investigate this issue further an experiment was con-
ducted where punishers doubled the punishment if p3 exceeded
0.35. The results are shown in Figure 6. The replicators
equations predict after an initial decrease in defectors their
number increased again until they take over the population
(green trajectory). A second experiment (red trajectory) in-
vestigated what would happen if the punishers immediately
doubled the punishment if there was any increase in defector
frequency. In this case, after an initial increase in defectors,
they rapidly decreased until a fixed point was reached. This
suggests if punishers want to prevent defectors from taking
over a population, then they shouldn’t wait too long before
increasing the punishment.

In this last experiment � was doubled to stop the growth
of defectors. That may seem excessive since Figure 3 shows
� = 6.9 wasn’t sufficient to stop defector growth but � = 7.1
was sufficient. Notice the trajectories where defectors prevail
move towards the p2–p3 simplex boundary and then up to
the p3 vertex. In other words, the number of punishers is
decreasing. Consequently, the punishment per punisher must
increase sharply to stop defector growth because there are
fewer punishers in the population.

Cooperators limit their consumption of the shared resource
for the good of the group. This allows the resource to replenish
itself, thereby keeping it viable. Defectors are free riders.
They may consume more of the shared resource by free
riding on cooperators who want to preserve the resource. The
experimental results show punishment can effectively reduce
the number of defectors in a finite population, but if and only
if the punishment is sufficiently large enough. This can be
achieved two ways: either keep the same number of punishers
in the population and increase the punishment level or keep
the punishment level the same but increase the number of
punishers. In both cases the defectors are reduced.

But there is another type of free rider. Altruistic punishment
comes with a cost to the punisher, which reduces his return.
Cooperators who do not punish free ride on punishers. That
is, they reap the benefits of fewer defectors in the population,
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Fig. 6. Effect of adapting �. The dashed trajectory is the same trajectory
for � = 6.9 from Figure 3 included for reference. Initial distribution is
[p1 p2 p3] = [0.35 0.35 0.30]. � is doubled when p3 � 0.35 (green
trajectory) or p3 > 0.30 (red trajectory).

but they let punishers pay the associated cost. This is referred
to as the second-order free rider problem.

Punishment effectively handles the first-order free rider
problem—i.e., defector free riding—so it is reasonable to as-
sume it would also handle the second-order free rider problem.
Now cooperators are punished for not punishing defectors.
Each punisher pays a cost ⌘ to reduce a cooperator’s return
by �. The new returns for a strategy i are

⇡(i) =

8
><

>:

82� k2� defectors
39� ck2� cooperators
39� c[(k3↵) + (k1⌘)] punishers

(6)

The punishments and costs can be summarized as follows:
1) defectors get punished � by each punisher
2) cooperators get punished by � by each punisher
3) punishers pay a cost ↵ for each defector punished plus

a cost ⌘ for each cooperator punished.
4) if there are no defectors c = 0 to remove all costs and

punishments
Figure 7 shows how punishing cooperators who don’t pun-

ish defectors helps resolve the second-order free rider problem.
The defector punishment was � = 6.9 with a cost ↵ = 1.0.
The green trajectory has � = 0.0 so there is no cooperator
punishment. (This is the same as the green trajectory depicted
in Figure 3). The red trajectory shows a cooperator punishment
of � = 2.2, with a cost to the punisher of ⌘ = 0.1 The
defectors are rapidly switching to punishers who eventually
take over the population—i.e., p2 = 1.0 and p1 = p3 = 0.0.
But a population of all punishers has the same affect on the
shared resource as does a population of all cooperators; no
defectors, no punishment costs so the returns are identical.
Punishing defectors resolves the first-order free rider problem
and punishing cooperators who don’t punish resolves the

Fig. 7. Effect of punishing cooperators with punisher cost ⌘ = 0.1. �

is punishment to cooperator. Defector punishment is � = 6.9). � = 0.0
trajectory is same trajectory as the green trajectory from Figure 3.

second-order free rider problem. More importantly, this dual
punishment approach resolves the TOC at the same time.

In finite populations discrete replicator equations predict
strategy evolution but some form of quantization is necessary.
Quantization can produce fixed points in the simplex interior.
Interior fixed points always have k3 � 1. The TOC is only
partially resolved in this case, which can prove problematic.
The defectors that remain will continue to over-consume the
shared resource and, unless the replenishment rate (20% after
10 rounds in these experiments) is sufficient, the resource
will eventually become depleted. Under those circumstances �
should be increased to force a complete resolving. An example
is shown in Figure 3. � = 7.1 resulted in the population
reaching an interior fixed point whereas � = 10.0 completely
purged defectors from the population.

Defectors always do better in social dilemmas regardless
of what others do. The simulation results show altruistic
punishment can help resolve a TOC. These results are consis-
tent with previous studies where it was shown punishment is
most effective in iterated scenarios where group memberships
don’t change [4]. But there still is an open question: why do
individuals choose particular strategies in a TOC? Defectors
may be motivated purely by self interest. Other individuals
may choose cooperation because they feel morally obligated to
preserve a finite resource. But why would individuals choose
to be a punisher, especially if punishment is costly?

Unfortunately replicator dynamics will probably not be
very helpful in getting an answer. Replicator equations only
describe how strategies in a population evolve over time. There
is no mutation involved so new strategies cannot emerge and
lost strategies cannot reappear. Evolution is dictated strictly
in terms of fitness relative to the average population fitness.
Put another way, replicator equations only provide proximate
causes, not underlying reasons. For instance, Figure 7 shows
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punisher growth. But to get this growth punishers had to
address both the first-order and the second-order free rider
problem and with high enough punishment levels. Punisher
growth occurs if and only if the cost incurred is less than
the punishment inflicted—i.e., �/↵ > 1 and �/⌘ > 1. Note
these punishment-to-cost ratios are necessary but not sufficient
conditions. Recall the punishment inflicted depends on the
number of available punishers (see Figure 5). Natural selection
will still favor defectors or cooperators if punishers are rare.
Replicator equations also do not explain why an individual
decided to be a punisher in the first place.

The human experiments conducted by Fehr and Gächter [2]
may provide some proximate explanations. Subjects partic-
ipated in a PGG and afterwards recorded their anger and
annoyance at free riders. They found subjects who contributed
more were far more likely to be angry at free riders. They were
also more likely to retaliate by inflicting punishment. Selp et
al. [5] found that just witnessing non-cooperative behaviors
provided the “extra fuel” needed for people to engage in costly
punishment. Prior work by this author [6] showed that both
anger and guilt are present in TOC social dilemmas.

These results regarding the role emotions play in social
dilemmas have profound implications. In the past researchers
have focused on Nowak’s five rules as the genesis of coop-
erative behavior—e.g., kin selection or reciprocity are essen-
tial mechanisms. Those mechanisms may provide insight for
pairwise interactions, but not group dynamics. For example,
directory reciprocity is the underlying mechanism in the tit-
for-tat strategy in a 2-player iterated prisoner’s dilemma game.
But now consider a 5-player PGG where 2 players cooperate
and the other 2 defect. It is not obvious in this case how direct
reciprocity helps the 5th player develop an effective strategy
for the next round.

Rational individuals weigh the costs and benefits of new
strategies before making any change but emotions are the
triggering events that cause individuals to reassess their current
strategy. Under what circumstances would a cooperator decide
to become a punisher? A cooperator who is merely irritated
by defectors may decide no strategy change is warranted; an
outraged cooperator may decide differently. Emotions may
also provide some insight into how high punishment levels are
set and what costs punishers are willing to pay. Future efforts
should focus on explaining the origins of altruistic punishment
rather than mechanisms.
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Abstract—In this paper, a novel approach for human gesture
classification on skeletal data is proposed for the application
of exergaming in physiotherapy. Unlike existing methods, we
propose to use a general classifier like Random Forests to
recognize dynamic gestures. The temporal dimension is handled
afterwards by majority voting in a sliding window over the
consecutive predictions of the classifier. The gestures can have
partially similar postures, such that the classifier will decide on
the dissimilar postures. This brute-force classification strategy
is permitted, because dynamic human gestures show sufficient
dissimilar postures. Online continuous human gesture recognition
can classify dynamic gestures in an early stage, which is a
crucial advantage when controlling a game by automatic gesture
recognition. Also, ground truth can be easily obtained, since all
postures in a gesture get the same label, without any discretization
into consecutive postures. This way, new gestures can be easily
added, which is advantageous in adaptive game development. We
evaluate our strategy by a leave-one-subject-out cross-validation
on a self-captured stealth game gesture dataset and the publicly
available Microsoft Research Cambridge-12 Kinect (MSRC-12)
dataset. On the first dataset we achieve an excellent accuracy rate
of 96.72%. Furthermore, we show that Random Forests perform
better than Support Vector Machines. On the second dataset we
achieve an accuracy rate of 98.37%, which is on average 3.57%
better then existing methods.

I. INTRODUCTION

Human gesture recognition [1], [2], [3], [4] is defined as
automatically identifying and interpreting human body move-
ments using a set of sensors. Human body movements may
be performed with the hands, arms, body, head, etc. Human
gestures may include for instance standing, lying, bending,
sitting, walking, jumping, etc. Human gesture recognition has
been heavily studied because it plays an important role in
human computer interaction applications [5], [6], [7], [8] such
as health monitoring systems, surveillance systems, motion
analysis in sports, and human behavior analysis.

In this paper we perform human gesture recognition for the
application of exergaming in pysiotherapy. It is not always
easy for children in a rehabilitation or fitness program to
sustain their efforts. Exergaming, which combines exercise and
gaming, can motivate children (and adults) to keep moving.
Exergaming also offers the possibility for remote monitoring
and coaching in an e-environment. Coaches and therapists
can select the games with the desired level of difficulty and
remotely monitor the children’s progress. The project wE-

MOVE 1 is an innovative solution for exergaming that re-
motely supports the childrens rehabilitation and prompts them
to move. The software consists of a gross motoric exergame
and a platform allowing both the child and the coach to
monitor progress. In this framework, automatic human gesture
classification is needed to control the game.

Human gesture recognition is mainly performed on RGB-
D (Red, Green, Blue and Depth) data [9], [10], [11], [12],
[6], [13] or on skeleton data [14], [15], [16], [17], [18],
[13], [19], [20], [21], where skeletal data can be extracted
from RGB-D data. To recognize static gestures (i.e. postures,
such as sitting, standing or lying), a general classifier [22]
or a template-matcher is generally used. Dynamic gestures
(i.e. consecutive postures, such as running, jumping) have a
temporal dimension, which is traditionally handled by Hidden
Markov Models (HMM) or motion based models. When
classifying many dynamic human gestures, constructing these
models is complex and time consuming. Also, the models are
usually not generally applicable, so that it is difficult to extend
the classifier with new gestures. Furthermore, building ground
truth requires a discretization into consecutive postures of the
dynamic gesture, which is again complex and time consuming.

In this work, we propose a novel approach which uses a
general classifier [22], such as Random Forests (RF) [23], to
recognize dynamic gestures in skeletal data. The gestures can
have partially similar postures, such that the classifier will
decide on the dissimilar postures. The temporal dimension is
handled afterwards by majority voting in a sliding window
over the consecutive predictions of the classifier. This way
of online continuous human gesture recognition can recognize
dynamic gestures in an early stage, since we build up reliability
when sliding the window. This is a crucial advantage when
controlling a game by automatic gesture recognition, since
the feedback to the user should be given in real time. Also,
ground truth can be easily obtained, since all postures in a
dynamic gesture get the same label, without any discretization
into consecutive postures. Furthermore, the classifier is general
and can be easily extended with new gestures, which is
advantageous in adaptive game development.

We elaborate RF combined with majority voting in a sliding

1More details can be found at http://www.iminds.be/en/projects/2015/03/
11/we-move
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window for human gesture recognition. RF are considered
amongst the most robust classifiers currently available, and
have been shown to perform as well as or better than Support
Vector Machines (SVM), while being much less computation-
ally expensive to train or execute. We consider normalized
skeleton data provided by the Microsoft Kinect v2 [24]. The
Kinect device is a motion sensing device which was originally
designed for the Microsoft Xbox 360 video game console
where the user is the controller. The device is composed of
multiple sensors: an RGB camera to capture a colored video
stream, a depth camera to compute the 3D environment and an
infrared light sensor. Skeletal data is extracted from RGB-D
images. Kinect v2 can detect up to six users at the same time
and compute their skeletons in 3D with 25 joints representing
body junctions like the feet, knees, hips, shoulders, elbows,
wrists, head, etc. For each pose of a skeleton the position
numbers and the angle numbers of the joints form a feature
vector. These feature vectors are used to train a RF and classify
gross motoric movements.

In our experiments, we evaluate the above-mentioned strat-
egy on two datasets. The first dataset is a self-captured stealth
game gesture dataset, including 5 human subjects performing
23 specific movements for a gross motor stealth game. The
gestures have partial similarity, such as walking and running,
or jumping low and jumping high. Our method is evaluated
by leave-one-subject-out cross-validation (LOSubO CV) [25].
In the results we will show that RF and majority voting in a
sliding window achieves an accuracy rate of 96.72%. Further-
more, we will show that RF perform better than SVM. The
second dataset is the publicly available Microsoft Research
Cambridge-12 Kinect (MSRC-12) gesture dataset [26]. The
dataset includes 30 people performing 12 gestures. Among all
publicly available datasets [27], [28], the MSRC-12 dataset
is best suited for our application, since the ground truth
annotation for each sequence marks the action point of the
gesture as a single time instance at which the presence of the
action is clear and that can be uniquely determined for all
instances of the action. For a real-time application, such as
a game, this is the point at which a recognition module is
required to detect the presence of the gesture. Using LOSubO
CV We achieve an accuracy rate of 98.37%, which is on
average 3.57% better than existing methods [29], [30], [31].

The remainder of the paper is as follows. In Section II,
we give an overview of the RF classifier. In Section III, we
explain the strategy of majority voting in a sliding window.
In Section IV, we evaluate and compare the proposed method
on two datasets. Finally, in Section V we conlude the paper.

II. RANDOM FORESTS

In this section we shortly review some basic work on RF
for classification problems. A RF [23], [22] is an ensemble
classifier composed of several binary decision trees, each
trying to solve the same task.

Like any classifier, a decision tree takes a set of features
as input, and returns a class label as its output. A decision
tree consists of a set of nodes that are connected by branches.

Non-leaf-nodes are called decision-nodes. In binary decision
trees, each decision-node has exactly two child-nodes. Each
branch that connects a decision-node with its two child-nodes,
corresponds to a binary decision value. During classification,
each decision-node compares a specific feature value with a
threshold value, and then follows one of the two branches that
corresponds to binary outcome of this test. This process is
repeated until a leaf-node is reached. Leaf-nodes in a decision
tree correspond to class labels, and thus represent the final
decision.

Although decision tree classifiers are easy to use and can
be implemented extremely efficiently, training a decision tree
is a difficult problem. During tree construction, one of the
several available features have to be chosen for the binary
test at each decision-node. Common methods to train decision
trees are the ID3 algorithm and its successor, C4.5 [32],
which resort to a greedy heuristic approach to determine the
splitting criteria. At each decision-node, the information gain
(also know as mutual information) for each possible splitting
criterion is calculated, and the criterion yielding the highest
information gain is chosen.

When choosing a classifier, we consider the bias-variance
trade-off. The bias of a classifier represents the number of sam-
ples that would be consistently misclassified, if the classifier
would be trained on different subsets of the complete training
population. The variance of a classifier measures the variability
of the number of misclassifications when different subsets
of the training population are used. In general, classifiers
that are able to fit the data well, exhibit low bias but high
variance, while classifiers that result in more general decision
boundaries yield high bias but low variance. While a low-bias,
low-variance classifier is desirable, lowering the variance of a
classifier, often implicitly increases the bias, and vice versa.

A decision tree is a low-bias high-variance classifier. An
obvious way to lower the variance is to train multiple decision
trees on different subsets of the population, and then use
the average decision (i.e. regression) or a voting scheme (i.e.
classification). However, in practice only a limited amount of
training data is available, instead of the whole population.
A well know method to approximate the distribution of the
complete population if only a limited number of observations
are available, is to construct multiple training samples by
bootstrapping the original training dataset. Bootstrapping is a
resampling method that is known by statisticians as sampling
with replacement. Since sampling with replacement means that
samples can be selected multiple times, this means that each
bootstrapped sample contains duplicated data. As a result,
each classifier that is trained on a different bootstrapped
sample, will have slightly different decision boundaries. By
aggregating the resulting decisions of each of these possibly
high-variance classifiers, by means of averaging or voting, a
low-variance classifier is obtained. This concept of bootstrap
aggregating is called bagging. For bagging in RF, the number
of trees in the forest is an important parameter to choose. The
larger the better, but also the longer it will take to compute.
In addition, the results will stop getting significantly better
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Figure 1. In the training phase of the classifier, all postures in a dynamic
gesture (grey zone) get the same label.

beyond a critical number of trees.

RF use bagging to reduce the variance of the final ensemble
classifier, compared to a single decision tree. However, bagged
trees exhibit a high correlation because of the duplicates in
their training data and the similarity in their training method.
Highly correlated trees would therefore make the same errors
in similar regions of the feature space. This means that
reducing the variance by means of bagging, increases the
bias of the resulting classifier. To decrease the bias of the
ensemble classifier, RF ensure diversity of the tree classifiers
by introducing randomness into the splitting criterion: each
time the training set is split, only a randomly selected subset
of all features is considered for selecting the feature for the
next decision-node.

Thus, a RF, is a low-bias, low-variance ensemble classifier,
trained by bootstrapping and random feature selection. RF
have been shown to be almost invariant to overfitting and
robust to noise. Finally, classification by means of RF can
be implemented extremely efficient, since each decision tree
can simply be represented by a set of conditional statements.

As feature input for the classifier, we consider normalized
skeleton data provided by the Microsoft Kinect v2 [24]. The
skeletons are computed in 3D with 25 joints representing
body junctions, where each joint consist of a position encoded
in three numbers and an angle encoded as four quaternion
numbers, which is a common encoding method in robotics.
For each pose of a skeleton the position numbers and the
quaternion numbers of 25 joints form a 175-dimensional
feature vector. These feature vectors are used to train and
classify gross motoric movements.

In the training phase of the classifier, all postures in a
dynamic gesture get the same label, as illustrated in Figure 1,
where all different postures in the grey zone get the same label.
Different gestures can have partially similar postures. In this
case, the classifier will decide on the dissimilar postures. In
the results we will show that the selection of human gestures
in many applications shows sufficient dissimilarity in the
postures. Using this brute-force strategy, ground truth can be
easily obtained, because only the beginnings and the endings
of the gestures have to be indicated, without any discretization
into consecutive postures. Furthermore, the classifier can be
easily extended with new gestures, which is advantageous in
adaptive game development.

Figure 2. The temporal dimension of a human gesture in the skeletal data.

III. MAJORITY VOTING IN A SLIDING WINDOW

In an online continuous human gesture recognition mode,
the temporal dimension in human gestures is handled by
majority voting in a sliding window over the consecutive
predictions of the classifier. An example of the temporal
dimension of a human gesture, i.e. bowing, in the skeletal
data is illustrated in Figure 2.

In a sliding window, we compute the observation probability
of a human gesture using a number of continuing observations
within the sliding window. The final gesture type is decided
by a majority vote of all recognition results that are obtained
between the start and end point of the window. For optimal
classification, the length of the time window is dependent on
the duration of the gestures, and thus the selection of gestures
and the subjects performing the gestures. In this work, the
size of the sliding window ws is determined empirically; in
our work we found that one second was a good value, which
means a buffer of 30 classifier predictions at a skeleton rate
of 30Hz.

Using a sliding window technique in human gesture recog-
nition introduces many advantages. The first advantage is that
it improves the classification performance of gesture recogni-
tion greatly, as we will show in the results. A second advantage
is that it reduces the undesirable effect of an abrupt change
of observations within a short interval that can be caused by
erroneous and incomplete skeletons. The third advantage is
that human dynamic gestures can be recognized in an early
stage, since we build up reliability when sliding the window.
This is a crucial advantage when controlling a game with
automatic gesture recognition, since the feedback to the user
should be given in real time.

IV. RESULTS

In this section, we evaluate the proposed strategy on two
datasets: a self-captured stealth game gesture dataset and the
Microsoft Research Cambridge-12 Kinect (MSRC-12) dataset.
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Figure 3. The normalized x and the y coordinates of the spine mid joint
over time for 11 gestures. The green and the red lines indicate the beginnings
and the endings of the gestures (ground truth), respectively.

A. Stealth game gesture dataset

In the first dataset, we recorded human subjects perform-
ing 23 specific movements for a gross motor stealth game,
recorded with the Kinect v2 at the Sportlab of the department
of Movement and Sport Sciences at Ghent University in
Belgium. The dataset includes five subjects that repeat 23
exercises of a stealth game three times (26534 samples at
30Hz). Between every exercise the subject takes the neutral
posture, which is standing up with the arms along the body.

This is the list of 23 movements with their corresponding
label: 0: neutral, 1: walking, 2: running, 3: step to the left, 4:
step to the right, 5: bowing, 6: bow to the left, 7: bow to the
right, 8: little jump, 9: big jump, 10: little jump with the hands
up, 11: big jump with the hands up, 12: climbing, 13: flying
like a hummingbird, 14: flying with small arm movements,
15: flying with big arm movements, 16: punch to the left, 17:
punch to the right, 18: pushing forward, 19: high kick to the
left, 20: high kick to the right, 21: low kick to the left, 22:
low kick to the right.

The graph in Figure 3 plots the normalized x and the y
coordinates of the spine mid joint over time for 11 gestures.
The green and the red lines indicate the beginnings and the
endings of the gestures (ground truth), respectively. In the
coordinates we can clearly distinguish the different expected
patterns of the gestures.

Figure 4 plots the y coordinates over the x coordinates of the
spine mid joint indicated in different colors for all gestures.
This graph shows that the feature vectors of all postures in
each dynamic gesture form a continuous cluster which is
separable from the clusters of the other gestures.

Figure 5 shows the percentages of overlapping postures
between the different gestures. The highest percentages of
overlap are noticed between the gestures walking and running
(up to 80%), and between the flying gestures (up to 60%).

Figure 4. The y coordinates over the x coordinates of the spine mid joint
indicated in different colors for all gestures.

Figure 5. The percentages of overlapping postures between the different
gestures.

Also, all gestures have a high overlap with the neutral gesture.
This is because the neutral gesture occurs between every two
other gestures. During annotation, a few samples of the neutral
gesture may be included in another gesture. In our approach,
despite the overlap, the remaining non-overlapping postures
are sufficient to classify gestures.

We made an annotation of the dataset by indicating the
beginnings and the ending of the gestures. The number of
annotations we had to made is 5 persons × 23 gestures × 3
repeats × 2 annotations = 690 annotations, in stead of 26534
annotations in the case of a discretization of the dynamic
gesture.

We evaluate our method by leave-one-subject-out cross-
validation (LOSubO CV) [25], which is the most widely
adopted evaluation protocol in action recognition algorithms
towards maturity and robustness for real-world applications.
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Table I
THE CLASSIFICATION ACCURACY RATES ON THE STEALTH GAME GESTURE

DATASET WHEN EVALUATING AFTER 50% AND 100% FINISHING THE
EXERCISE USING RF, SVM LINEAR AND SVM POLYNOMIAL COMBINED

WITH MAJORITY VOTING IN A SLIDING WINDOW, RESPECTIVELY.

Method Accuracy(%) Accuracy(%)
50% finished 100% finished

SVM linear (C = 4.7) + SW 83.34 ± 7.32 94.12 ± 0.09
SVM polynomial (D = 13) + SW 83.71 ± 4.92 94.80 ± 0.03
RF (N = 27) + SW 88.26 ± 4.23 96.72 ± 0.02

LOSubO CV means that the classifier is trained with all but
one subject and tested with the unseen data. This is repeated
for all subjects and the average of the outcomes as the final
result is reported. Thus, in our case we perform a 5-fold cross-
validation.

For the RF classifier, we choose the number of decision trees
N in the forest equal to 27, which we determined empirically
by a parameter sweep. Beyond this number of trees, the results
stop getting significantly better. The size of the sliding window
(SW) ws is equal to 30. The window is initialized with labels
of class 0 (neutral). As a comparison, we also test SVM
in a one-against-one approach for multi-class classification
using a linear and polynomial kernel, respectively. For the
SVM with a linear kernel, we choose the penalty parameter
C of the error term equal to 4.7. For the SVM with a
polynomial kernel, we choose the polynomial degree D equal
to 13. These values have been determined empirically for an
optimal accuracy rate on the dataset. Table I presents the
accuracy rates when evaluating the classification after 50%
and 100% finishing the exercise, respectively. The accuracy
is measured as the set of labels predicted for a sample that
exactly match the corresponding set of labels in the ground
truth. The observational latency is an important evaluation
criterion in our game application. After 50% finishing the
exercise, the RF +SW already classifies 88.26% of the gestures
correctly. The classification accuracy increases to 96.72% after
100% finishing the exercise. Furthermore, these numbers also
shows that the RF classifier performs better and faster than
the SVM classifiers. The training times of the RF classifier,
the linear SVM and the polynomial SVM are 12.65 seconds,
23.59 seconds and 27.78 seconds, respectively.

The precision, recall and f1-scores per human gesture are
presented in the bar chart in Figure 6. Overall, the average
precion, recall and f1-score, weighted with the number of class
labels, are all equal to 0.97. Our method has a little less per-
formance in recall on jumping and walking gestures, because
these gestures have many similar postures with the neutral
posture. This is further illustrated in the confusion matrix in
Figure 7. The confusion matrix is a matrix which shows the
accuracy of a classification algorithm, where each column of
the matrix represents the instances in a predicted class, while
each row represents the instances in an actual class. We can
clearly see that our method has the biggest confusion in the
classification of non-neutral gestures as neutral gestures, which
is due to the accuracy of the ground truth and the occurrence

Figure 6. The precision, recall and f1-scores per human gesture.

Figure 7. The confusion matrix showing the accuracy of the proposed
classification algorithm.

of neutral postures in the non-neutral gestures. Regarding the
accuracy of the ground truth, the beginnings and endings of
the gestures can include a few overlapping neutral postures,
causing the classifier to classify non-neutral gestures as neutral
gesture.

Figure 8 presents a visualization of the application output.
On the right hand side the skeleton of the posture of a subject
performing gesture 15 (flying with big arm movements) is
shown. On the left hand side we see the observational proba-
bility per gesture class in the sliding window. The probability
of the class 0 (neutral) is decreasing to zero, the probability
of the class 15 would increase to one in case of a perfect
classification. However, in this case, the RF classifier makes
a few mistakes by predicting class 14 (flying with small
arm movements), due to the similar postures with class 15.
These errors are handled by majority voting for the final
class decision, which is printed in red color on the right hand
side. Even though class 14 and 15 have similar postures, the
classifier is still able to decide on the dissimilar postures. This
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Figure 8. Visualization of the application output.

figure also demonstrates the advantage that human dynamic
gestures can be recognized in an early stage, since we build up
reliability in the sliding window when performing the exercise.

B. MSRC-12 dataset

The second dataset is the Microsoft Research Cambridge-
12 Kinect (MSRC-12) gesture dataset [26], which consists
of sequences of human movements, represented as body-part
locations, and the associated gesture to be recognized by
the system. The dataset includes 594 sequences and 719359
frames, approximately six hours and 40 minutes, collected
from 30 people performing 12 gestures. In total, there are
6244 gesture instances. The motion files contain tracks of 20
joints estimated using the Kinect Pose Estimation pipeline.
The body poses are captured at a sample rate of 30Hz with an
accuracy of about two centimeters in joint positions. The list of
movements with their corresponding label: 0:lift outstretched
arms, 1:duck, 2:push right, 3:goggles, 4:wind it up, 5:shoot,
6:bow, 7:throw, 8:had enough, 9:change weapon, 10:beat both,
11: kick. Among all publicly available datasets [27], [28], the
MSRC-12 dataset is best suited for our application, since the
ground truth annotation for each sequence marks the action
point of the gesture as a single time instance at which the
presence of the action is clear and that can be uniquely
determined for all instances of the action. For a real-time
application, such as a game, this is the point at which a
recognition module is required to detect the presence of the
gesture.

For the RF classifier, we choose the number of decision
trees N in the forest equal to 27, which gives an optimal
classification rate on this dataset. The size of the sliding
window is again ws = 30. We compare our method to the
methods in [29], [30], [31], which are the highest performing
methods on this dataset as also reported in [27]. The methods
implement human gesture recognition by decision forest based
feature selection, a temporal hierarchy of covariance descrip-
tors and sequence matching, respectively. Table II presents the
accuracy rates when evaluating at the time instance marked in

Table II
THE ACCURACY RATES WHEN EVALUATING AT THE TIME INSTANCE

MARKED IN THE GROUND TRUTH OF THE DATASET USING THE PROPOSED
RF +SW METHOD AND THE METHODS IN [29], [30], [31].

Method Accuracy(%)
RDF-selected features [29] 94.03
Cov3DJ [30] 93.60
ESM [31] 96.76
RF (N = 23) + SW 98.37

Figure 9. The precision, recall and f1-scores per human gesture on the MSRC-
12 dataset.

the ground truth of the MSRC-12 dataset using LOSubO CV
as evaluation protocol (30-fold cross-validation).

Our method achieves an accuracy rate of 98.37%, which
is on average 3.57% better then the methods to which we
compare.

The precision, recall and f1-scores per human gesture are
presented in the bar chart in Figure 9. Overall, the average
precion, recall and f1-score, weighted with the number of class
labels, are all equal to 0.98, which is among the highest in
literature.
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V. CONCLUSION

In this work, we proposed a novel approach for human
gesture classification on skeletal data provided by Microsoft
Kinect. We use Random Forests to recognize dynamic human
gestures, where the temporal dimension is handled afterwards
by majority voting in a sliding window over the consecutive
predictions of the classifier. The gestures to be recognized
have partially similar postures, such that the classifier de-
cides on the dissimilar postures. We showed that this brute-
force classification strategy is permitted because the selection
of human gestures in many applications shows sufficient
dissimilar postures. This way, ground truth can be easily
obtained, because only the beginnings and the endings of
the gestures have to be indicated, without any discretization
into consecutive postures. Furthermore, the classifier can be
easily extended with new gestures, which is advantageous in
adaptive game development. Additionally, online continuous
human gesture recognition can recognize dynamic gestures in
an early stage, which is a crucial advantage when controlling
a game by automatic gesture recognition. We evaluated our
strategy by a leave-one-subject-out cross-validation on a self-
captured stealth game gesture dataset and the Microsoft Re-
search Cambridge-12 Kinect (MSRC-12) dataset. On the first
dataset we achieved an accuracy rate of 96.72%. Moreover,
we showed that in this application Random Forests perform
better than Support Vector Machines. On the second dataset
we achieved an accuracy rate of 98.37%, which is on average
3.57% better then existing methods. In this work, we proved
that the proposed simple brute-force strategy of using a general
classifier in combination with majority voting in a sliding
window provides excellent classification results, while the
annotation process went very fast.
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Abstract—The goal of this work is to develop a multi-objective
genetic algorithm for simulating optimal fights between arbitrary
units in the real-time strategy game StarCraft II. As there
is no freely available application programming interface for
controlling units in the game directly, this first requires an
accurate simulation of the actual game mechanics. Next, based
on the concept of artificial potential fields a general behavior
model is developed which allows controlling units in an optimal
way based on a number of real-valued parameters. The goal of
each individual unit is to maximize their damage output while
minimizing the amount of received damage. Finding parameter
values that control the units of two opposing players in an optimal
way with respect to these objectives can be formulated as a
multi-objective continuous optimization problem. This problem
is then solved by applying a genetic algorithm that optimizes the
behavior of each unit of two opposing players in a competitive
way. To evaluate the quality of a solution, only a finite number
of solutions of the opponent can be used. Therefore, the current
optima are repeatedly exchanged between both players and serve
as input for the simulated encounter. By comparing the solutions
of both players at the end of the optimization, it can be estimated
if one of the two players has an advantage. Finally, in order to
evaluate the effectiveness of the presented approach, a number
of sample build orders, which correspond to the amount of units
that have been produced until a certain point of time, serve as
input for several optimization runs.

I. INTRODUCTION

Electronic sports (abbreviated eSports), which is a term for
organized video game competitions, continues to gain in pop-
ularity. With price pools comparable to and viewer numbers
even surpassing those of traditional sport events1, an increasing
number of video games is designed with an adaption as pro-
fessional gaming playground in mind. A prominent example is
StarCraft R© II: Heart of the Swarm R©, a real-time strategy game
from Blizzard Entertainment2. It is not only present on most
important international eSport tournaments currently held, but
has even evolved into a professional sport within South Korea.
In a typical game two players face each other. Both opponents
can choose among three races (Terran, Zerg and Protoss),
which differ in their strengths and weaknesses. Starting under
the same conditions, both players’ goal is to produce the right
composition of units, defeat the opponent’s units in combat

1According to the ”Global Growth of eSports Report” by newzoo games
market research from 2015

2 c©2013 Blizzard Entertainment, Inc. All rights reserved. StarCraft and
Heart of the Swarm are trademarks or registered trademarks of Blizzard
Entertainment, Inc., in the U.S. and/or other countries.

and ultimately win by destroying all of his structures. In
general, a game can be divided into three different phases:
Early, mid and late game. The early game mostly focuses
on developing the economy and building up a decent army
while occasionally fending off early aggression. In the mid
game the majority of fights take place with both players
continuously increasing the size of their armies. In case the
game continues further without a clear winner, the end game
phase is reached and both players are able to utilize their races’
full potential, including the most powerful units and upgrades.
In all three phases a player has to choose among numerous
possibilities and strategies. The outcome of a game mainly
depends on two aspects of a player’s decision making: Macro-
and micromanagement. The former describes the production
order of structures and units and the latter how units are
controlled in combat situations. To ensure that both opponents
have equal winning chances, all three races must be balanced
with respect to the aforementioned aspects in all phases of the
game.

An overview about common techniques for optimizing AI
behavior in real-time strategy games can be found in [1].
In [2] and [3] an approach for optimizing build orders, i.e.,
the order in which structures and units are produced by a
player, is presented. These build orders then represent the
potentially best macromanagement strategy a certain player
can execute within a fixed amount of time. By simulating a
battle between the units created within the respective build
order, it can be predicted which of two opponents has an
advantage at the current point of time in the game, assuming
that all units are controlled optimally. Optimizing unit behavior
in real-time strategy games based on parametrized artificial
potential fields is a common approach (see for example [4]
[5] [6] [7] [8]) that originally stems from robotics [9] [10].
In [11] it was shown that this approach is also suitable for
StarCraft II, producing reasonable results for different types
of units. However, only encounters between units of a single
type were considered and the units’ special abilities were
completely ignored. Moreover, the simulation of unit behavior
was based on simplified game mechanics and did not fully
cover the actual in-game complexity of micromanagement. In
this paper the shortcomings of this work are addressed and
it is further extended to produce optimal combat behavior for
heterogeneous unit groups in a reasonable accurate simulation
of the StarCraft II games mechanics.
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II. SIMULATION

Until now there exists no freely available API (Application
Programming Interface) for controlling units in StarCraft II.
To ensure the relevance of eventual results, it is therefore nec-
essary to simulate the game by accurately emulating the actual
game mechanics. As this work focuses on the simulation and
optimization of micromanagement, the following assumptions
are made:
• Units can move and interact on a two-dimensional rect-

angular area that possesses neither obstacles nor height
differences.

• Structures are ignored.
• No new units are created during the simulation. Only

those occurring in a predefined build order are considered.
In StarCraft II each unit is characterized by a number of
attributes each of which possesses a distinctive value. Addi-
tionally to these attributes units can have special characteristics
and abilities, which are either unit or race specific. For
example, all Zerg units are able to regenerate their health at a
slow rate. Also, some attacks exhibit special characteristics, for
instance, the attack of the Baneling, a Zerg unit, causes damage
to all ground units within a circular area of influence, and
after execution the Baneling is removed from the game. While
characteristics are always active, special abilities either cost
an additional resource called energy or can only be applied
consecutively after a certain cooldown period has passed. An
example is the Stalker’s blink ability. If researched by the
player, this unit is able to instantly teleport over a certain
distance with respect to a cooldown between consecutive
applications.

Despite these details, in principle a unit is able to perform
the following actions at each arbitrary point of time in the
game:
• Attacking. If the time span from the unit’s last attack is

smaller than its cooldown, it is able to attack exactly one
unit within its range. The damage is computed according
to the enemy’s type and the applying bonuses. If present,
special attack characteristics must be considered.

• Moving. If the unit decides not to or is not able to attack,
it can move in each direction according to its speed.

• Special Abilities. If the unit possesses special abilities,
these can be applied either additionally or instead of the
aforementioned actions depending on the characteristics
of the ability.

A. Potential Fields

To control units such that they behave optimally in combat,
artificial potential fields are employed. In the context of a
real-time strategy game bodies correspond to units and forces
denote the direction each unit moves. Thus, by artificially
creating different potential fields around a unit’s position other
units’ interactions with it can be defined. The goal of each
individual unit is to deal a maximum amount of damage while
receiving a minimum amount at the same time. As a unit can
only deal damage as long as an enemy stays within its attack

range, an attractive potential is required that forces the unit
to approach enemy units until this condition is fulfilled. On
the contrary, a unit can only take damage as long as it stays
within the enemy’s range, therefore a repulsive potential is
required that forces the unit to retreat. Finally, friendly units
should not act on their own, but as a group instead, both
approaching and retreating collectively. This is realized by
adding a third potential which creates an artificial attraction
between friendly units and to a certain degree forces them to
follow their companions’ paths instead. A unit’s movement
direction is then computed by accumulating the gradients of
all potential fields evaluated at the respective position.

While the overall behavior is clear, each potential field
comes with certain degrees of freedom, as it is unclear how
the various unit attributes should contribute in an arbitrary
situation. It is especially not obvious how the magnitudes
of the resulting forces should compare to each other in case
that multiple fields overlap at a position. In order to achieve
optimal combat behavior it is necessary to parametrize the
described potential fields, such that all relevant attributes
can be weighted arbitrarily. Therefore, they are modeled as
functions of the distance between both involved units which
contain 14 additional parameters with a range of values of
[0, 1], as described in Figure 1, 2 and 3. Additional factors
that occur within their computation are summarized in I. As
the values of the coefficients that occur within the computation
of the gradients of these functions differ significantly, they are
mapped to the same uniform range.
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dmin = size(this) + size(friend)

d0 = dmin+ x0

d1 = d0 + x1

Fig. 1: Function describing the attractive potential of friendly
units.

Figure 1 denotes the attractive potential of friendly units
with a range that can be arbitrarily chosen according to
two parameters. The magnitude of the gradient and thus the
strength of the resulting attraction mainly depends on the
amount of resources, i.e., minerals and vespene gas. required
to produce the unit. The costlier a unit, the more important
it usually is, making it necessary to accompany and protect it
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a12: Damage the enemy can deal to the affected unit within one attack

Fig. 3: Function describing the repulsive potential of enemy
units.

TABLE I: Additional factors that occur within the potential
field computation.

a5 Time to the affected unit’s next possible attack

a6 Damage already taken by the enemy unit during the simulation

a7 Damage the affected unit can deal to the enemy unit within one attack

tupdate Time to the next update of the movement directions

a10 Time to the enemy unit’s next possible attack

a11 Damage already taken by the affected unit during the simulation

a12 Damage the enemy can deal to the affected unit within one attack

with a number of cheaper units. Additionally, collisions, which
happen when friendly units approach each other at a distance
smaller than the sum of their two sizes, need to be avoided.
This is achieved by setting the magnitude of the potential to
a value near infinity, such that the two units are forced to

move apart until the condition is fulfilled. Figure 2 denotes
the attractive potential of enemy units. Its range depends on
the attack range of the affected unit while the magnitude of
the attraction is controlled by the following parameters:
• The less time is left until the affected unit is able to attack

the higher the attraction, as approaching the enemy only
makes sense when an attack is possible.

• The more damage the enemy has already taken the easier
it is to kill and thus the higher is the attraction.

• The more damage can be applied to the enemy within
one attack the higher the attraction.

Collisions between opposing units also need to be avoided
which is accomplished in the same way as described above.

Finally, Figure 3 denotes the repulsive potential of enemy
units. Its range depends on the attack range of the enemy
unit, but as an additional safety buffer, the movement speed
of the enemy is also taken into account. The magnitude of
the repulsion is controlled by the same parameters applying
to Figure 2, but from the perspective of the enemy unit.
Besides all relevant unit attributes, the concrete behavior of
the described potential fields entirely depends on the 14
parameters x0, . . . , x13 that occur within their calculation.

B. Workflow

As a human player is only able to perform a limited
number of actions per second, it is reasonable to allow making
decisions only at discrete time steps. After fixing all relevant
parameters, the outcome of an encounter between two groups
of units is simulated in the following way. At the beginning
the units of both players are placed at equidistant positions on
opposite sides of the field. During a time step the following
actions are performed by each unit:
• If attacking is possible, a target is chosen among all

enemies within attack range by favoring units that can be
defeated if the wasted damage3 does not exceed a certain
threshold, which is set by an additional parameter x14.
These are then prioritized by the amount of applicable
damage.

• Else, the unit moves and its position at the next time step
is computed with the following equation:

~pi+1 = ~pi +
~F

‖~F‖
× s (1)

where ~pi is the position at time step i, ~F the current force
and s the movement range within one time step4.

The force of each unit is recomputed after a fixed number of
time steps by accumulating the gradients of all potential fields
applying to it:

~F =
n∑

j=1

~Fj (2)

3The difference between the remaining health of the target and the damage
the attack could theoretically deal to a unit with the same attributes.

4The movement range equals the product of the length of a time step and
the speed of the unit.
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where n is the number of potential fields affecting the unit and
~Fj the gradient of the jth potential field. In case a unit exhibits
special abilities, these need to modeled and considered during
each time step, too. If their application incurs any kind of
decision making, additional parameters are introduced5. The
simulation finishes when either all units of a player have been
defeated or its duration exceeds a certain limit. As described
above, the behavior of each individual unit is controlled by the
values of 15 real-valued parameters, where x0 . . . x13 describe
the movement behavior and x14 sets the attack threshold in
case of multiple targets, plus possibly additional parameters
controlling the use of special abilities. In consequence, the
values of these parameters completely describe the behavior
of each individual unit.

What is left to be answered is how many sets of parameters
should be assigned to the units of a build order. Compared
to the overall amount of units in a build order the number of
different units is small. Units of the same kind share attributes
and special abilities, such as for example the same range and
movement speed, which facilitates the synchronization of their
behavior. Moreover, it can be expected that acting as a group
increases their combat effectiveness because it enables them
to combine their attacks and kill single enemy units faster.
Therefore, only one set of parameter values is assigned to all
units of the same kind6. This does not only prevent a linear
growth of the number of parameters with the length of a build
order, but also enables the optimization of the behavior of
similar units in a consistent way, which is covered in the
following section.

III. OPTIMIZATION

A. Problem Formulation

The goal of this work is to predict which of two players
wins in a combat based on the units produced and assuming
optimal control. According to the last section, the behavior
of a subgroup of units of the same kind is controlled by
at least 15 parameters with a range of values of [0, 1]. The
combat effectiveness of each individual unit is represented by
two objectives: The overall damage the unit is able to cause
to enemy units (fd) and how much of its own health it is
able to preserve (fh). For the sake of simplicity, from now
on the set of parameters that describes the combined behavior
of all units of a player is denoted as his strategy. Under the
assumption that the optimal strategy of the opponent is known,
its effectiveness according to both objectives can be evaluated
by simulating the respective encounter with both strategies
as input. Calculating the overall success of a strategy with
respect to an objective can be simply achieved by adding
up the corresponding measure at the end of the simulated
encounter. Not all units that possess the same amount health

5Describing them all goes beyond the scope of this work but it is assured
that all units occurring within the tested build orders are modeled completely,
including all special abilities, parameterizing relevant behavioral aspects.

6For example in case of a build order containing four marines and two
marauders, one set of parameters is assigned to the four marines and another
one to the two marauders.

are also equally important. For example the sum of health
of three Zerglings is slightly larger than that of one Infestor,
although the latter unit is much more valuable, possessing
powerful special abilities, which needs to be incorporated
when evaluating both objectives. The cost (in minerals and
vespene gas) of a unit represents a good approximation of its
importance and is therefore used as weighting factor when
evaluating the respective objective. Furthermore, to prevent
units from being completely passive, an additional penalty is
introduced: The health of units that have not attacked at least
once during the simulation is not taken into account when
evaluating the outcome. The effectiveness of a strategy with
respect to the two objectives, fd and fh, is then calculated
by the following formulas from the outcome of a simulated
encounter with U as the set of units of the player whose
strategy is evaluated and V as the set of units of his opponent:

fd(U, V ) =
∑
v∈V

(minerals(v) + gas(v))× damage(v) (3)

where damage(v) is the sum of health and shield the unit v
has lost, measured at the end of the simulation.

(4)
fh(U, V ) =

∑
u∈U

(w(u)× (minerals(u) + gas(u))

× (health(u) + shield(u)))

where health(u) is the remaining health and shield(u) the
remaining shield7 of unit u, measured at the end of the
simulation. The weighting function w(u) is defined as follows:

w(u) =

{
1 if u has attacked
0 otherwise

Maximizing fd and fh as output of a simulation with the
strategy of the first player as input leads to a multi-objective
continuous optimization problem. Because of the untraceable
relationship between in- and output of a simulation, gradient-
based methods are not applicable. As a remedy search heuris-
tics which do not require such knowledge can be applied, such
as genetic algorithm. To solve the problem of competitively
optimizing the strategies of two players, a multi-objective
genetic algorithm based on NSGA-II [12] is employed.

B. Genetic Algorithm

In the following the different parts of the algorithm are
described in detail.

1) Fitness Evaluation: Finding optimal strategies for both
players would theoretically require to evaluate all possible
solutions against each other. Because the search space is
continuous the number of possible solutions is uncountable.
To avoid this dilemma and still get a reasonable fitness ap-
proximation, each solution is only evaluated against a limited
number of the best solutions of the opponent. At the beginning,
n additional solutions are generated randomly and exchanged

7For Terran and Zerg units the shield is always zero.
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between both populations. To evaluate an individual, these
solutions act as second input for n simulations and objective
function evaluations whose average then forms its fitness in
both objectives:

fd(X) =
1

n

n∑
i=1

fd(UX , UYi
) (5)

fh(X) =
1

n

n∑
i=1

fh(UX , UYi
) (6)

fd(X) denotes the fitness of individual X in the first and
fh(X) in the second objective. Y1, . . . , Yn are the n individ-
uals currently used for fitness evaluation. UX and UYi denote
the corresponding sets of units at the end of a simulation with
X as input for the first and Yi as input for the second player.

After a fixed number of generations both players exchange
their n best solutions, which then replace the previous ones
used for fitness evaluation. This scheme results in a com-
petitive optimization of both populations. By repeatedly ex-
changing optima, both populations are forced to adapt to
changing requirements, which prevents them from overfitting
with respect to a subset of possible solutions of the opponent.
After passing the last generation, the individuals of both
population can finally be evaluated against each other to
examine the effectiveness of the corresponding build orders
in a direct comparison.

2) Crossover: The purpose of crossover is to produce
improved solutions by combining the chromosome of existing
ones, selected from the current population. In order to find the
best crossover operator for the existing case, their performance
is tested by competitively optimizing two sample build orders
that include units with divers characteristics and abilities.
• Player 1: 4 Marines with Combat Shield and Stimpack,

2 Marauders with Stimpack
• Player 2: 2 Zealots with Charge, 2 Stalkers with Blink

The operators are tested in combination with binary tourna-
ment selection and the three different mutation operators men-
tioned in Table III, in two optimization runs over 500 iterations
and with population sizes of 1600 for both opponents. Each
individuals is evaluated against ten strategies. Every tenth iter-
ation, the objective function is adapted by exchanging optima
between both populations. As self-adaptive simulated binary
crossover requires additional objective function evaluations to
achieve comparable runtimes, the number of generations is
reduced by 30 %. The results of the experiments are summa-
rized in Table II. According to this comparison, self-adaptive
simulated binary crossover provides superior performance,
surpassing the other tested operators in all relevant metrics. It
is therefore exclusively considered for the implementation of
crossover within the presented algorithm, and its functioning
is briefly described in the following.

8Online performance denotes the average of all objective function evalua-
tions.

9Offline performance denotes the average of the optima of all generation.
10The number of crossover points is one less than the number of different

units in the build order, but at least one.

TABLE II: Results for different crossover operators. Online
and offline performance are averaged over both populations
and all runs.

Online Performance8 Offline Performance9 Number of Runtime
(Damage, Health) (Damage, Health) Evaluations

N-Point Crossover [13]10 66.85, 41.61 90.64, 62.60 60048000 68 min
Uniform Crossover [14] 69.04, 37.67 89.88, 57.49 60048000 64 min

Intermediate Crossover [15] 51.53, 51.94 76.70, 73.21 60048000 61 min
Line Crossover [15] 52.24, 52.78 82.14, 72.50 60048000 60 min

SBX [16] 53.25, 51.27 84.02, 70.94 60048000 66 min
Self-Adaptive SBX [17] 76.90, 54.49 98.59, 80.58 61602960 62 min

3) Mutation: Mutation in the context of genetic algorithms
means altering single parts of an individual’s chromosome
(genes) with the purpose of maintaining genetic diversity in
the population. The chance of mutation is determined by
the mutation probability. To decide which genes to mutate
theoretically requires the creation of n random numbers for
each individual where n is the length of the chromosome.
In [18] different alternative schemes have been investigated.
According to this comparison, the suggested mutation clock
scheme possesses superior performance. In the context of
real-coded genetic algorithms, different mutation operators for
altering single genes have been proposed. To determine which
one leads to the best performance in combination with adaptive
SBX, three common mutation operators are tested in ten
optimization runs with the same setting used in the crossover
evaluation. The results can be seen in Table III. Overall,

TABLE III: Results for different mutation operators. Online
and offline performance are averaged over both populations
and all runs.

Online Performance Offline Performance Number of Runtime

(Damage, Health) (Damage, Health) Evaluations

Uniform Mutation11 84.81, 52.51 99.17, 79.69 170890850 190 min

Polynomial Mutation [18] 79.28, 50.31 98.60, 77.50 166659150 184 min

Gaussian Mutation [18] 62.48, 62.68 94.66, 90.81 165756100 203 min

uniform mutation performs slightly better than polynomial mu-
tation, but possesses similar characteristics. Gaussian mutation
on the other hand leads to more balanced results with respect to
both objectives while sacrificing online performance in the first
objective. It is although the only mutation operator that is able
to guide the search towards finding nearly optimal solutions
in both objectives, with equally good offline performance and
should therefore be preferred.

4) Main Loop: By combining the aforementioned com-
ponents, the general structure of the genetic algorithm is
summarized in Algorithm 1.

11The old value of the parameter is replaced by a uniformly distributed
random value.
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Algorithm 1 Main Loop

1: procedure MAIN(p, m, n, s)
2: . Initialize both players
3: INITIALIZE(P (1), p, S(1), s)
4: INITIALIZE(P (2), p, S(2), s)
5: . Run the genetic algorithm on both populations for
m× n generations

6: for i = 0 . . .m do
7: OPTIMIZE(P (1), p, n, S(1), s, Ŝ(2))
8: OPTIMIZE(P (2), p, n, S(2), s, Ŝ(1))
9: . Exchange the s best individuals

10: S(1) = Ŝ(1)

11: S(2) = Ŝ(2)

12: . Reevaluate both populations
13: EVALUATE-AND-SORT(P (1), S(1))
14: EVALUATE-AND-SORT(P (2), S(2))

1: procedure INITIALIZE(P , p, S, s)
2: . randomly generate an initial population P with p

individuals
3: GENERATE-POPULATION(P , p)
4: CHOOSE-STRATEGIES(S, s) . randomly choose s

evaluation strategies S = {S1, . . . , Ss}
5: EVALUATE-AND-SORT(P , S)

1: procedure EVALUATE-AND-SORT(P , S)
2: EVALUATE(P , S) . evaluate the individuals con-

tained in P using S
3: NON-DOMINATED-SORTING(P )
4: CROWDING-DISTANCE-ASSIGNMENT(P )

1: procedure OPTIMIZE(P , p, n, S, s, Ŝ)
2: for i = 1 . . . n do
3: P ′ = SELECT(P ) . select p individuals from P

and save them in P ′

4: Q = CROSSOVER(P ′) . create p new individuals
Q from P ′ using crossover

5: MUTATE(Q) . mutate a subset of the individuals
contained in Q

6: EVALUATE(Q, S)
7: P = Q ∪ P
8: NON-DOMINATED-SORTING(P )
9: CROWDING-DISTANCE-ASSIGNMENT(P )

10: P = P \ {Pp+1, . . . , P2p} . remove the worst
individuals from P such that |P |= p

11: Ŝ = P \{Ps+1, . . . , Pp} . store the s best individuals
of P in Ŝ

IV. RESULTS AND DISCUSSION

To evaluate the presented approach, one sample build order
is chosen for all three races which contains units that in sum

cost the same amount of resources12:
• Zerg: 2 Zerglings, 5 Roaches.
• Terran: 5 Marines, 2 Marauders.
• Protoss: 2 Zealots, 2 Stalkers.

These build orders are then pairwise optimized in five test
runs using the following settings: For both players a total
population of 5000 is maintained, which is then optimized over
200 generations using ten individuals for fitness evaluation
which are exchanged every tenth generation. For selection a
tournament size of two is chosen and the mutation probability
is set to 1

n where n is the length of the chromosome. To
simulate the game with a reasonable accuracy, time steps
with a length of 10 milliseconds are used, and the movement
direction of each unit is updated every tenth time step. Zerg
units possess an increased movement speed when they operate
on creep. It is a special ground layer that is automatically
created by Zerg buildings and some units and can be used
tactically. To estimate the importance of creep placement, the
Zerg build order is evaluated once with and once without
assuming creep on the ground. After an optimization run is
finished, the 100 best individuals of both players are evaluated
in a direct competition, such that each individual is evaluated
against all 100 of the other player. By computing the average
of all test runs an estimate can be obtained if the build orders
are balanced with respect to each other. If one build order is
able to outperform the other one in all runs, it probably has
an advantage, at least under the assumptions that have been
made to simulate the game.

Table IV shows the results of all encounters. f̄d is the
average damage in percent that the units of the denoted player
were able to cause to their enemies in the final comparisons
and σd the standard deviation of all test runs. As the average
health of the units of one player is correlated to the damage
caused by the units of the other player, it is omitted in the
table. Without creep the Zerg build order is inferior to the

TABLE IV: Results of the final comparison of the investigated
encounters.

Encounter f̄d (Player 1) σd (Player 1) f̄d (Player 2) σd (Player 2) Advantage

Zerg vs. Terran 28.90 3.96 92.48 4.68 Terran

Zerg vs. Terran (Creep) 67.42 6.17 79.86 11.87 None

Zerg vs. Protoss 29.47 7.13 71.40 1.97 Protoss

Zerg vs. Protoss (Creep) 64.64 14.28 61.64 7.38 None

Terran vs. Protoss 59.57 4.97 86.60 5.38 Protoss

other two, as in all test runs its average damage output is lower
than its enemy’s. Although, the picture changes when creep is
assumed. Now, in both encounters the difference between the
averages of both players is relatively small and no clear winner
can be determined. Thus, it can not be assumed that any of
both opponents has a significant advantage. In general, it can
be concluded that the closer the outcome of an encounter is,
which corresponds to a small difference between the averages
of both players, the lower is the standard deviation. In three
of the investigated encounters a clear winner, who prevails in

12Minerals and vespene gas are weighted equally.
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all test runs over his opponent, could be determined. In the
other two cases there are a number of factors that could have
prevented the algorithm from reaching the same final state
in all test runs. First of all, it is possible that one or multiple
parameters of the algorithm have been chosen in an insufficient
way. Increasing the population size, number of generations,
fitness evaluations per individual or including more individuals
into the final comparison could possibly lead to the desired
stability. If none of the above factors leads to an improvement,
an adaption of the algorithm must to be considered.

A. Evaluation of Unit Behavior

Finally, it is examined if the algorithm is able to produce
unit behavior that can also be considered as reasonable from
an outer perspective. For this purpose, a fight between the
two solutions of each encounter that perform best in the final
comparison is simulated and the paths of all units are tracked.
The resulting plots can be seen in Figure 4 to 6.

First of all, compared to the preceding work [11] the result-
ing paths are significantly more fine-grained. The improved
accuracy of the simulation allows a more precise control
of the individual units, which leads to a higher number of
changes in the movement directions because each unit tries to
outmaneuver its enemies. In general, the resulting paths are
of complicated nature and can not be easily described. All
units have in common that they continuously try to stay in the
sinks of the accumulated potentials, which corresponds to the
area where they are able to attack while remaining unharmed
by their enemies. This results in a competitive back and forth
movement between opposing units, and is represented by the
zigzag patterns occurring in all of the visualized encounters.

Moreover, there are a number of recurring patterns that
evidently correspond to behavior that can be considered as
intelligent. As it was explained at the end of Section II, the
formation of collective behavior is facilitated by parameter
sharing. Therefore, as expected, the units do not act as sole
individuals but instead as a group which often results in the
connection of their paths. Especially units of the same kind
usually form subgroups, for example, the blue paths of the
Marines in Figure 4. As they are able to move with the same
speed and attack at the same range, it is easy for them to
synchronize their behavior in an effective way. For example
melee units such as Zealots all share the goal of approaching
the enemy as close as possible, because otherwise they are
unable to attack. On the other hand, ranged units try to position
themselves out of their enemies range, such that they are able
to attack but stay unharmed at the same time. By acting as a
group units are able to exploit these similarities and combine
their combat strength in a synchronous way. Another evident
behavior is that faster units effectively utilize their speed
advantage. For example in the encounter between Protoss and
Terran, denoted by Figure 6, the Stalkers (dark blue) constantly
avoid the lower ranged Marines (red), which is reflected in
their large area of movement.

Fig. 4: Unit paths of an encounter between Zerg with 2
Zerglings (red), 5 Roaches (dark red) and Terran with 5
Marines (blue), 2 Marauders (dark blue). Winner: Terran.

Fig. 5: Unit paths of an encounter between Zerg with 2
Zerglings (red), 5 Roaches (dark red) and Protoss with 2
Zealots (blue), 2 Stalkers (dark blue). Winner: Protoss.

V. CONCLUSION AND FUTURE WORK

In this work a multi-objective genetic algorithm for sim-
ulating optimal fighting behavior in StarCraft II was pre-
sented. Its application aims to investigate the balancing of
the game. By evaluating optimal build orders generated by
the approach presented in [3] possible imbalances between
the three races could be detected. However, as stable results
could not be achieved in all cases, the approach needs further
assessment, possibly requiring algorithmic improvements to
achieve the mentioned goal. With the recent release of the
second StarCraft II expansion pack Legacy of the Void

TM 13,
an adaption of the simulation can be considered, which would

13Legacy of the Void is a trademark and StarCraft is a trademark or
registered trademark of Blizzard Entertainment, Inc., in the U.S. and/or other
countries.
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Fig. 6: Unit paths of an encounter between Terran with 5
Marines (red), 2 Marauders (dark red) and Protoss with 2
Zealots (blue), 2 Stalkers (dark blue). Winner: None (Time
limit exceeded).

give eventual results more significance because the introduced
changes could potentially lead to new imbalances. Although
the presented approach was specifically designed to be applied
to StarCraft II, which acts as a show case, its generality allows
an easy adaption to similar games. As balancing in real time
strategy games is generally hard to achieve, including time
consuming testing phases involving human test players, its
application can possibly shorten the game development cycle,
allowing earlier releases. Moreover, because of the growing
popularity of the eSports scene, to ensure equal winning
chances for all participants of a competition, detecting and
eliminating imbalances in games is of increasing importance.
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Abstract—Real-time adaptation of computer games’ content to
the users’ skills and abilities can enhance the player’s engagement
and immersion. Understanding of the user’s potential while
playing is of high importance in order to allow the successful
procedural generation of user-tailored content. We investigate
how player models can be created in car racing games. Our user
model uses a combination of data from unobtrusive sensors, while
the user is playing a car racing simulator. It extracts features
through machine learning techniques, which are then used to
comprehend the user’s gameplay, by utilising the educational
theoretical frameworks of the Concept of Flow and Zone of
Proximal Development. The end result is to provide at a next
stage a new track that fits to the user needs, which aids both
the training of the driver and their engagement in the game.
In order to validate that the system is designing personalised
tracks, we associated the average performance from 41 users
that played the game, with the difficulty factor of the generated
track. In addition, the variation in paths of the implemented
tracks between users provides a good indicator for the suitability
of the system.

I. INTRODUCTION

“Future games are expected to have less manual and more
user-generated or procedurally-generated content” [2]. This
notion has the opportunity to elicit personalised and novel
game content that can provide everlasting levels. In order to
personalise you must first understand the player’s skills and
abilities in a particular game. This involves knowing the game
Mechanics – the components and rules of the game – that give
rise to game Dynamics – how mechanics behave on user inputs
– and fuses to game Aesthetics – user experiences invoked by
the game (MDA framework) [3].

The main characteristics of an enjoyable game have been
decoded by Malone [4] to be: challenge, fantasy and curiosity.
In our research we are targeting both the training and engage-
ment of the user in car racing games by stimulating the factors
of game enjoyment through the user-adaptive procedural-
generation of a track’s path. Pushing the car to the limits and
handling tight turns at high speeds is what engages the users
in that category of games. However, according to Steels [5],
frustration and anger intensifies if the skills of the user are not
sufficient enough to handle the difficulty of a given track.

We are proposing a framework where a combination of raw
data from the game and sensors provided (e.g. eye tracking
and head pose) are used to extract relevant features through
machine learning techniques to implement a user model that
is able to explain the current user’s performance during

PhysiologicalAttention

Challenging

Easier

Same

Experi
Exploration

w

Flow & ZPD

Thresholds
Expert Rules

Metric Weights

Fig. 1. Personalised user modelling approach for evaluating a driver in car
racing game. Low level inputs are being converted to performance metrics
where each metric defines the level of expertise of the user at a particular
domain. For each domain a significance weight is assigned according to the
individual and the task performed. Then game related rules transform metric-
weight pairs to notions from the Concept of Flow [1] which are in turn
exploited to evaluate the performance of the user and provide instructions
on how the track’s path should be altered.

gameplay. Performance in games is a continuous function of
the user’s skill and challenges, as well as the attention of the
player. The aim of the framework is to: (a) monitor these
properties, (b) update the user model, (c) provide decision
adjustments for the alteration of the racing track according to
the user, and (d) generate new tracks that suit the user profile.
We propose a technique that modifies the game experience in
real-time with the purpose of keeping the player’s satisfaction
high and enhancing the learning process.

II. RELATED WORK

User-oriented track generation has been approached before
by Togelius et al. [6], [7], [8]. Their evolutionary algo-
rithm (Cascading Elitism) generated a number of different
tracks either by changing the control points of a basic track
segment or by constraining their angular position. Then a
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neural-network based controller [7], that was trained on human
driver behaviour, was testing if a generated track is challenging
enough for a particular driver. Fitness metrics (e.g. varying
challenge, fast driving regions) were used to evaluate the
suitability of a new track for the controller. However, the
research was focused on the methodology and creativity of
the generated tracks instead of their evaluation with human
drivers.

Taking the research to the next step, Loiacono et al. [9]
derived an algorithm for generating new tracks in a car
simulator (TORCS) using single and multi-objective genetic
algorithms. By maximising the entropy of certain criteria (e.g.
path curvature distributions along the track, achievable speeds
distributions) and under the condition that the track has to
be closed, their algorithm fills the path through particular
“control” points that the road needs to pass through. Their
initial aim was to provide tracks with an adequate amount of
challenge and a large degree of diversity across their path.
A further improvement, for embedding a human oriented
decision to the algorithm, was proposed by Cardamone et
al. [10] where the framework for advancing the algorithm to
a next generation of tracks was also influenced by human
assistance. Subjects voted for each generated track using
scoring interfaces (5 Likert scale or boolean type) that were
influencing the algorithm over the next generations of tracks.
They showed that there was an improvement of user satisfac-
tion in early generations. However, when the evolved tracks
were tested by human subjects, they concluded that the tracks
were only appealing to the players with some experience in
racing games.

Apart for just being entertaining and stimulating, games
can be used for training and educating as well. Those games
are referred in literature as “Serious Games” [11]; a medium
to enhance education in a more entertaining way. Based on
the notion of teaching through games, Backlund et al. [12]
conducted research on driver behaviour between racing, action,
sport (RAS) gamers and non-gamers. People were categorised
into two groups through a questionnaire, whereas their driv-
ing skills (attention, decision making, risk assessment, etc.)
and attitude (respect speed limits, speed margins and fellow
drivers) were rated by driving school instructors, using 7-
point Likert scale. Their findings show a positive correlation
between gaming and skill oriented aspects of driving. An im-
portant concluding statement suggested that games, and more
specifically driving simulators, are able to provide positive
effects on driving behaviour and user skill enhancement thus
motivating further research.

III. SYSTEM OVERVIEW

A. The Simulator

In order to test the functionality of our user model and
the performance of the track design algorithm, actual game-
play data were collected from 41 users through high-end
commercial racing car simulator game, called rFactor 2. The
game provides an Application Program Interface (API) that
allows the output of real-time data from the game environment

as well as user inputs. It also allows the introduction of new
tracks into the game. Our custom made car simulator (see
Fig. 2) is equipped with Vision Racer VR3 seat, Logitech
G27 Force Feedback Steering Wheel and a combination of
three monitors to enhance the user’s immersion to the game.
Also, a Tobii EyeX eye tracker is installed in order to monitor
the gaze of the user and 2 RGB-D cameras (Kinect) are used
for capturing the player’s face, head pose, actions and the
output from the monitors. Each user was asked to complete
20 laps on a particular track that we developed and answer a
few questions before and after playing the game in order to
assess their performance through the model.

Fig. 2. Our custom car simulator setup consisting of Vision Racer Seat with
a force feedback steering wheel, pedals and three monitors to enhance the
user’s immersion to the game. Two RGB-D cameras as well as an eye tracker
was installed to capture user’s gaze and pose positions.

B. The User Model

The aim of our user model is to capture the user’s current
state through the available data and provide decisions for the
future path of the track that suits the particular profile of the
player. The user model structure, shown in Fig. 1, performs
a series of analysis on the incoming user data to reach the
decision state.

1) Feature Extraction: Features from user inputs, game
outputs, eye tracker and head pose are extracted from the
raw data provided through the game API and sensors and are
grouped according to the location of the user in predefined
paths of the selected track (segments). As seen in Fig. 3,
segments are defined in such a way that they will consist only
of a single path type (e.g straight, turn, chicane, etc.). The
selected track is short (≈1.93Km) but still challenging track
with various types of segments.

Table I lists the features collected, categorised by their
sources. It is important to mention that head pose is established
by passing the depth data from the RGB-D sensor, facing the
user, through pre-trained Random Forests (RFs), that estimate
the 3D coordinates of the nose tip and the angles of the head’s
rotation [13]. Also, the clustering process to obtain the center
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TABLE I
FEATURES OF THE LOWEST LEVEL OF THE USER MODEL

User Inputs Game Outputs Eye Tracker Head Pose

1. Average Braking 6. No. of collisions 10. No. of Blinks/s 17. CN of HP
2. Average Throttle 7. Car XYZ Position 11. Screen Concentration 18. CC of HP
3. Average Steering 8. Position and Speed 12. CN of EG 19. CN of HP and VO
4. CN of User Inputs 9. (Segment Time) 13. CC of EG 20. CC of HP and VO
5. CC of User Inputs 14. CN of EG and VO

15. CC of EG and VO
16. Eye Fixations

CN: Cluster Number, CC: Cluster Centres, VO: Virtual Orientation, EG: Eye Gaze, HP: Head Pose

Fig. 3. Track used for the experiments split manually into segments

locations and cluster number of eye gaze and head poses
features, is performed using the Affinity Propagation (AP)
algorithm [14]. Features with Virtual Orientation (VO) are
those whose raw data are paired with the respective sequences
of virtual world angles of the car in the game.

2) Performance Metrics: Every time a user completes a
segment, the features (from Table I) are calculated and com-
pared for proximity to user’s previous “player best” features
to form the Performance Metrics. The “player best” are de-
termined as these with the fastest segment time feature. The
“player best” set is re-initialised every time the user does a
better segment time and all of the previous metrics of that
segment are re-computed. In order to reduce the outliers, each
of the metrics, in the feature vector is converted to a percentage
value using the exponential function shown in (1). The X
is the highest value a metric can obtain. It is determined
when a “player best” feature is compared with itself to obtain
a metric. The Constant, C, for each metric was determined
empirically off-line through all the data collected so that their
median value lies around 50%.

%Metric = 100 ∗ exp
(
− (Metric−X)

C

)
(1)

3) Weighting Model: Metrics are classified according to
two groups: the Physio group, which includes metrics asso-
ciated with user’s physiological data, such as those obtained
from eye tracker and head pose and the Non-Physio group,
which consists of metrics obtained from user inputs and game
outputs. The user model is based on how much each of
the metric created is correlated with the performance of the
user on a particular segment. Good performance means low
segment time. As we will explain later, the user model is
providing decisions according to three notions: the Experience,
the Challenge and the Attention of the user to the game. For
each of these notions there is a principle that uses a subset of

the available metrics. The subsets are: All – which contains
all metrics – Physio (p) and Non-Physio (np). For each
metric in each subset we determine a weight according to the
proportionality shown in (2).

tls ∝
m∑

k=1

zW s
kM

sl
k (2)

where:
• tls is the time performance metric of a segment s and user

lap l (No. 9 in Table I)
• zW s

k is the weight for a particular segment s of a metric
k in the subset z.

• m is the number of metrics defined in each of their group:
All, Non-Physio, Physio.

• Msl
k is the Performance Metric k of segment s and lap l

In order to find the weights zW s
k we are treating (2) as

a linear regression (LR) model. This is solved using the
least squares (LS) problem method by minimising the sum
of the squared error (min ‖Ax− b‖22) where in our case A
represents a matrix of our metrics observations and b is their
corresponding time metrics. The algorithm is forced to provide
either positive or zero valued coefficients which are then
normalised to find the weights zW s

k . The reasoning for the
positive bounds is because metrics were designed to have
positive correlations to time and also the conversion of the
metrics to percentages was one sided with 100% being the
user’s “player best”. Weights are re-evaluated every-time a
new set of features are created for a particular segment.

4) Transformation Rules: Following the theoretical frame-
works of behavioural analysis like the Concept of Flow [1],
[15], [5], the Zone of Proximal Development [16] and the
Trace-Based System theory [17], [18] we further analyse
the subsets of metrics using game-specific assumptions into
certain rules and principles in order to form three classes
that make up the high level in the user model: Experience,
Exploration and Physiological Attention.

a) Experience (E): (or the skills of the user) is de-
termined by the proximity of the user’s metrics to the
“player best” ones. Since the metrics are expressed as per-
centages, the higher the value the better the user is performing
on that particular metric. The significance of this metric to
the user’s skill is determined by the weight calculated in
the All subset. Also, skill cannot be determined by a single
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group of values. It has to be an overall value of several trials.
Therefore, it is calculated by the weighted sum of the mean
of each performance metric over a certain number of laps
for a particular segment, as shown by (3). In this paper we
considered 10 laps since they were enough to show the skills
and avoid the overtraining of the particular track.

Experiencel,sn =
m∑

k=1

allW s
k ∗

∑l
i=l+(1−n)M

i,s
k

n
,

l > n, n > 0, s ∈ S

(3)

b) Exploration (C): In the racing game, exploration can
be explained when the user tries different approaches and
techniques to complete a segment. This can be either different
racing lines, unusual eye fixations, new input averages, etc.
Through the metrics we define the Experience for each seg-
ment as the weighted sum of the mean of the consecutive
“jump” (allJs

k) of each of the performance metrics in the
All subset. If the difference between two consecutive metrics
passes a fixed percentage value of the current experience then
the value is positive, otherwise it is negative. This is is shown
by (4).

Explorationl,sn =
m∑

k=1

allW s
k ∗
(

(
|M l,s

k −M
l−1,s
k |

)
−
(

allJs
k∗
∑l

i=l+(1−n)M
i,s
k

n

))
,

1 > Jk > 0, l > n, n > 0, l > 1, s ∈ S
(4)

c) Physiological Attention (PA): is designed to keep
record of the continuous attention of the user along consecutive
segments. This is calculated by first evaluating the Experience
(E) of the user only from non-physiological (np subset) data
through consecutive segment data. If the value is above a
threshold (npT ) then the assumption is that the user’s attention
is high, since (s)he performs well, and the value is kept.
Otherwise, we calculate the Exploration (C) value only from
the physiological data (p subset) and use that for physiological
attention. This is expressed by (5).

I = f(l, s),

npEl,s
n =

npm∑
k=1

npW s
k ∗

∑I
i=I+(1−n)M

i
k

n
,

pCl,s
n =

pm∑
k=1

pW s
k ∗
((
|M I

k −M I−1
k |

)
−
(p
Js
k ∗

∑I
i=I+(1−n)M

i
k

n

))
,

Attentionl,sn =

{
npEl,s

n − npT if npEl,s
n >= npT

pCl,s
n if npEl,s

n < npT

1 > pJs
k > 0, l > n, n > 0, l > 1, s ∈ S

(5)

where: I is the index number representing segment s in lap
l. Function f transfroms s and l to I so that I − 1 defines

the previous consecutive segment of index I . n defines the
number of laps from which the value is calculated.

5) Concept of Flow and ZPD: By defining these three
notions we are able to follow the Theory of Flow [1] which
is defined to be the feeling of being completely immersed
and engaged in an activity and also experiencing high levels
of enjoyment and fulfilment [15]. Steels [5] states that for a
person to remain engaged with a task and in the “flow” there
has to be balance between the level of challenge (Exploration)
and user’s skills (Experience). However, when the Attention
of the user is low these values are more sensitive to each other.
By using thresholds, the user model provides instructions for
each segment (keep same, easier, more challenging) to the
track design algorithm (described in Section III-C) so as to
provide new relevant segments customised to the user.

The main idea of the model is also to utilise the theoretical
framework of Zone of Proximal Development (ZPD) [16]
which defines the difference between what a person can
achieve with (Potential Development (PD)) or without help
(Actual Developmental Level (ADL)). Therefore, if the user
is becoming skilled enough (high Experience) on particular
segments, then the segment should become more challenging
in order to increase the user’s PD and encourage more training.
On the other hand, if (s)he cannot cope with the current path
then it should become easier since the user’s ADL is not
enough for the particular segment. The bottom part of Fig. 1
(Segment Altering Decision) summarises the output of the user
model according to predefined thresholds for each notion.

C. Track Design Algorithm

The proposed idea of this paper is to alter the segments
of a track according to the model of the user. Therefore, we
start from a track that already exists from which we evolve and
generate new ones by changing its segments. For each segment
of the track, as shown, via a single segment, in Fig. 4, we keep
3 kinds of data:

1) Detailed (XY Z) point representation of the center path
of the segment.

2) The orthogonal distance of each center point to the edges
of the road so that we know where the right and left sides
are located.

3) The point representation of the optimal path on that
segment paired with the car speed (if the data are
available from an expert).

In order to be able to compare the paths created by the user
to the optimal or center paths of the segment, we parameterise
each path by fitting its points into an nth order Bezier Curve.
Through experimentation we found that an 9th order Bezier
is accurate and efficient enough to describe a segment path.
A sequence of Bezier curves (b-splines) were also used by
Togelius et al. [6], [7], [8] to represent the path of the track.

A Bezier curve equation is described by (6). The number
of control points Pi describing the curve depend on the order
of the degree chosen and in our algorithm their locations are
determined by finding the best fit through the data points using
the least squares (LS) method. The objective of the LS method
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Fig. 4. Red lines define the boundary of the road. Dotted line is the center
path and the green line defines the optimal path created by an expert.

is to minimise the sum of the squared errors (7). Each error (8)
is defined as the difference between a path’s data point (dk) on
one of the axes and the value obtained by the best fit equation
of the curve (6). Calculating the partial derivatives of (7) and
setting the result to zero as shown by (9) we end up with n
parameters (Pi) and n gradient equations that can be arranged
in a matrix form (10) and solve by using matrix inversion (11).
By having the Bezier equation of a path enables us to extract
a fixed number of XY Z points (by adjusting tk divisions) and
to compare it with other paths. In order to increase efficiency
and also make sure that each equation starts and ends on the
location we need them to, P0 and Pn are fixed to the starting
point and the ending point of the relative segment.

B(tk) =

n∑
i=0

(
n
i

)
(1− tk)n−itikPi, tk ∈ [0 1] (6)

M =

n∑
k=0

e2k (7)

ek = dk −B(tk) (8)

∂M

∂Pi
= −2

n∑
k=0

ek
∂ek
∂Pi

= 0 (9)

AX = C (10)

X = A−1C, XT =
(
P0 . . . Pn

)
(11)

The track design algorithm keeps track of the user’s paths
along each segment in the form of a Bezier equation and stays
on hold until a “segment change decision” is received from
the model. On the instruction to keep the Same segment, then
no action is performed. When an Easier segment is needed
then a mean path from previous user paths is calculated. This
mean path serves as the optimal path to the center of the new
segment that is created. There is one assumption here that the
user will find a path easier if the optimal route (s)he has to
perform is already experienced in previous trials. An example
of a user adapted easy segment is shown in Fig. 5.

If there is a need of a more Challenging segment then
a different procedure is performed. Here we assume that a
path can be converted to a more difficult one by either (a)
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Fig. 5. The new center has been shifted in such a way that the average of
the paths of the user is the optimal path of the new segment.

increasing the angle of its curve, (b) increasing the number of
turns or (c) both. We are using a back-tracking algorithm to
perform path planning between two points by setting a number
of constraints. The algorithm proceeds from a starting point
towards an end point by randomly checking for valid points
along the circumference of a fixed radius. The constraints are
set such as:

• There are no loops in the path, so that the path can be
constructed in the game.

• The lines created by 3 points should not have an angle
less than 145◦, so that to keep the path smooth.

• A new point should be at a fixed distance (d) from any
orthogonal point on the current path, so that to avoid
any intersections between other segments (the value d
depends on the basic track selected).

• The new path should be at least 80% different from any
of the previous paths of the user.

• The new path should start and end where the previous
path was, in order to be able to plug and play the new
created segment.

A challenging example is shown in Fig. 6. When a new path
is created then the points are fit into a Bezier curve with the
additional constraint that the end points gradient should stay
the same as the path they are replacing. This refines the points
and preserves the seamless link between the segments.

D. Graphics Generation

In order to be able to generate a track model that can be
imported into the game, we need to create a track in a more
specialised environment that is also supported by the game. We
are using a computer graphics program called Autodesk 3ds
Max 2012 for which the particular game has a graphics model
export plugin. The basic track was manually designed in the
3D software in a way that every object in the scene is virtually
attached to the center path line of the track. The advantage of
this method is that by altering the points of the center line to
a new location then all the graphics objects are modified as
well to adapt to the new change. Therefore, when creating a
new segment we only need to alter the points specified in the
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Fig. 6. Red boundaries show the path constructed by the backtracking
algorithm. The previous segment path is displayed in dotted blue lines and the
yellow shaded area defines the variance of the paths covered by the particular
user in her previous attempts.

software for the particular segment. The basic track’s graphic
model and its rendering by the game used in our experiments
are shown in Fig. 7.

One of the possible ways to describe a line between two
points in the software is by using sequences of cubic bezier
splines. This is using two points for defining the starting
and ending location of the curve and two control points
that determine the path curvature between the two points.
Consecutive lines share location points (named as knots).
Therefore, the track design algorithm has to convert the nth

Bezier spline segment of a new path into multiple cubic bezier
splines under two conditions:

• It should have the same starting and ending point to the
basic track segment, so that there is a smooth continuation
between the segments.

• The total number of knots of each segment should be
the same as the basic track’s so that their indexing in
the software is always the same. This restriction is not
compulsory but if the number of knots change then the
index configurations of all segments should update as
well. Also, the knots are quite dense so there is no
problem expanding the length of the path.

Evaluation of user model, decision taking and track de-
sign are all happening online. The track design algorithm is
communicating with the graphics software through a custom
TCP client-server program. The client is controlled by the
track design algorithm and is responsible for sending (a) the
appropriate segment identification and also (b) the software
ready locations of knots and control points. The server is
responsible for (a) communicating with the graphics software
and (b) calling the software’s scripts for altering the knots and
their control points, (c) creating the graphics model and (d)
sending the new track model files to the game.

IV. RESULTS

The user model outputs three instructions on how each
segment should change in the evolved track (easier, same, chal-
lenging). Our basic track consists of six segments from which
five are supposed to change through the framework (start line
– segment 1 – is omitted due to game related constraints).
Therefore, this gives 35−1 = 242 new permutations, whereas
each one is unique to the user as well as the randomness
of the backtracking algorithm. In order to validate for the
diversity and personalisation of our framework, we used the
data collected from 41 users to run offline track generation at
the point where the users performed 10 out of 20 laps. The
generated tracks of 12 randomly selected users are shown in
Fig. 9.

The users’ profile was broad with ages between 19-35 and
various expertise in racing games (31% non-gamers, 69%
gamers) and driving (0−18 years). Because the purpose of
the framework is set to provide training to the user, it is
not supposed to deviate greatly from the basic track, since
every segment starts and ends at the same location. From the
shape of each track we can see that even with similar change
instructions (defined by the change id: C - Challenging, S
- Same, E - Easier) the segments are not the same, except
if no change is performed. In order to test for user profile
customisation we correlated the overall difficulty of the track
generated to the average time taken for the user to complete the
10 laps. Difficulty was determined by assigning a score to the
instructions (e.g. C = 2, S = 1, E = 0) and summing them
over all segments. In Fig. 9, difficulty is shown by the number
in the brackets. Therefore, the basic track has a difficulty score
of 5 since ChangeID = SSSSS, whereas the range varies
between 0− 10.

The Spearman correlation test between average time and
track difficulty from all user data gave a statistically significant
value of −0.82 (p < 0.01). This shows that there is a strong
negative correlation between the average lap time and the track
difficulty value generated by the model. It is important to
mention that the user model is not directly using the time
taken for the user to complete each segment in order calculate
the performance of the user.

By assigning each user to a group using their average
time over the 10 laps, according to Table II, we were able
to utilise Kruskal-Wallis statistical test to investigate if the
track difficulty assignment to the different groups is coming
from the same distribution (random assignment). The test
returned χ2 = 29.12, df = 3, p − value < 0.01 which gives
us enough evidence to reject the null hypothesis. The time
thresholds (specified in Table II) for grouping the users were
set according to the largest gaps that were formed between
subjects’ average time.

A. Discussion

We can notice a clear distinction between Advanced-
Intermediates groups and Average-Beginners groups (Fig. 8).
The former typically gets difficulty values above 6 whereas
the latter generates values around and below 6. Therefore, the
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(a) Wireframe from Graphics software (b) Game Rendered Track

Fig. 7. The basic track’s path is similar to a real racing track called “BrandHatch Indy” which is located in London (UK). It is considered to be a
short(≈1.93Km) but still challenging track with various types of segments.

general idea that more experienced users tend to get more
challenging tracks than inexperienced ones is inferred by the
framework.

The user model is designed to take account of the real-
time attention of the user, in addition to the user’s skills and
challenges. Consequently, if the user is self-motivated to learn,
boost their skills and achieve better lap times during longer
training sessions (>10 laps), the user model instructs most of
the segments to stay the same and as a result track difficulty
is closer to 5 (baseline). On the contrary, if the user lacks
attention then, depending on their skill level, the model tries
to accommodate either more challenging or easier segments.
This increases the engagement of the user in the game and
avoids the build up of boredom (when high experienced) or
frustration (when low experienced). Every person is unique
in their way of learning and training, this reason explains the
variability between each group in Fig. 8.

TABLE II
AVERAGE TIME VERSUS EXPERIENCE ASSIGNMENT FROM DATA TAKEN

FROM THE BASIC TRACK.

Experience Average Time(%) Players

1. Advanced t <= 60 5
2. Intermediate 60 < t <= 70 14
3. Average 70 < t <= 83 15
4. Beginner t > 83 7

The proposed framework relates to the general Experience-
Driven Procedural Content Generation (EDPCG) framework
proposed by [19]. The low level of the model follows a hybrid
player experience modelling (PEM). It extracts information
from unobtrusive objective PEM combined with gameplay-
based inputs and outputs of the racing game. The extraction
of data and weights follows a model-free approach whereas
the higher levels follow a model-based using theoretical
frameworks. Through this paper, the evaluation of the game
content is performed using a data-driven direct functions,
as the expertise of the user is correlated with the difficulty
of the implemented track. In an ongoing future work our
aim is to perform evaluation via interactive implicit and
explicit functions by assessing the overall training of the user
and by analysing the user feedback. Content representation,
generation and optimisation is the main focus of this paper
and according to the EDPCG framework it is a form of a
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Fig. 8. Box plots of the track difficulty against user’s experience group.
Kruskal-Wallis test shows statistically significant results: χ2 = 29.12, df =
3, p− value < 0.01 and Spearman test shows a strong negative correlation:
−0.82 (p < 0.01)

search based approach.

V. CONCLUSION

We have implemented a framework for altering the path
of the track online according to the skills, challenges and at-
tention of the user, using physiological and non-physiological
features through machine learning techniques, game-related
rules and theoretical frameworks. To evolve the track we are
employing the past history of the user, the decisions of the
framework and the functionality of the Bezier curves with the
aim to train and also keep the user engaged.

In our results we showed that the framework follows the
general trend regarding the skills of the user and provides
diversity between and among the subjects. To the extent of
our knowledge, this is the first attempt to evolve the track of
a 3D-game in situ, using real-time input from the user while
is playing the game. User adaptive generation of tracks is a
very interesting domain which can alter the way racing games
are being designed and increase the market of consumers due
to their flexible and unlimited content. In the future we would
like to extensively test the evolved tracks with human subjects.
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Fig. 9. Tracks generated through different users after the model collected data over 10 laps. The number in the brackets indicates the difficulty level of the
new track according to the changes performed on the basic one, whereas the “Average Time” is an indication of the skill of the particular user (Difficulty
range varies between 0− 10)
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Modeling,” in Artificial and Computational Intelligence in Games.
Schloss Dagstuhl Series, 2013, vol. 6, pp. 45–59.

[3] R. Hunicke, M. LeBlanc, and R. Zubek, “MDA: A Formal Approach
to Game Design and Game Research,” in Proceedings of the AAAI
Workshop on Challenges in Game AI, vol. 4, 2004, pp. 1–4.

[4] T. W. Malone, “What makes things fun to learn? Heuristics for de-
signing instructional computer games,” in Proceedings of the 3rd ACM
SIGSMALL symposium, 1980, pp. 162–169.

[5] L. Steels, “The Architecture of Flow,” in A Learning Zone of One’s
Own. IOS Press, 2004, pp. 135–150.

[6] J. Togelius, R. De Nardi, and S. M. Lucas, “Making Racing Fun Through
Player Modeling and Track Evolution,” in Proceedings of the SAB
Workshop on Adaptive Approaches to Optimizing Player Satisfaction,
2006, pp. 61–70.

[7] J. Togelius and S. M. Lucas, “Evolving robust and specialized car racing
skills,” in IEEE International Conference on Evolutionary Computation,
2006, pp. 1187–1194.

[8] J. Togelius, R. De Nardi, and S. M. Lucas, “Towards automatic per-
sonalised content creation for racing games,” in IEEE Symposium on
Computational Intelligence and Games, 2007, pp. 252–259.

[9] D. Loiacono, L. Cardamone, and P. L. Lanzi, “Automatic track genera-
tion for high-end racing games using evolutionary computation,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 3,
no. 3, pp. 245–259, 2011.

[10] L. Cardamone, D. Loiacono, and P. L. Lanzi, “Interactive evolution
for the procedural generation of tracks in a high-end racing game,” in
Proceedings of the 13th annual conference on Genetic and evolutionary
computation. ACM, 2011, pp. 395–402.

[11] M. Zyda, “From visual simulation to virtual reality to games,” IEEE
Computer, vol. 38, no. 9, pp. 25–32, 2005.

[12] P. Backlund, H. Engström, and M. Johannesson, “Computer gaming
and driving education,” in Proceedings of the ICCE 2006 workshop
Pedagogical Design of Educational Games, 2006, pp. 9–16.

[13] G. Fanelli, J. Gall, and L. Van Gool, “Real time head pose estimation
with random regression forests,” in Computer Vision and Pattern Recog-
nition, 2011, pp. 617–624.

[14] B. J. Frey and D. Dueck, “Clustering by passing messages between data
points,” Science, vol. 315, no. 5814, pp. 972–976, 2007.

[15] M. Csikszentmihalyi, Flow: The psychology of optimal experience. New
York: Harper and Row, 1990.

[16] L. Vygotsky, “Interaction between learning and development,” Readings
on the development of children, vol. 23, no. 3, pp. 34–41, 1978.

[17] L. S. Settouti, Y. Prie, J.-C. Marty, and A. Mille, “A trace-based system
for technology-enhanced learning systems personalisation,” in Ninth
IEEE International Conference on Advanced Learning Technologies,
2009, pp. 93–97.

[18] P. Bouvier, K. Sehaba, and E. Lavoué, “A trace-based approach to
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Abstract—The classification of time series data is a challenge
common to all data-driven fields. However, there is no agreement
about which are the most efficient techniques to group unlabeled
time-ordered data. This is because a successful classification of
time series patterns depends on the goal and the domain of
interest, i.e. it is application-dependent.

In this article, we study free-to-play game data. In this
domain, clustering similar time series information is increasingly
important due to the large amount of data collected by current
mobile and web applications. We evaluate which methods cluster
accurately time series of mobile games, focusing on player
behavior data. We identify and validate several aspects of
the clustering: the similarity measures and the representation
techniques to reduce the high dimensionality of time series. As a
robustness test, we compare various temporal datasets of player
activity from two free-to-play video-games.

With these techniques we extract temporal patterns of player
behavior relevant for the evaluation of game events and game-
business diagnosis. Our experiments provide intuitive visualiza-
tions to validate the results of the clustering and to determine the
optimal number of clusters. Additionally, we assess the common
characteristics of the players belonging to the same group. This
study allows us to improve the understanding of player dynamics
and churn behavior.

I. INTRODUCTION

In the past years, free-to-play (F2P) has emerged as the
dominant monetization model of games on mobile platforms
[1], [2]. F2P games are offered for free, and monetized
by charging for in-game content through in-app purchases,
with player retention being key to a successful monetization.
The always-connected nature of mobile devices allows to
constantly collect data about player behavior in the game.
These data are used to guide design decisions for updates
and release of additional content to maintain players’ interest,
sometimes in the form of periodic events giving access to new
game content for a limited period of time [3].

This study is motivated by the idea that the automatic
clustering of time series of player behavior can lead to a
better understanding of player engagement. With daily active
user bases ranging from thousands to millions of players, a
game developer cannot know how every player reacts to a
game or content update. At best, she can visualize averages
of manually defined segments [4]. In this paper, we show that
we can automatically cluster and visualize the main trends
in player behavior and that we can determine differentiating
characteristics of players belonging to different clusters. We

also consider the evolution of players after the end of the time
series studied, and we investigate the use of this clustering as
a feature addressing temporal dynamics for further supervised
learning applications, e.g. a churn prediction model.

Previous efforts on clustering game data appear in [5],
[6], [7], [8], [9], with the common goal of extracting player
pattern behavior. However, the focus of these studies is non-
time-oriented data. On the other hand, in the work presented
by [10], a clustering of time series is performed, but the
measurements are obtained from PC games, not from F2P
game data which allow a robust behavioral analysis.

The aim of the present paper is to identify similar patterns
in unlabeled temporal datasets of player activity in F2P
games. In order to discover natural groups of players, based
on their behavior and interaction with the game, we apply
diverse clustering techniques which focus on maximizing the
dissimilarity between different clusters and maximizing the
homogeneity within the groups.

To the best of our knowledge this is the first article that
applies unsupervised learning techniques to cluster time series
of player behavior from F2P games. We have successfully
extracted relevant user patterns from two F2P games: Age of
Ishtaria and Grand Sphere, which helps us to examine quickly
the player activity, allowing a visual game diagnosis and an
intuitive evaluation of the weekly-based game events.

The games chosen for this study are representative of
the most played F2P mobile social role-playing games in
Japan and they have also been successful worldwide, reaching
several millions of players.

II. CLUSTERING TIME SERIES OF GAME DATA

Time series consist of sequential observations collected and
ordered over time. Nowadays, almost every application, web or
mobile based, produces a massive amount of time series data.
The goal of unsupervised time series learning, e.g. clustering
methods, is to discover hidden patterns in time ordered data.

Clustering time series data has received high attention over
the last two decades [11], starting with the seminal work of
[12] in 1993. It has faced many challenges [13], among which
one of the most important is probably the high dimensionality
level that time series contains and therefore the difficulty of
defining a similarity measure, i.e. the distance between series,
in order to classify close patterns in the same group. Working
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with raw time series is computationally expensive and tech-
nically complicated. So as to cluster them efficiently, their
complexity must be reduced through representation techniques
[14], trying to maintain the characteristic features of the data.
Both the dimensionality reduction and the similarity distance
definition are obviously application-dependent.

Furthermore, with the fast increase of digital data, the
clustering algorithms must be ready to deal with Big Data
challenges [15], e.g. a vast volume of data to be processed
with high efficiency and speed, sometimes even in real time.
The literature on time series clustering is very extensive. For
a comprehensive review about time series similarity search
methods, check [16], [17], [18], [19].

In this Section we review the methods applied in the present
paper to cluster the time series of player behavior. We briefly
explain separately the representation methods and similarity
measures used to evaluate the clustering results.

A. Similarity Measures

Given a time series, defined as a sequence such as

Xn = (x1, x2, · · · , xN ), (1)

where x are the observations measured at different times n,
we need to determine the level of similarity/dissimilarity (i.e.
agreement/discrepancy) between a pair of them in order to
cluster a sample of K time series.

Traditional distance computations, such as the Euclidean
distance, can produce interesting results. However, in the case
of time series, notions of distance need not to be confined to
this simple geometric paradigm.

There are several ways to measure the dissimilarity between
pairs of time series. This paper aims to cluster player profiles
from Age of Ishtaria and Grand Sphere games based on their
in-game behavior, hence dissimilarity measures were chosen
according to this business target.

We are interested in the so-called model-free measures [20].
A naive model-free approach is to treat each series as an n-
dimensional vector, and to calculate a shape-based geometric
distance measure (without taking into account the absolute
value of the time series selected). Such measures are the focus
of our work, as we are interested in the shape pattern behavior
(geometric comparison) rather than the magnitude of the time
series.

Among the dissimilarity methods tested, those which pro-
vide the most robust results to classify time series are: Eu-
clidean distance, Correlation (COR), Raw Values and Tempo-
ral Correlation (CORT) and Dynamic Time Warping (DTW).
In addition, a complexity-based approach [20] called Complex-
ity Invariant Distance (CID) [21] is applied. With this method,
instead of focusing on the shape of the series, we expect to
group profiles from a different perspective, taking into account
the degree of variability over time.

Some other measures were also evaluated, e.g
autocorrelation-based dissimilarity, Frechet distance measure,
periodogram-based dissimilarity, among others (a review
about these techniques can be found in [20]). However, these

methods did not output as satisfactory results as the ones
mentioned in the previous paragraph. The selected measures
of interest are defined below, considering two time series
X ,Y of size T (which is the temporal dimension).

1) Dynamic Time Warping (DTW): DTW is a non-linear
similarity measure obtained by minimizing the distance be-
tween two time series [22]. This method permits to group
together series that have similar shape but out of phase [23].
Figure 3 shows in the right upper panel how DTW aligns series
with delayed but similar patterns.

DTW distance can be expressed as

DTW (X,Y ) = min
r∈M

(
M∑
m=1

|xim − yjm|

)
, (2)

where the path element r = (i, j) represents the relationship
between the two series. The goal is to minimize the time
warping path r so that summing its M components gives the
lowest measure of minimum cumulative distance between the
time series. DTW searches for the best alignment between X
and Y , computing the minimum distance between the points
xi and yj .

2) Correlation-based measure (COR): It performs dissim-
ilarities based on the estimated Pearson’s correlation of two
given time series. The COR computation can be expressed as

COR(X,Y ) =∑N
n=1(xn − X̄)(yn − Ȳ )√∑N

n=1(xn − X̄)2
√∑N

n=1(yn − Ȳ )2
. (3)

3) Temporal Correlation and Raw Values Behaviors mea-
sure (CORT): It computes an adaptive index between two
time series that covers both dissimilarity on raw values and
dissimilarity on temporal correlation behaviors. It can be
written as

CORT (X,Y ) =∑N−1
n=1 (xn+1 − xn)(yn+1 − yn)√∑N−1

n=1 (xn+1 − xn)2
√∑N−1

n=1 (yn+1 − yn)2
. (4)

4) Complexity-Invariant Distance measure (CID): CID
computes the similarity measure based on the Euclidean
distance but corrected by the complexity estimation of the
series [21]. CID is written as

CID(X,Y ) = dist(X,Y ) · CF (X,Y ), (5)

with CF being the complexity correction factor defined by

CF (X,Y ) =
max(CE(X), CE(Y ))

min(CE(X), CE(Y ))
. (6)

And CE(·) corresponds to the complexity estimations of a
time series of length N , given by

CE(X) =

√√√√N−1∑
n=1

(xn − xn+1)2. (7)
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Fig. 1: Illustration of SAX representation method (dimension-
ality reduction of time series), performed with the following
parameter values: w = 7 and α = 3.

B. Representation Methods

Time series data collected from F2P games are high di-
mensional objects. In order to reduce their complexity and
make the comparison feasible, it is convenient to perform a
dimensional reduction transformation beforehand. There are
several ways to reduce the data from n-dimensions to N -
dimensions, and depending on the application domain, there
are techniques more suitable than others. We focus on function
approximation procedures to simplify the time series objects
we aim to cluster. In the following subsections, we briefly
summarize the most successful procedures for the video-game
data tested in the present study.

1) Discrete Wavelet Transform (DWT): This method uses
a wavelet decomposition to approximate the actual series. A
wavelet is a function used to approximate the target time series
by means of superposition of several (wavelet) functions. A
wavelet object provides information about variations of the
time series locally, as it can be shown in Figure 3 in the
right lower panel. DWT assigns a coefficient to each wavelet
component and the distance is computed between the wavelet-
approximated time series.

2) Symbolic Aggregate Approximation related functions
measure (SAX): SAX is a symbolic representation to simplify
continuous time series [24]. The series is discretized and
divided into sequential frames of equal size. Firstly, the series
is divided in w set intervals and it is represented by its
corresponding mean Piece wise Aggregate Approximation
(PAA) dimensional reduction. Afterwards SAX is represented
by a subset of alphabet letters of size α where α = (l1, ..., lα)
and the transformed series X̂ = (X̂1, ..., X̂α) is computed by
determining equal-sized zones under a Gaussian distribution.
The distance is then computed between the approximated
time series. Figure 1 depicts a schematic view of the SAX
dimensionality reduction method.

3) Trend Extraction: A time series is composed of different
elements such as seasonal components, medium or long-term
trend, cyclical movement (repeated pattern but non-periodic)
or irregular fluctuations (also known as residuals). Depending
on the clustering application, some of these components can
be representative of the characteristics of the raw time series.

Fig. 2: Time Series Decomposition used for dimension re-
duction. Original series in the upper panel, trend extraction
in the second plot, the seasonal and the random (residual
fluctuations) components shown in the third and fourth panel,
respectively.

As we are interested in characterizing players by their
behavior, we focus on the trend component as it provides
essential information for this purpose. Seasonality behavior
or irregular data are not the center of our attention, the trend
rather reflects significant information about player’s interests.
As it is mentioned in [25] “The trend of a time series is
considered as a smooth additive component that contains
information about global change”. The method used in this
work to extract the trend is the moving average filtering.

C. Hierarchical clustering

In this subsection, we describe the methods to create the
nested partitions in order to classify the total number of time
series.

Hierarchical clustering creates homogeneous partitions of
data according to their level of dissimilarity, maximizing the
difference between clusters [26], [27]. The clustering growing
method can be increasing (agglomerative clustering or bottom-
up) or decreasing (divisive clustering or top-down) at each
step. It is normally represented by dendrograms that show the
clustering levels in a tree-based graph. Figure 4 illustrates with
a dendrogram the hierarchical clustering performed to classify
player behavior of Age of Ishtaria.

The method selected to cluster the datasets studied in the
current paper is agglomerative clustering. There are different
methods of agglomerative clustering [26], but the one used for
our analysis is the so-called Ward method which is a minimum
variance technique. In Ward, the distance between two clusters
is defined as the deviance between them. The clusters that are
merged in the same group are the ones that lead to a minimum
increase in the total within-cluster variance (calculated from
the dissimilarity measure selected between the time series)
[27]. This method is used to obtain the results presented in
the Section V, as our goal is to obtain a low variance within
the clusters.
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Fig. 3: Illustrations of the difference between time series clus-
tering results obtained using Euclidean (EUCL) and Correla-
tion dissimilarity measure (COR) (left upper panel), Dynamic
Time Warping (DTW) in the upper right panel, Complexity
Invariant Distance (CID) in the left lower panel, and Discrete
Wavelet Transform (DWT) in the right lower panel.

III. COMPARISON OF CLUSTERING METHODS

The selection of an adequate technique to cluster time
series depends on the application and business interest. All the
methods reviewed in Section II were tested to cluster the time
series of game data. We want to classify players by pattern-
shape, without giving too much attention to small fluctuations
or to the total magnitude of the time series. Based on this aim
we can conclude:
• DTW works particularly well to group similar player

profiles with a shift on the time axis. DTW also groups
together similar patterns but at different scale. However,
as we are interested in evaluating the impact of game
events on player activity, we rather focus on clustering
synchronized profiles. Therefore, this is not the most
suitable tool to measure the distance between time series
for the purpose of the current study.

• In the DWT method of dimensionality reduction, the
wavelets define the frequency of the series, which some-
times does not fit with the weekly seasonality we want
to study.

• SAX representation method could be a useful tool for our
problem as we are interested in identifying the pattern
behavior, and not detailed aspects of the time series.
However, the manual tuning of the two parameters w
and a can be a drawback, although it is easily done once
we introduce apriori information about the seasonality of
the time series (the weekly events in our case). We hoped
that the dimensionality reduction offered by SAX would
allow us to cluster longer time series (2 months or more)
but we did not obtain conclusive results.

• COR is a promising method for our goal. It groups similar
geometric and synchronous profiles. As a drawback, COR
seems to be sensitive to noise data and outliers (which
are present in our datasets).

• CORT is similar to COR, but we ultimately obtained the
most convincing results with the second.

• COR+trend is the combination of COR and trend extrac-
tion, which addresses COR’s sensitivity to noise. This
method allows us to obtain the best results for non-
sparse time series (such as the time series of time played).
Indeed, the trend extraction does not work well with time
series containing many zero values (such as the time
series of in-app purchases).

• CID groups series that have similar complexity patterns.
This method performs poorly in classifying similar ge-
ometric profiles, which is what we do successfully with
COR+trend applied to the time series of time played.
However, it is the method that provides the best results
when it comes to classifying time series containing large
amount of zero values (such as the time series of pur-
chases).

Figure 3 shows an intuitive comparison between similarity
measures and representation methods to help to understand
the difference between different techniques. The similarity
methods and representation techniques described in this paper
were tested to obtain the results presented in Section V.

A. Evaluation Metrics of Clustering results

The validation of the clustering methods is a challenging
task, as we do not have any truth we can rely on to compare
the accuracy of the classification, contrary to the supervised
learning models. Several techniques to evaluate the adequacy
of the similarity measures and representation methods to
cluster time series were tested, among them: Dunn and average
of Silhouette width [28], Normalized Hubert’s statistic [29]
and Entropy [30]. However, due to the difficulty of the task
and the high complexity of time series objects, the results
were not satisfactory. We used several kinds of visualization
techniques to validate the clustering results and to determine
the optimal number of clusters.

IV. DATASETS

A. Data Source

Our data come from the games Age of Ishtaria and Grand
Sphere by Silicon Studio.

We worked with time series of the following variables that
are game independent and can be measured in all free-to-play
games. These variables are measured per user and per day.
• Time: The amount of time spent in the game
• Sessions: The total number of playing sessions
• Actions: The total number of actions performed
• Purchase: The total amount of in-app purchases
Time, sessions and actions time series are highly correlated

and produce very similar results. Thus, for the purpose of
our study, we focus on the Time variable, which has a lower
measurement error.

Purchases time series are different from the others because
they are sparse (they contain many zero values), as the majority
of the paying users do not complete an in-app purchase every
day.
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TABLE I: Summary description of the clustering results with Age of Ishtaria and Grand Sphere data.

Clustering result name Game Data Technique Clusters Start date End date
Age of Ishtaria time clustering Age of Ishtaria Time played per day COR+trend 8 11-Jun-2015 1-Jul-2015
Age of Ishtaria spending clustering Age of Ishtaria Spending per day CID 5 30-Jan-2015 19-Feb-2015
Grand Sphere time clustering Grand Sphere Time played per day COR+trend 8 11-Sept-2015 1-Oct-2015

Fig. 4: Hierarchical Clustering represented by a dendrogram
of Age of Ishtaria time-played data. The Age of Ishtaria time
clustering is performed with COR similarity measure and trend
extraction as representation method.

B. Time Series Studied

The frequency of our time series is daily. We study them on
a weekly basis since there are weekly game events influencing
player behavior. The studied period P , therefore contains
Nweek × 7 values, with Nweek = 3 being the number of
weeks selected for this study. We synchronize the starting date
Pstart and the ending date Pend of our time series with the
starting date of the game events.

In order to avoid a bias due to the partial absence of data
from players who join or leave the game during P , we only
consider data from players who installed the game before
Pstart and who are still active after Pend.

For the final results of clustering the time series of Time
played, we consider only data from the users who played at
least 6 days per week. There are two reasons for this choice.
Firstly, from a free-to-play game developer perspective, we are
interested in the most active players. Secondly, the clustering
technique that allowed us to obtain the best results for this
clustering performs poorly with sparse time series.

For the final results of clustering the times series of Pur-
chases, which are mostly sparse, except for the very top
spenders, we considered the players who did at least one pur-
chase during P . Due to the sparse nature of these time series,
we then obtain the best results using a different clustering
technique.

Finally, we take random samples of 1000 time series re-
specting the conditions above for our experiments.

V. RESULTS

In this section, we present the results of the clustering
experiments summarized in Table I. For each experiment, we

call event A, B and C the game events released respectively
on week 1, 2 and 3. This is a naming convention independent
of the content of the events.

A. Clustering and Visualization

1) Clustering time series of time played: Figure 5 visualizes
the classification obtained by clustering time series of time
played per day by Age of Ishtaria players, using the correlation
dissimilarity measure on the trend extracted from the raw time
series. We call this method COR+trend.

For each cluster, we plot the mean of the time series and
a heatmap containing all the time series (one time series for
each player included in the sample).

Visualizing the mean allows to see the top trends in player
behavior. For example, the activity of class 3 plunged for event
B but spiked for event C, while class 4 followed an opposite
pattern. Since the game events are usually designed based on
predefined game templates (i.e. they are reused throughout the
lifetime of the game), this analysis helps the game designer
to better understand the interest of several groups of players
in different kinds of game events. This supports future game
event planning and improves the knowledge about the impact
of the game events on the player activity.

Visualizing the time series of each cluster on a heatmap
allows to quickly validate the quality of the clustering. Figure
5 shows that the time series follow the same patterns within
each cluster.

Heatmap along with a dendrogram visualization, repre-
sented in Figures 4 and 5, proves to be a better tool than
the statistical measures tested, mentioned in Section III-A, for
choosing the optimal number of clusters. Using these tools we
determine that the most optimal clustering is obtained with 8
clusters.

We apply the same clustering technique on time series of
time played by the players of Grand Sphere, and obtain similar
results, as it can be checked in Figure 6. This is a promising
fact towards obtaining an adequate technique ready to cluster
data from other F2P games.

2) Clustering time series of purchases: Figure 7 depicts
the clusters obtained by clustering time series of purchases per
day by Age of Ishtaria players, using the Complexity Invariant
Distance (CID) on the raw time series.

For each cluster, we represent the distribution of the data
separated per week in a box-plot, and a heatmap containing
all the time series.

Visualizing the time series of each cluster on a heatmap
allows to distinguish different purchase patterns. For example,
players from class 1 and class 3 purchase sparsely while
players from class 2 purchase nearly every day.
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Fig. 5: Mean of the time series and heatmap for each cluster from Age of Ishtaria time clustering (time played per day).
Vertical lines delimiting the game events. Clustering performed with COR similarity measure and trend extraction.

Fig. 6: Mean of the time series and heatmap for each cluster from Grand Sphere time clustering (time played per day). Vertical
lines delimiting the game events. Clustering performed with COR similarity measure and trend extraction.

TABLE II: Characteristics of the players at the starting date of the studied period (Age of Ishtaria time clustering)

variables class 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8
number of players 40 283 161 65 172 71 131 77
ratio PU 30.0% 33.2% 44.7% 20.0% 33.1% 33.8% 35.1% 14.3%
average level 47 53 75 35 51 49 58 31

TABLE III: Cumulative churn ratio in the months following the clustering, after period P (Age of Ishtaria time clustering)

churners ratio class 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8
July 15.0% 11.7% 4.3% 15.4% 19.2% 18.3% 5.3% 22.1%
August 27.5% 19.8% 13.0% 26.2% 30.8% 31.0% 14.5% 28.6%
November 45.0% 48.4% 29.2% 47.7% 51.7% 20.7% 32.8% 58.4%

Since the scale of each heatmap is normalized separately
to be able to visualize properly the full range of purchases
on each heatmap, we can not compare the amount of the
purchases between the clusters using only this visualization.
And, contrary to the clustering of the time series of time
played described above, the time series of purchases are mostly
sparse, which makes it irrelevant to plot the mean of these time
series. That is why we use the box-plot representation of the
spending for each week, in order to visualize the difference of
scale between the different groups. This additional plot allows
us, for example, to see that class 5 contains very high spenders

even if they have a relatively sparse purchase behavior like
class 1 and 3.

As for the time series of time played, we used the heatmap
visualizations and the dendrogram to choose to use k = 5
clusters.

B. Extraction of Players Characteristics

We are not only interested in clustering game users and
discovering hidden patterns, but also want to analyze the
characteristics they have in common.
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Fig. 7: Clustering results from the visualization of purchase’s time series from Age of Ishtaria data using CID similarity measure
(Age of Ishtaria spending clustering). Box plots of the spending per player and per week in the upper panel. Corresponding
heatmap for each cluster below. The dates on the x-axis delimiting the weekly game events.

After performing the clustering, we measure how players
behave during the period P by analyzing their characteristics
on the start date Pstart of the time series.

Table III reflects that class 3 contains players with the
highest playing levels and also the highest ratio of paying
users, while classes 4 and 8 contain the players with the lowest
levels and the lowest ratios of paying users.

It is interesting to note that these clusters coincide with the
ones already discussed earlier as reflecting an opposite interest
in certain game events. With these two observations, we can
conclude that event B was unpopular for advanced players
and more popular for less advanced players, and that event
C was more popular for advanced players and unpopular for
less advanced players. A game planner visualizing this could
conclude that she had better avoid triggering an event of event
C’s type soon after a user acquisition campaign, as it would
likely be unpopular for the new coming less advanced players
just acquired.

This example shows that it is possible to extract differenti-
ating player characteristics from the clustering we obtained.

C. Churn behavior
Player retention is of crucial importance in F2P games.

Several models have been proposed to help to understand and
predict the churn of players [31], [32], [33].

Based on the results obtained in Table II and Figure 5, we
study the evolution of the players after the period of time P
covered by the time series, in order to see if there is a relation
between their behavior during P and after P .

Table II shows the churning rate 1, 2 and 5 months after the
period P for each cluster. We observe that class 3 and 7 have

a significantly lower churning rate than class 4 and 8, being 3
to 4 times lower after 1 month and 1.5 to 2 times lower after
5 months.

According to this result, players have a different churn
behavior following their profile classification performed during
the period P .

Therefore, the use of the unsupervised classification of
player profiles suggested in this article could be an interesting
feature to address the temporal dynamics of players data for
a churn supervised learning model. In [32] an alternative
approach was proposed using a Hidden Markov Model.

However, in order to use this predictor in a supervised model
some changes need to be performed in the definition of the
problem as we discussed in Section IV. This comprehensive
analysis is beyond the scope of this paper. For example, this
would involve to cluster players based on their last weeks
behavior, e.g. the time series starting date would be 3 weeks
before the last day the players connected to the game instead
of taking fixed dates as in the present work.

This time series classification would allow us to improve
the understanding about the churn of players but, on the other
hand, it would not provide information about game events
reaction, which is a principal target of the current analysis.

VI. SUMMARY AND CONCLUSION

In the present article, we have conducted a research about
unsupervised clustering of time series data from two free-
to-play games. We evaluate several similarity measures and
representation methods to extract meaningful behavioral pat-
terns of players. This allows us to assess the impact of
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weekly game events and discover hidden playing dynamics
regarding purchases and time played per day. An appropriate
characterization of time series allows us to find significant
attributes in common among players belonging to the same
group. Ongoing and future work involve the application of
the time series clustering results to churn prediction models
and further analysis of the player profiles.

VII. SOFTWARE

The analyses presented in Section V were performed with
the R version 3.2.3 for Windows, using the following packages
from CRAN: TSclust 1.2.3 [20], timeSeries 3022.101.2 [34],
fpc 2.1-10 [35], Rmisc 1.5 [36], reshape 0.8.5 [37], ggplot2
2.0.0 [38].
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Abstract—General video game playing is a challenging re-
search area in which the goal is to find one algorithm that
can play many games successfully. “Monte Carlo Tree Search”
(MCTS) is a popular algorithm that has often been used for
this purpose. It incrementally builds a search tree based on
observed states after applying actions. However, the MCTS
algorithm always plans over actions and does not incorporate
any higher level planning, as one would expect from a human
player. Furthermore, although many games have similar game
dynamics, often no prior knowledge is available to general video
game playing algorithms. In this paper, we introduce a new
algorithm called “Option Monte Carlo Tree Search” (O-MCTS).
It offers general video game knowledge and high level planning
in the form of “options”, which are action sequences aimed at
achieving a specific subgoal. Additionally, we introduce “Option
Learning MCTS” (OL-MCTS), which applies a progressive
widening technique to the expected returns of options in order
to focus exploration on fruitful parts of the search tree. Our new
algorithms are compared to MCTS on a diverse set of twenty-
eight games from the general video game AI competition. Our
results indicate that by using MCTS’s efficient tree searching
technique on options, O-MCTS outperforms MCTS on most of
the games, especially those in which a certain subgoal has to be
reached before the game can be won. Lastly, we show that OL-
MCTS improves its performance on specific games by learning
expected values for options and moving a bias to higher valued
options.

I. INTRODUCTION

Recent game programming research focusses on algorithms
capable of solving several games with different types of
objectives. A common approach is to use a tree search in order
to select the best action for any given game state. In every new
game state, the tree search is restarted until the game ends. A
popular example is Monte Carlo tree search (MCTS).

A method to test the performance of a general video game
playing algorithm is by using the framework of the general
video game AI (GVGAI) competition [1]. In this competition,
algorithm designers can test their algorithms on a set of diverse
games. When submitted to the competition, the algorithms are
applied to an unknown set of games in the same framework
to test their general applicability. Many of the algorithms
submitted to this contest rely on a tree search method.

A limitation in tree search algorithms is that since many
games are too complex to plan far ahead in a limited time
frame, many of these algorithms incorporate a maximum

search depth. As a result, tree search based methods often only
consider short-term score differences and do not incorporate
long-term plans. Moreover, many algorithms lack common
video game knowledge and do not use any of the knowledge
gained from the previous games.

In contrast, when humans play a game we expect them to
make assumptions about its mechanics, e.g., pressing the left
button often results in the player’s avatar moving to the left on
the screen. Furthermore, we expect human players to define
specific subgoals for themselves, e.g., when there is a portal on
screen, a player is likely to try to find out what the portal does
by walking towards it. The player will remember the effect of
this and use that information for the rest of the game.

In certain situations it is clear how such a subgoal can be
achieved and a policy, which defines which actions to take in
which state, can be defined to achieve it. A policy to achieve
a specific subgoal is called an option [2]. Thus, an option
selects an action, given a game state, that aims at satisfying
its subgoal. In this paper, options are game-independent. The
options are expected to guide the exploration of a game’s
search space to feasible areas.

We propose a new algorithm called option Monte Carlo tree
search (O-MCTS) that extends MCTS to use options. Because
O-MCTS chooses between options rather than actions when
playing a game, we expect it to be able to plan more efficiently,
at a higher level of abstraction. Furthermore, we introduce
option learning MCTS (OL-MCTS), an extension of O-MCTS
that approximates which of the available options work well
for the game it is playing. This can be used to shift the focus
of the tree search exploration to more promising options. This
information can be transferred to subsequent levels in order to
increase performance.

We compare our algorithms to MCTS on games from the
GVGAI competition. Our results indicate that the O-MCTS
and OL-MCTS algorithms outperform MCTS in games that
require a high level of action planning, e.g., games in which
something has to be picked up before a door can be opened. In
most other games, O-MCTS and OL-MCTS perform at least
as well as MCTS.
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Fig. 1. One MCTS iteration. This process is repeated in order to improve the
estimates of action values. Circles represent states, edges represent actions.

II. BACKGROUND

We first explain the most important concepts needed to
understand the algorithms that are proposed in this paper. We
first describe Markov decision processes (MDPs), then MCTS,
then options and finally the video game description language
(VGDL).

A. Markov Decision Processes

We treat games as MDPs, which provide a mathematical
framework for use in decision making problems. An MDP is
a tuple 〈S,A, T,R〉, where S denotes the set of states, A is the
set of possible actions, T is the transition function and R is the
reward function. Since an MDP is fully observable, a state in S
contains all the information of the game’s current condition:
locations of sprites like monsters and portals; the location,
direction and speed of the avatar; which resources the avatar
has picked up; etcetera. A is a finite set of actions, the input
an agent can deliver to the game. T is a transition function
defined as T : S×A×S → [0, 1]; it specifies the probabilities
over the possible next states, when taking an action in a state.
R is a reward function defined as R : S × A × S → R.
When the game score changes, the difference is viewed as the
reward. Algorithms maximize the cumulative reward. In the
scope of this paper algorithms only observe state transitions
and rewards when they happen and do not have access to T
and R.

B. Monte Carlo Tree Search

The success of MCTS started in 2006, when the tree search
method and UCT formula were introduced, yielding good
results in Computer Go [3]. Since 2006, the algorithm has been
extended with many variations. It is still being used for other
computer games [4], including the GVGAI competition [5]. In
this paper, we use MCTS as the basis for the new algorithms.

This section explains how MCTS approximates action val-
ues for states. A tree is built incrementally from the states
and actions that are visited in a game. Each node in the
tree represents a state and each edge represents an action
taken in that state. MCTS consists of four phases that are
constantly repeated, as depicted in Figure 1. The root node
of the tree represents the current game state, Then, the first
action is chosen by an expansion strategy and subsequently
simulated. This results in a new game state, for which a node
is created. After expansion, a rollout is done from the new

node, which means that a simulation is run from that node,
applying random actions until a predefined stop criterion is
met. Finally, the score difference resulting from the rollout is
backed up to the root node, which means that the reward is
saved to all visited nodes, after which a new iteration starts.
When all actions are expanded in a node, that node is deemed
fully expanded. This means that MCTS will use its selection
strategy to select child nodes until a node is selected that is
not fully expanded. Then, the expansion strategy is used to
create a new node, after which a rollout takes place and the
results are backed up.

The selection strategy selects optimal actions in internal tree
nodes by analyzing the values of their child nodes. An effective
selection strategy is UCT, which employs an exploration bonus
to balance the choice between poorly explored actions with a
high uncertainty about their value and actions that have been
explored extensively, but have a higher value [6]. A child node
j is selected to maximize

UCT = vs′ + Cp

√
2 lnns
ns′

(1)

Where vs′ is the value of child s′ as calculated by the backup
function, ns and ns′ are the number of times nodes s and
child s′ have been visited and Cp > 0 is a constant that shifts
priority from exploration to exploitation.

The traditional expansion strategy is to explore each action
at least once in each node. After all actions have been ex-
panded, the node applies the selection strategy. Some variants
of MCTS reduce the branching factor of the tree by only
expanding the nodes selected by a special expansion strategy.
A specific example is the crazy stone algorithm [7], which
is an expansion strategy that was originally designed for Go.
We will use an adaptation of this strategy in the algorithm
proposed in Section V. When using crazy stone, an action i
is selected with a probability proportional to ui

ui = exp

(
K

µ0 − µi√
2 (σ2

0 + σ2
i )

)
+ εi (2)

Each action has an estimated value µi ordered in such a way
that µ0 > µ1 > · · · > µN , and a variance σ2

i . K is a constant
that influences the exploration — exploitation trade off. εi
prevents the probability of selecting a move to reach zero. Its
value is proportional to the ordering of the expected values of
the possible actions: εi = 0.1+2−i+ai

N . Here, ai is 1 when an
action is an atari move, a go-specific move that can otherwise
easily be underestimated by MCTS, and otherwise 0.

After a rollout, the reward is backed up, which means that
the estimated value for every node that has been visited in this
iteration is updated with the reward of this simulation.

C. Options

In order to mimic human game playing strategies, such as
defining subgoals and subtasks, we use options. Options, or
macro-actions, have been proposed by Sutton et al. [2] as a
method to incorporate temporal abstraction in reinforcement
learning. The majority of the research seems to focus on
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learning algorithms, little work has been done on combining
options with tree search methods [8], although most learning
algorithms are time and memory heavy and tree search meth-
ods have shown more promising results on complex games.

An option is a predefined method of reaching a specific
subgoal. Formally, it is a triple 〈I, π, β〉 in which I ⊆ S is an
initiation set, π : S×A→ [0, 1] is a policy and β : S+ → [0, 1]
is a termination condition.

When an agent starts in state s, it can choose from all of
the options o ∈ O that have s in its initiation set Io. Then the
option’s policy π is followed, possibly for several time steps.
The agent stops following the policy as soon as it reaches a
state that satisfies a termination condition in β. This means
that the option has reached its subgoal, or a criterion is met
that renders the option obsolete (e.g., its goal does not exist
anymore). Afterwards, the agent chooses a new option.

A popular algorithm that uses options instead of actions is
SMDP Q-learning [2]. In general, it estimates the expected
rewards for using an option in a certain state, in order to find
an optimal policy over the option set.

D. General Video Game Playing

We use the general video game playing problem as a
benchmark for our algorithms. Recent developments in this
area include VGDL [9], a framework in which a large number
of games can be defined and accessed in a similar manner.
Using VGDL, algorithms can access all the games similarly,
resulting in a method to compare their performances on several
games.

The GVGAI competition provides games written in VGDL.
The games function as a black box from which algorithms can
only observe the game state. In each game tick, algorithms
have limited time to plan their action, during which they
can access a forward model, which simulates new states and
rewards for actions. The actions that are used on the forward
model do not influence the real game score. Algorithms should
return actions before their simulation time runs out.

The algorithms proposed in this paper will be benchmarked
on the GVGAI game sets, using the rules of that competition.
This means that the algorithms do not have any access to the
game and level descriptions. When an algorithms starts playing
a game, it typically knows nothing of the game except for the
observations described above.

III. RELATED WORK

This section covers some popular alternative methods for
general video game playing and prior work on tree search
with options.

Deep Q networks (DQN) [10] is a general video game
playing algorithm that trains a convolutional neural network
that has the last four pixel frames of a game as input and
tries to predict the return of each action. A good policy
can then be created by selecting the action with the highest
return. In this case it was not desirable to implement DQN
because of the limitations proposed by our testing framework.
The GVGAI competition framework currently works best for

planning algorithms that use the forward model to quickly
find good policies. Learning over the course of several games
is difficult. In contrast, DQN typically trains on one game for
several days before a good policy is found and does not utilize
the forward model, but always applies actions directly to the
game in order to learn.

Another alternative is the algorithm Planning under uncer-
tainty with Macro-Actions (PUMA), which applies forward
search to options and works on Partially Observable MDPs
(POMDPs) [11]. PUMA automatically generates goal-oriented
MDPs for specific subgoals, the advantage of which is that
effective options can be created without requiring any prior
knowledge of the POMDP. The disadvantage is that this
takes a lot of computation time and thus would not work
in the GVGAI framework, where only 40 milliseconds of
computation time is allowed between actions. Furthermore
PUMA has to find out the optimal length per macro-action,
our algorithm can use options of variable length with starting
an stopping conditions.

Another algorithm that uses MCTS with macro-actions is
called Purofvio. Purofvio plans over simple macro-actions
which are defined as repeating one action several times [12].
No more complex options are defined. All the options are
of exactly the same size. Purofvio is created solely for the
physical travelling salesperson problem. Although Purofvio
could also work on other games, we decided to create a
different algorithm, that is capable of using more complex
options.

IV. O-MCTS

We propose O-MCTS, a novel algorithm that simulates
the use of subgoals by planning over options using MCTS,
enabling the otherwise infeasible use of options in complex
MDPs. The resulting algorithm achieves higher scores than
MCTS on complex games that have several subgoals. It works
as follows: like in MCTS, a tree of states is built by simulating
game plays. The algorithm chooses options instead of actions.
When an option is chosen, each next node in the search tree
represents an action chosen by that option. The search tree can
only branch if an option is finished, i.e., its subgoal is reached.
Since traditional MCTS branches on each action, whereas O-
MCTS only branches when an option is finished, deeper search
trees can be built in the same amount of time. This section
describes how the process works in more detail.

The tree representation of an O-MCTS tree is the same as
in MCTS: a node represents a state, a connection represents an
action. An option spans several actions and therefore several
nodes in the search tree, as shown in Figure 2. We introduce a
change in the expansion and selection strategies, which select
options rather than actions. When a node has an unfinished
option, the next node will be created using an action selected
by that option. When a node contains a finished option (the
current state satisfies its termination condition β), a new option
can be chosen by the expansion or selection strategy. The
search tree can only branch when an option is finished.
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Fig. 2. The search tree constructed by O-MCTS. In each blue box, one
option is followed. The arrows represent actions chosen by the option. An
arrow leading to a blue box is an action chosen by the option represented by
that box.

Algorithm 1 O−MCTS(O, r, t, d)

1: Cs∈S ← ∅ . cs is the set of children nodes of s
2: o← ∅ . os will hold the option followed in s
3: while time taken < t do
4: s← r . start from root node
5: while ¬stop(s, d) do
6: if s ∈ β(os) then . if option stops in state s
7: ps ← ∪o(s ∈ Io∈O) . ps = available options
8: else
9: ps ← {os} . continue with current option

10: end if
11: m← ∪o(os∈cs) . set m to expanded options
12: if ps = m then . if all options are expanded
13: s′ ← maxc∈cs

uct(s, c) . Eq. 1
14: s← s′ . continue loop with child
15: else
16: ω ← random element(ps −m)
17: a← get action(ω, s)
18: s′ ← expand(s, a) . create child s′ using a
19: cs ← cs ∪ {s′} . add to set of children
20: os′ ← ω
21: break
22: end if
23: end while
24: δ ← rollout(s′) . simulate until stop
25: back up(s′, δ) . save reward to parent nodes (Eq. 3)
26: end while
27: return get action(maxo∈cr

value(o), r)

We describe O-MCTS in Algorithm 1. It is invoked with
a set of options O, a root node r, a maximum runtime t
in milliseconds and a maximum search depth d. The set of
options used for our experiments is described in Section VI.
Two variables are instantiated. Cs is a set of sets, containing
the set of child nodes for each node. The set o contains which
option is followed for each node. The main loop starts at line 3,
which keeps the algorithm running until time runs out. The
inner loop runs until a node s is reached that meets a stop
criterion defined by the function stop, or a node is expanded
into a new node. In lines 6 until 10, ps is set to all options that
are available in s. If an option has not finished, ps contains

only the current option. Otherwise, it contains all the options
o that have state s in their initiation set Io. For example, the
agent is playing zelda and the current state s shows no NPCs
on screen. If o is an option for avoiding NPCs, Io will not
contain state s, because there are no NPCs on screen, rendering
o useless in state s. ps will thus not contain option o.

O-MCTS consists of the same four phases as MCTS. In
line 11, m is set to the set of options chosen in the children of
state s. If ps is the same set as m, i.e., all possible options have
been explored at least once in node s, a new node s′ is selected
by UCT. In line 14, s is instantiated with the new node s′,
continuing the inner loop using this node. Else, some options
are apparently unexplored in node s. It is expanded with a
random, currently unexplored option by lines 15 to 22. After
expansion or when the stop criterion is met, the inner loop
is stopped and a rollout is done, resulting in score difference
δ. This score difference is backed up to the parent nodes of
s using the backup function, after which the tree traversal
restarts with the root node r.

A number of functions is used by Algorithm 1. The function
stop returns true when either the game ends in state s or
the maximum depth is reached in s. The function get action
lets option ω choose the best action for the state in node s,
The function expand creates a new child node s′ for node
s. s′ contains the state that is reached when action a is
applied to the state in node s. Typically, the rollout function
chooses random actions until stop returns true, after which
the difference in score achieved by the rollout is returned. In
O-MCTS however, rollout always applies actions chosen by
option o first and applies random actions after o is finished.
The back up function traverses the tree through all parents
of s, updating their expected value. In contrast to traditional
MCTS, which backs up the mean value of the reward to all
parent nodes, a discounted value is backed up. The backup
function for updating the value of ancestor node s when a
reward is reached in node s′ looks like this:

vs ← vs + δγds′−ds , (3)

where δ is the reward that is being backed up, vs is the value
of node s. ds and ds′ are the node depths of tree nodes s and
s′. Thus, a node that is a further ancestor of node s′ will be
updated with a smaller value.

When the time limit is reached, the algorithm chooses an
option from the children of the root node, cr, corresponding to
the child node with the highest expected value. Subsequently,
the algorithm returns the action that is selected by this option
for the state in the root node. This action is applied to the
game. In the next state, the algorithm restarts by creating a
new root node from this state.

We expect that since this implementation of MCTS with
options reduces the branching factor of the tree, the algorithm
can do a deeper tree search. This is illustrated in Figure 2,
where the tree can not branch inside blue boxes. Furthermore,
we expect that the algorithm will be able to identify and meet
a game’s subgoals by using options. In the experiments section
we show results that support our expectations.
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V. OL-MCTS: LEARNING OPTION VALUES

Although we expect O-MCTS to be an improvement over
MCTS, we also expect the branching factor of O-MCTS’s
search tree to increase as the number of options increases.
When many options are defined, exploring all the options
becomes infeasible. In this section, we will define option
values: the expected mean and variance of an option.We adjust
O-MCTS to learn the option values and focus more on the
options with higher option values. Especially when a level is
played several times, we expect this to be advantageous. We
call the new algorithm Option Learning MCTS (OL-MCTS).
We expect that OL-MCTS can create deeper search trees
than O-MCTS in the same amount of time, which results
in more accurate node values and an increased performance.
Furthermore, we expect that this effect is the greatest in games
where the set of possible options is large, or where only a small
subset of the option set is needed in order to win.

In general, OL-MCTS saves the return of each option after
it is finished, which is then used to calculate global option
values. During the expansion phase of OL-MCTS, options
that have a higher mean or variance in return are prioritized.
Contrary to O-MCTS not all options are expanded, but only
those with a high variance or mean return. The information
learned in a game can be transferred if the same game is played
again by supplying OL-MCTS with the option values of the
previous game.

The algorithm learns the option values, µ and σ. The
expected mean return of an option o is denoted by µo. This
state-independent number represents the returns that were
achieved in the past by an option for a game. Similarly, the
variance of all the returns of an option o is saved to σo.

For the purpose of generalisation, we divide the set of
options into types and subtypes. The option for going to a
movable sprite has type GoToMovableOption. An instance
of this option exists for each movable sprite in the game.
A subtype is made for each sprite type (i.e., each different
looking sprite). The option values are saved and calculated
per subtype. Each time an option o is finished, its subtype’s
values µo and σo are updated by respectively taking the mean
and variance of all the returns of this subtype. This enables
the algorithm to generalize over subtypes.

Using option values, we can incorporate the progressive
widening algorithm from Equation 2, crazy stone, to shift
the focus of exploration to promising regions of the tree. The
crazy stone algorithm is applied in the expansion phase of OL-
MCTS. As a result, not all children of a node will be expanded,
but only the ones selected based on crazy stone. When using
crazy stone, we can select the same option several times, this
enables deeper exploration of promising subtrees, even during
the expansion phase. After a predefined number of visits v to
a node, the selection strategy UCT is followed in that node to
tweak the option selection. When it starts using UCT, no new
expansions will be done in this node.

The new algorithm (Algorithm 2) has two major modifica-
tions. The updates of the option values are done in line 7.

Algorithm 2 OL−MCTS(O, r, t, d, v, µ, σ)

1: Cs∈S ← ∅
2: o← ∅
3: while time taken < t do
4: s← r
5: while ¬stop(s, d) do
6: if s ∈ β(os) then
7: update values(s, os, µ, σ) . update µ and σ
8: ps ← ∪o(s ∈ Io∈O)
9: else

10: ps ← {os}
11: end if
12: m← ∪o(os∈cs)
13: if ns < v then . if state is visited < v times
14: us ← crazy stone(µ, σ,ps) . Eq. 2
15: ω ← weighted random(us,ps)
16: if ω 6∈m then . option ω not expanded
17: a← get action(ω, s)
18: s′ ← expand(s, a)
19: cs ← cs ∪ {s′}
20: os′ ← ω
21: break
22: else . option ω already expanded
23: s′ ← s ∈ cs : os = ω . child that uses ω
24: end if
25: else . apply UCT
26: s′ ← uct(s)
27: end if
28: s← s′

29: end while
30: δ ← rollout(s′)
31: back up(s′, δ)
32: end while
33: return get action(maxo∈cr

value(o), r)

The function update values takes the return of the option o
and updates its mean µo and variance σo by calculating the
new mean and variance of all returns of that option subtype.
The second modification starts on line 13, where the algorithm
applies crazy stone if the current node has been visited less
than v times. If the node is visited more than v times, it applies
UCT similarly to O-MCTS. The crazy stone function returns a
set of weights over the set of possible options ps. A weighted
random then chooses a new option ω by using these weights.
If ω has not been explored yet, i.e., there is no child node of s
in cs that uses this option, the algorithm chooses and applies
an action and breaks to rollout in lines 17 to 27. This is similar
to the expansion steps in O-MCTS. If ω has been explored in
this node before the corresponding child node s′ is selected
from cs and the loop continues like when UCT selects a child.

We expect that by learning option values and applying crazy
stone, the algorithm can create deeper search trees than O-
MCTS. These trees are focused more on promising areas of the
search space, resulting in improved performance. Furthermore,
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we expect that by transferring option values to the next game,
the algorithm can improve after replaying games.

VI. EXPERIMENTS

In this section we describe our experiments on O-MCTS
and OL-MCTS. The algorithms are compared to the MCTS
algorithm, as described in Section II-B. All algorithms are
run on a set of twenty-eight different games in the VGDL
framework. The set consists of all the games from the first
four training sets of the GVGAI competition, excluding puzzle
games that can be solved by an exhaustive search and have no
random component (e.g. NPCs). Each game has five levels.

Firstly, we compare O-MCTS to MCTS by showing the
win ratio and mean score of both algorithms on all the games.
Secondly we show the improvement that OL-MCTS makes
compared to O-MCTS when it is allowed 4 games of learning
time. Lastly we compare the three algorithms by summing up
all the victories of all the levels of each game.

For these experiments we construct an option set which is
aimed at providing action sequences for any type of game,
since the aim here is general video game playing. Note that
since the option set is a variable of the algorithm, either a
more specific or automatically generated set of options can be
used by the algorithm as well.

The set of option types consists of one option that executes a
specific action once, an option that avoids the nearest NPC by
moving away from it, an option that moves to a movable sprite
until it is close to it (but not on it). There are options that go to
a movable sprite and options to go to a certain position in the
game. Lastly we create an option that waits until an NPC is
at a certain distance and then fires the weapon. The specifics
about the option set can be found in the original thesis [13].

For each option type, a subtype per visible sprite type is
created during the game. For each sprite, an option instance
of its corresponding subtype is created. For example, the
game zelda contains three different sprite types (excluding the
avatar and walls); monsters, a key and a portal. The first level
contains three monsters, one key and one portal. The aim of the
game is to collect the key and walk towards the portal without
being killed by the monsters. The score is increased by 1 if a
monster is killed, i.e., its sprite is on the same location as the
sword sprite, if the key is picked up, or when the game is won.
go to movable and go near movable options are created for
each of the three monsters and for the key. A go to position
option is created for the portal. One go to nearest sprite of type
option is created per sprite type. One wait and shoot option is
created for the monsters and one avoid nearest NPC option is
created. This set of options is O, as defined in Section II-C.
In a state where, for example, all the monsters are dead, the
possible option set ps does not contain the avoid nearest NPC,
go to movable and go near movable options for the monsters.

The go to . . . and go near . . . options utilize an adaptation
of the A∗ algorithm to plan their routes [14]. An adaptation
is needed, because at the beginning of the game there is no
knowledge of which sprites are traversable by the avatar and
which are not. Therefore, during every move that is simulated

by the agent, the A∗ module has to update its beliefs about
the location of walls and other blocking objects. This is
accomplished by comparing the movement the avatar wanted
to make to the movement that was actually made in game.
If the avatar did not move, it is assumed that all the sprites
on the location the avatar should have arrived in are blocking
sprites. Our A∗ keeps a wall score for each sprite type. When
a sprite blocks the avatar, its wall score is increased by one.
Additionally, to prevent the avatar from walking into deadly
sprites, when a sprite kills the avatar, its wall score is increased
by 100. Traditionally the A∗’s heuristic uses the distance
between two points. Our A∗ adaptation adds the wall score of
the goal location to this heuristic, encouraging the algorithm to
take paths with a low wall score. This method enables A∗ to try
to traverse paths that were unavailable earlier, while preferring
safe and easily traversable paths. For example in zelda, a door
is closed until a key is picked up. Our A∗ implementation
will still be able to plan a path to the door once the key is
picked up, to win the game. Note that because the games can
be stochastic, A∗ has to be recalculated for each simulation.

We empirically optimize the parameters of the algorithms
for the experiments. We use discount factor γ = 0.9, maximum
action time t = 40 milliseconds. The maximum search depth
d is set to 70, which is higher than most alternative tree search
algorithms, for example in the GVGAI competition, use.
This is possible because the search tree has a relatively low
branching factor. The number of node visits after which uct
is used, v, is set to 40. Crazy stone parameter K is set to 0.5.
For comparison, we use the MCTS algorithm provided with
the Java implementation of VGDL which employs a maximum
tree depth of 10, because the branching factor is higher.
Both algorithms have uct constant Cp =

√
2. Unfortunately,

comparing to Q-learning with options was impossible, because
the state space of these games is too big for the algorithm to
learn any reasonable behavior. All the experiments are run
on an Intel i7–2600, 3.40GHz quad core processor with 6
GB of DDR3, 1333 MHz RAM memory. In all the following
experiments on this game set, each algorithm plays each of
the 5 levels of every game 20 times.

First, we will describe the results of the O-MCTS algorithm
in comparison with MCTS. This demonstrates the improve-
ment that can be achieved by using our algorithm. The games
in this and the following experiments are ordered from left to
right by the performance of an algorithm that always chooses
a random action, indicating the complexity of the games.
Figure 3 shows the win ratio and normalized score of the
algorithms for each game. In short, the O-MCTS algorithms
performs at least as good as MCTS in almost all games, and
better in more than half.

O-MCTS outperforms MCTS in the games missile com-
mand, bait, camel race, survive zombies, firestorms, lemmings,
firecaster, overload, zelda, chase, boulderchase and eggoma-
nia winning more games or achieving a higher mean score.
By looking at the algorithm’s actions for these games, we can
see that O-MCTS succeeds in efficiently planning paths in a
dangerous environment, enabling it to do a further forward
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Fig. 3. Win ratio and mean normalized score of the algorithms per game. O-MCTS outperforms MCTS.

search than MCTS. Camel race requires the player to move
to the right for 80 consecutive turns to reach the finish line.
No intermediate rewards are given to indicate that the agent is
walking in the right direction. This is hard for MCTS, since it
only looks 10 turns ahead. O-MCTS always wins this game,
since it can plan forward a lot further. Furthermore, the rollouts
of the option for walking towards the finish line have a bigger
chance of reaching the finish line than the random rollouts
executed by MCTS. In zelda we can see that the MCTS
algorithm achieves roughly the same score as O-MCTS, but
does not win the game, since picking up the key and walking
towards the door is a difficult action sequence. We assume
that the mean score achieved by MCTS is because it succeeds
in killing the monsters, whereas O-MCTS achieves its score
by picking up the key and walking to the door. These results
indicate that O-MCTS performs better than MCTS in games
where a sequence subgoals have to be reached.

The MCTS algorithm performs better than O-MCTS in
pacman, whackamole, jaws, seaquest and plaque attack (note
that for seaquest, O-MCTS has a higher mean score, but wins
less than MCTS). A parallel between these games is that
they have a big number of sprites, for each of which several
options have to be created by O-MCTS. When the number
of options becomes too big, constructing the set of possible
options ps for every state s becomes so time-consuming that
the algorithm has too little time to build a tree and find the
best possible action. To test this hypothesis we ran the same
test with an increased computation time of 120ms and found
that the win ratio of O-MCTS increases to around 0.8 for
seaquest and plaque attack, whereas the win ratio for MCTS
increased to 0.9 and 0.7 respectively. This means that with
more action time, the difference between O-MCTS and MCTS
is reduced for seaquest and O-MCTS outperforms MCTS on
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Fig. 4. Normalized win ratio and score comparison of OL-MCTS and O-
MCTS. OL-MCTS outperforms O-MCTS by a small margin in some games.
In the games that are not shown both algorithms perform equally.

plaque attack.
Secondly, we compare OL-MCTS to O-MCTS by running

it on the same set of games. The option learning algorithm is
allowed four learning games, after which the fifth is used for
the comparisons. Figure 4 shows the performance difference
between O-MCTS and OL-MCTS on some games. For the
other games, the performance was approximately the same.
Here OL-MCTS1 shows the performance of OL-MCTS on
the first game. OL-MCTS5 shows the performance of the
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Fig. 5. Learning improvement on game bait, it shows win ratio and
normalized score. Total number of wins of the algorithms on all games.

algorithm after learning for four games.
We can see that, although the first iteration of OL-MCTS

sometimes performs a bit worse than O-MCTS, the fifth
iteration often scores at least as high, or higher than O-MCTS.
We expect that the loss of performance in OL-MCTS1 is a
result of the extra overhead that is added by the crazy stone
algorithm: a sorting of all the option values has to take place in
each tree node. The learning algorithm significantly improves
score and win ratio for the game bait. Figure 5(a) shows the
improvement in score and win ratio for this game. There are
two likely explanations for this improvement: 1. There are
sprites that kill the player, which the algorithm learns to avoid
2. The algorithm learns that it should pick up the key.

Furthermore, we can see small improvements on the games
seaquest, plaque attack and jaws, on which O-MCTS performs
worse than MCTS. Although OL-MCTS does not exceed the
score of the MCTS algorithm, this improvement suggests that
OL-MCTS is on the right path of improving O-MCTS.

A. Results

Summarizing, our tests indicate that on complex games O-
MCTS outperforms MCTS. For other games it performs at
least as well, as long as the number of game sprites is not too
high. The OL-MCTS algorithm can increase performance for
some of the games, such as bait and plaque attack. On other
games, little to no increased performance can be found.

An overview of the results is depicted in Figure 5(b), which
shows the sum of wins over all games, all levels. It shows
a significant (p < 0.05) improvement of O-MCTS and OL-
MCTS over MCTS. There is no significant difference between
performance of OL-MCTS over O-MCTS, although our results
suggest that it does improve for a subset of the games.

VII. CONCLUSIONS AND FUTURE WORK

From the experimental results we may conclude that the O-
MCTS algorithm almost always performs at least as well as
MCTS. It excels in games with both a small level grid or a
small amount of sprites and high complexity, such as zelda,
overload and eggomania. Furthermore, O-MCTS can look
further ahead than most tree searching alternatives, resulting
in a high performance on games like camel race, in which
reinforcement is sparse. An inherent advantage of having deep

search trees is that the probability of an promising option
not finishing reduces. We confirm our hypothesis that by
using options O-MCTS can win more games than MCTS. The
algorithm performs worse than expected in games with a high
amount of sprites, since the size of the option set becomes so
large that maintaining it takes a lot of time, leaving too little
time for tree building. Over all twenty-eight games, O-MCTS
wins more games than MCTS.

The results of OL-MCTS indicate that it is possible to learn
about which options work better, meaning that in the future
it should be possible to completely remove infeasible options
that have low expected rewards from the option set. We expect
that this could reduce the computation time O-MCTS needs
to construct and check all the options. However, the algorithm
can be further improved.

Furthermore, more research should be done in the influence
of the option set. The A∗ algorithm could be replaced by a
simpler algorithm, such as Enforced Hill Climbing [15]. The
learning algorithm could be improved by calculating the option
values differently. An alternative method can use discounting
in order to prioritize more recent observations.
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Abstract—Many artificial intelligences (AIs) are randomized.
One can be lucky or unlucky with the random seed; we quantify
this effect and show that, maybe contrarily to intuition, this
is far from being negligible. Then, we apply two different
existing algorithms for selecting good seeds and good probability
distributions over seeds. This mainly leads to learning an opening
book. We apply this to Phantom Go, which, as all phantom games,
is hard for opening book learning. We improve the winning
rate from 50% to 70% in 5x5 against the same AI, and from
approximately 0% to 40% in 5x5, 7x7 and 9x9 against a stronger
(learning) opponent.

I. INTRODUCTION

A. Offline learning in games

Offline learning in games can be e.g. endgame table building
[1], opening book construction by self-play [2], or parameter
estimation [3]. We propose the use of Random-Seed-portfolios,
which consists in optimizing the probability distribution on
random seeds, for offline learning in games for which random-
ized AIs perform well. This approach will essentially, though
not only and not explicitly, learn at the level of the opening
book. Learning opening books is particularly hard in partially
observable games, due to the difficult belief state estimation;
therefore, this recent approach by random seeds is particularly
suitable in this case.

The random seeds approach has already been proposed
for the game of Go [4], [5], but the present paper is, to
the best of our knowledge, the first application to partially
observable games, and our resulting algorithm outperforms
by far the original algorithm, which is at the current top level
in Phantom Go, including its traditional board sizes. This is
mainly obtained through opening book learning - which is a
hard task in partially observable games.

B. Randomized artificial intelligences

1) Why randomizing AIs.: There are games in which opti-
mal policies are randomized and, beyond that, in many cases

the state of the art is made of randomized algorithms, in
particular since the advent of Monte Carlo Tree Search [6],
[7]. Randomized AIs are also required when the AI should be
robust to “overfitting” by an opponent - i.e. when we do not
want an opponent to be able to learn, by repeated games, a
simple winning strategy. A deterministic AI is certainly not
suitable in such a case, e.g. for playing on a server or for the
pleasure/education of a human opponent. Still, we point out
that our approach makes sense in terms of pure performance
against the baseline algorithms.

2) The original Monte Carlo approach in games.: The
Monte Carlo approach in games goes back to [8]. The basic
idea is to evaluate a position using random simulations. The
value at a state s is obtained by averaging the result of
hundreds of games played randomly from this state s. This is
compliant with partially observable games by randomly sam-
pling the hidden parts of the state. With ad hoc randomization,
this approach is the state of the art in Phantom Go [9].

3) Improvements of the original Monte Carlo approach.:
The original Monte Carlo method for games has been vastly
improved [10], [11]. For fully observable games it was
outperformed by Monte Carlo Tree Search [6], which adds
a tree search to the Monte Carlo evaluation principle. For
fully observable puzzles (one player games), nested Monte
Carlo often outperforms Monte Carlo [12], [13]. In partially
observable games with large number of hidden states, Monte
Carlo remains at the top of game programming [14], [15].

C. Boosting randomized artificial intelligences and learning
opening books

Randomized AIs can be seen as random samplers of deter-
ministic policies. A random seed is randomly drawn, and then
a deterministic AI, depending on this seed, is applied. The
choice of the random seed is usually considered of negligible
importance. However, a recent work [16] has shown that
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random seeds have an impact, and that the bias inherent to
the use of a given randomized AI, which has an implicit
probability distribution on random seeds, can be significantly
reduced by analyzing the impact of random seeds. We here
extend this work to a more challenging case, namely Phantom
Go.

Section II describes Phantom Go, our testbed for experi-
ments. Section III describes our approach for boosting random
seeds. Section IV presents experimental results.

II. PHANTOM GO

The game of Phantom Go is a two-player game with hidden
information. It consists in playing Go without seeing the other
player’s moves. Each player does not see the board of the other
player. In addition, there is a reference board that is managed
by a referee and that the players do not see either. On each
player’s turn, the player proposes a move to the referee. If
the move is legal on the reference board, it is played on the
reference board and it is the other player’s turn. If the move
is illegal on the reference board, the referee tells the player
that the move is illegal and the player is asked to play another
move. The referee is in charge of maintaining the reference
board and of telling illegal moves to the players. The game is
over when the two players pass.

Monte Carlo methods have been used in Phantom Go since
2005. The resulting program plays at the level of strong
human Go players. Monte Carlo Phantom Go was one of
the early success of Monte Carlo methods in Go and related
games. The principle of Monte Carlo Phantom Go is to
randomly choose a “determinization” (i.e. a filling of the
unknown parts of the state space) consistent with the previous
illegal moves before each playout. For each possible move,
the move is simulated, followed by a determinization and
a random playout. Thousands of such determinizations and
playout sequences are played for each move and the move
with the highest resulting mean is played.

This simple method has defeated more elaborate methods
using Monte Carlo Tree Search in the former computer
Olympiads. Using a parallelization of the algorithm on a
cluster our program won five gold medals and one silver
medal during the last six computer Olympiads. When winning
the silver medal, the program lost to another program using
the same method. The program also played three strong Go
players in exhibition matches during the 2011 European Go
Congress and won all of its three games.

III. RANDOM SEEDS AND THEIR BOOSTING

A. Seeds in games

We consider a randomized artificial intelligence (AI),
equipped with random seeds. Our experiments will be per-
formed on a Monte Carlo approach for Phantom Go, though
the method is generic and could be applied to any randomized
algorithm such as those cited in Section I-B.

We can decide the seed - and when the seed is fixed, the AI
becomes deterministic. The original (randomized) algorithm

Algorithm 1 The BestSeed algorithm for boosting a ran-
domized AI. There is a parameter K; K greater leads to
better performance but slower computations. The resulting AI
is deterministic, but it can be made stochastic by random
permutations of the 8 symmetries of the board.
Require: K, and a randomized AI.

1: for i ∈ {1, . . . ,K} do
2: for j ∈ {1, . . . ,K} do
3: Play a game between
• an AI playing with seed i as Black;
• an AI playing with seed j as White.

4: Mi,j ← 1 if Black wins, 0 otherwise
5: end for
6: end for
7: i0 ← argmaxi∈{1,...,K}

∑K
j=1Mi,j

8: j0 ← argminj∈{1,...,K}
∑K
i=1Mi,j

9: return The (deterministic) AI using seed i0 when playing
Black and j0 when playing White.

can be seen as a probability distribution over these determin-
istic AIs.

A Random-Seed-portfolio (RS-portfolio) consists in opti-
mizing the probability distribution on random seeds. Such an
algorithm has been proposed in [16]. We recall below the two
algorithms they propose, namely Nash and BestSeed. In both
cases, the learning of the probability distribution is based on
the construction of a K×K binary matrix M , where Mi,j = 1
if Black with random seed i wins against White with random
seed j, and Mi,j = 0 otherwise. This matrix is the learning set;
for validating our approach in terms of performance against the
original randomized algorithm, we use random seeds which are
not in this matrix, and distributed as in the original randomized
algorithm.

B. Strategies for choosing seeds

We describe here two methods for choosing a probability
distribution on rows i ∈ {1, 2, . . . ,K} and a probability
distribution on columns j ∈ {1, 2, . . . ,K}. These probability
distributions are then used as better probability distributions
on random seeds at the beginning of later games.

1) BestSeed approach.: BestSeed is quite simple; the prob-
ability distribution for Black has mass 1 on some i such
that

∑
j∈{1,...,K}Mi,j is maximal. We randomly break ties.

For White, we have probability 1 for some j such that∑
i∈{1,...,K}Mi,j is minimum. The BestSeed approach is

described in Algorithm 1. This method is quite simple, and
works because

lim
K→∞

1

K

K∑
j=1

Mi,j

(resp. lim
K→∞

1

K

K∑
j=1

Mj,i)

is far from being a constant when i varies.
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2) Nash approach.: This section describes the Nash ap-
proach. It is more complicated than the BestSeed approach, but
it is harder to exploit, as detailed in the experimental section.
First, we introduce constant-sum matrix games, and then we
explain how we use them for building portfolios of random
seeds.

a) Constant-sum matrix games: We consider constant-
sum matrix games; by normalizing matrices, we work without
loss of generality on games such that the sum of the rewards
for player 1 and for player 2 is one. Consider the following
game, parametrized by a K × K matrix M . Black plays i.
White is not informed of Black’s choice, and plays j. The
reward for Black is Mi,j and the reward for White is 1−Mi,j .

It is known [17], [18] that there exists at least one Nash
equilibrium (x, y) such that if Black plays i with probability
xi and White plays j with probability yj , then neither of
the players can improve its expected reward by changing
unilaterally his policy. More formally:

∃(x, y), ∀(x′, y′), x′tMy ≤ xtMy ≤ xtMy′,

where x, y, x′ and y′ are non-negative vectors summing to
one. Moreover, the value v = xtMy is unique - but the pair
(x, y) is not necessarily unique.

It is possible to compute x and y in polynomial time,
using linear programming [19]. Some faster methods provide
approximate results in sublinear time [20], [21]. Importantly,
these fast approximation algorithms are mathematically proved
and do not require all the elements of the matrix to be available
- only O(K log(K)/ε) elements in the matrix have to be
computed for a fixed precision ε > 0 on the Nash equilibrium.

b) Nash portfolio of random seeds: Consider (x, y) the
Nash equilibrium of the matrix game M , obtained by e.g.
linear programming. Then the Nash method uses x as a
probability distribution over random seeds for Black and uses
y as a probability distribution over random seeds for White.
The algorithm is detailed in Algorithm 2. We also tested
a sparse version, which gets rid of pure strategies with low
values. The algorithm depends on a parameter α, and it is
detailed in Algorithm 3.

C. Criteria

We now give two performance criteria, namely performance
against the baseline (which is the original randomized algo-
rithm) and performance against an agent which can choose its
seed with perfect rationality among a finite randomly drawn
set of a given cardinal - the second criterion is harder, and
simulates an opponent who has “learnt” how to play against
us by optimizing his seed.

1) Performance against the baseline.: The first criterion is
the success rate against the original AI, with its randomized
seed. This is precisely the criterion that is optimized in
BestSeed; but we perform experiments in cross-validation,
i.e. the performance obtained by BestSeed and displayed in
Section IV is the performance against seeds which were not
used in the learning phase.

Algorithm 2 The Nash method for boosting a randomized AI.
There is a parameter K; K greater leads to better performance
but slower computations. The resulting AI is stochastic. It is
outperformed by BestSeed in terms of winning rate against
the original (randomized) algorithm, but harder to overfit.
Require: K and a randomized AI.

1: for i ∈ {1, . . . ,K} do
2: for j ∈ {1, . . . ,K} do
3: Play a game between
• an AI playing with seed i as Black;
• an AI playing with seed j as White.

4: Mi,j ← 1 if Black wins, 0 otherwise
5: end for
6: end for
7: Let (x, y) be a pair of probability distributions over
{1, . . . ,K}, forming a Nash equilibrium of M .

8: return The (stochastic) AI using seed
• i0 randomly drawn with probability distribution x

when playing Black
• and j0 randomly drawn with probability distribution
y when playing White.

Algorithm 3 The SparseNash method for boosting a ran-
domized AI. Compared to Algorithm 2, there is an additional
parameter α.
Require: K α and a randomized AI.

1: for i ∈ {1, . . . ,K} do
2: for j ∈ {1, . . . ,K} do
3: Play a game between
• an AI playing with seed i as Black;
• an AI playing with seed j as White.

4: Mi,j ← 1 if Black wins, 0 otherwise
5: end for
6: end for
7: Let (x, y) be a pair of probability distributions over
{1, . . . ,K}, forming a Nash equilibrium of M .

8: xmax ← max1≤i≤K xi
9: ymax ← max1≤i≤K yi

10: For all i ∈ {1, . . . ,K}, if xi < αxmax, then xi ← 0.
11: For all i ∈ {1, . . . ,K}, if yi < αymax, then yi ← 0.
12: x← x/

∑K
i=1 xi

13: y ← y/
∑K
i=1 yi

14: return The (stochastic) AI using seed
• i0 randomly drawn with probability distribution x

when playing Black
• and j0 randomly drawn with probability distribution
y when playing White.
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Fig. 1: Winning rate for Phantom Go 5x5 (left), 7x7 (middle) and 9x9 (right). Top: BestSeed; bottom: Nash. X-axis: K such
that we learn on a K × K matrix M . Y-axis: winning rate. The training is performed on a K × K matrix. The testing is
performed on K ′×K ′ strategies, i.e. K ′ strategies for Black and K ′ strategies for White. K ′ = 1 corresponds to a randomized
seed - this is therefore the original randomized AI, and performance greater than 50% for K ′ = 1 means that we outperformed
the original randomized AI. K ′ > 1 corresponds to the best performing AI, for each color, among K ′ randomly drawn seeds;
this is a very difficult opponent, who can try K ′2 strategies and keep only the best of their results. The black dashed curve
refers to a winning rate= 50%. The experiments are repeated 1000 times. The standard deviations are shown in the plots.

2) Performance against an opponent who learns.: The
second criterion is the success rate against an opponent who
plays with the original randomized AI, but can test K ′

randomly drawn random seeds and can select the best of these
seeds. This modelizes the case in which the opponent can
choose (perfect choice) one policy among K ′ policies. We
here consider K ′ policies, each of them obtained by fixing
the random seed to some random value. We do this choice
among K ′ policies for Black, and K ′ policies for White as
well, so that we have indeed the worst performance against
K ′ ×K ′ policies. This becomes a very tough criterion when
K ′ increases - our opponent can basically test (K ′)2 openings
and choose the one for which we are the weakest.

Obviously, all experiments in the present paper are per-
formed with separate seeds for the learning and the validation
experiments, so that no overfitting can explain the positive
results in Section IV.

IV. EXPERIMENTAL RESULTS

We perform experiments on the Phantom Go testbed. Our
randomized AI is Golois [14], [15]. In all our results, we
use cross-validation; we test performance against seeds which
were not used during the learning phase. We consider values of
K ≤ 400. We use the two criteria described in Section III-C,
i.e. winning rate against the original randomized algorithm
and worst of the winning rates against K ′ ×K ′ deterministic

policies obtained as described in Section III-C2. All presented
winning rates are the average between the winning rate as
Black and the winning rate as White.

We observe in Figure 1 (also Table I):

• The BestSeed approach clearly outperforms the original
method in 5x5, 7x7 and 9x9. The performance is excellent
in 5x5, greater than 71%; around 67% in 7x7; it is still
good in 9x9 (54%).

• The Nash approach reaches 64% in 5x5, 58% in 7x7. This
is already reasonably good for a very randomized game
such as Phantom Go; in partially observable games like
Phantom Go, Poker, or many card games, several games
are usually required for knowing the best among two
players. In 9x9, we got only 52% - not very impressive.

• The SparseNash approach outperforms BestSeed in terms
of success rate against the original randomized AI, in
5x5 (Figure 2 (top), summarized in Table I). Results are
however disappointing on larger board sizes (Figure 2
(middle and bottom); also presented in Table I).

These two methods were tested directly on the original al-
gorithm, without using the symmetries of the game or any
prior knowledge. All results are obtained with proper cross-
validation. Standard deviations are shown on figures and are
negligible compared to deviations from 50%. The approach
has a significant offline computational cost; but the online
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TABLE I: Winning rate for Phantom Go 5x5, 7x7 and 9x9 with K = 380 (cf. Figure 1). α is the sparsity parameter (cf.
Algorithm 3). The experiments are repeated 1000 times. The standard deviations are shown after ±. K ′ = 1 corresponds to the
original algorithm with randomized seed; K ′ = 2 corresponds to the original algorithm but choosing optimally (after checking
their performance against its opponent) between 2 possible seeds, i.e. it is guessing, in an omniscient manner, between 2 seeds,
each time an opponent is provided. K ′ = 4, K ′ = 8, K ′ = 16 are similar with 4, 8, 16 seeds respectively; K ′ = 16 is a very
strong opponent for our original algorithm (our winning rate is initially close to 0), but after Nash seed learning we get results
above 40% in 5x5, 7x7 and 9x9.

Board Method Winning rate (%)
K′ = 1 K′ = 2 K′ = 4 K′ = 8 K′ = 16

5x5

Baseline 50 30.5± 0.9 12.5± 0.7 0.5± 0.2 0.0± 0.0
BestSeed 70.7± 1.0 49.8± 1.1 23.4± 0.9 4.8± 0.4 0.2± 0.1

Nash 63.8± 0.3 56.1± 0.2 50.3± 0.2 45.4± 0.2 41.3± 0.2

Sparse
α = 0.500 68.3± 0.6 56.4± 0.6 43.9± 0.5 32.8± 0.4 24.4± 0.3
α = 0.750 74.7± 0.8 57.7± 0.9 36.7± 0.9 20.2± 0.6 9.0± 0.4
α = 1.000 76.2± 0.9 55.2± 1.1 31.9± 1.0 8.7± 0.6 0.9± 0.2

7x7

Baseline 50 23.0± 0.9 8.5± 0.6 0.5± 0.2 0.5± 0.2
BestSeed 66.5± 1.0 44.1± 1.1 19.9± 0.9 3.9± 0.4 0.1± 0.1

Nash 58.3± 0.2 52.8± 0.2 48.1± 0.2 44.2± 0.1 41.1± 0.1

Sparse
α = 0.500 59.6± 0.3 51.1± 0.3 44.0± 0.2 38.7± 0.2 33.2± 0.2
α = 0.750 58.7± 0.6 44.1± 0.6 30.9± 0.5 21.4± 0.4 14.5± 0.3
α = 1.000 56.4± 1.1 33.0± 1.0 13.7± 0.8 1.7± 0.3 0.0± 0.0

9x9

Baseline 50 27.0± 1.0 4.0± 0.4 1.0± 0.2 0.0± 0.0
BestSeed 54.4± 1.1 32.8± 1.0 12.2± 0.7 2.8± 0.4 0.1± 0.0

Nash 51.9± 0.1 48.4± 0.1 45.6± 0.1 43.5± 0.1 41.6± 0.1

Sparse
α = 0.500 52.2± 0.3 45.3± 0.2 39.4± 0.2 35.3± 0.2 31.1± 0.2
α = 0.750 52.4± 0.6 38.6± 0.5 27.6± 0.4 18.4± 0.4 12.5± 0.3
α = 1.000 52.9± 1.1 27.3± 1.0 8.2± 0.6 1.2± 0.2 0.1± 0.1

computational overhead is zero. The offline computational
overhead is K2 times the cost of one game, plus the Nash
solving. The Nash solving by linear programming is negligible
in our experiments. For large scale matrices, methods such
as [20] should provide much faster results as the number of
games would be O(K log(K)/ε2) instead of K2 for a fixed
precision ε.

V. CONCLUSIONS

We tested various methods for enhancing randomized AIs
by optimizing the probability distribution on random seeds.
Some of our methods are not new, but up to now, they
were only tested on a fully observable game, without opening
book, whereas in fully observable games building an opening
book is far less a challenge. We work on Phantom Go, a
very challenging problem, with the program which won most
competitions in recent years. The three tested methods provide
results as follows:
• With BestSeed, we get 71%, 67%, 54% of success

rate against the baseline in 5x5, 7x7 and 9x9, just by
“managing” the seeds.

• The Nash approach provides interesting results as well,
in particular strongly boosting the performance against
stronger opponent such as K ′ = 2, K ′ = 4, K ′ = 8,
K ′ = 16, reaching 40% (in 5x5, 7x7 and 9x9) whereas
our original algorithm was close to 0% winning rate for
K ′ = 16. This means that the opening book we have
learnt is robust against stronger opponents than the ones
used for the self-play involved in our learning.

• Using the Nash approach with sparsity, with the exponent
α = .75 recommended in earlier papers on sparsity
[22], maybe not the best for each case separately, but
outperforming the baseline in all cases.

The method has no computational overhead online - all the
computational cost is an offline learning. As a consequence,
the method looks like a free bonus: when your randomized AI
is ready, apply Algorithm 2 and get a better AI. The BestSeed
method is the best performing one, but it can be overfitted.
The Nash approach is less efficient against the original AI,
but more robust, i.e. more difficult to overfit.

Further work

We propose the following further works:
• The approach is quite generic, and could be tested on

many games in which randomized AIs are available. For
the BestSeed approach, the game does not have to be a
two-player game.

• Our work does not use any of the natural symmetries
of the game; this should be a very simple solution for
greatly improving the results; in particular, it would be
much harder to overfit BestSeed if it was randomized by
the 8 classical board symmetries.

• Mathematically analyzing the approach is difficult, be-
cause we have no assumption on the probability distribu-
tion of EjMi,j for a randomly drawn seed i - how many i
should we test before we have a good probability of hav-
ing a really good one? Bernstein inequalities [23], [24],
[25] for the BestSeed approach, and classical properties
of Nash equilibria for the Nash approach, provide only
preliminary elements.

• Computing approximate Nash equilibria (using [20] or
[21]) should strongly reduce the offline computational
cost. The computational cost was not a big deal for the
results presented in the present paper, but performance
might be much better with K larger. Approximate Nash
equilibria do not need the entire K × K matrix; they
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only sample O(K log(K)/ε2) elements of the matrix for
a precision ε.

• This last further work opens some problems also in the
algorithmic theory of Nash equilibria. We have done the
present work in a not anytime manner; we know K a
priori, and we do not have any approximate results until
the K2 games are played. However, we might prefer not
to choose a priori a number K of games, and get anytime
approximate results. To the best of our knowledge, [20],
[21] have never been adapted to an infinite set of arms.
Also, adversarial bandit approaches such as Exp3 [21]
have never been parallelized. [20] is parallel, but possibly
harder to adapt in an anytime setting.
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Fig. 2: Winning rate for Phantom Go 5x5 (top), 7x7 (middle) and 9x9 (bottom) using sparse strategy with different sparsity
parameter α. X-axis: parameter K (size of the learning set). Y-axis: performance in generalization against the original algorithm
(K ′ = 1) and against the learning opponent (see Section III-C2; K ′ = 2 to K ′ = 16).
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Abstract— User activity in five mobile games is found to be 

accurately described by stochastic processes related to recurrent 
event models in survival analysis. We specify four simple 
parametric models and methods to fit them to data which specify 
this process within day accuracy in the individual user level. This 
model implies commonly used population level retention metrics: 
retention, rolling retention and lifetime retention. Furthermore, 
modelling aids in understanding the underlying phenomena 
generating these metrics, which is verified visually in five diverse 
mobile games. The model assists in obtaining analytical insight 
into frequency and longevity of product use and precipitates 
predictive modelling by forecasting their evolvement over time. 

I. INTRODUCTION 

A. User Statistics in the Industry 

Recent developments in the gaming industry have made 
analytics a core component of the business model. The past 
decade has seen the emergence of ubiquitous mobile devices, 
digital delivery platforms and multiple revenue models. One of 
the revenue models has become predominant in mobile games: 
games that are available for free now represent the majority of 
titles and revenues in all major mobile digital delivery 
platforms. Majority of these games make money by displaying 
advertisements, offering in-app purchases or having additional 
premium versions. This economy of zero cost bundled with 
paid extras has also been titled Freemium, a portmanteau of 
free and premium. The goal in this economy is to obtain 
massive scale with the goal of converting some of the fickle 
users into paying customers [1]. Analytical insight into the user 
base is central in achieving this goal, and one of its most 
important applications is optimizing for both longevity and 
frequency of user engagement. 

The gaming industry uses quantitative measurements called 
metrics to describe the average use case and provide high level 
aggregate statistics for business and development decisions. 
There are several established metrics in the gaming industry, 
with retention metrics considered the principal metric [1] since 
without frequency and longevity of product use there is no 
potential for successful monetization. Retention is often 
tracked with the aim of following certain rules-of-thumb in the 
development stage, unsatisfactory retention is thought to be a 
signal of low quality and predict insufficient monetization in 
the freemium model. Retention measurements are therefore 
used in the development stage to refine the game by guiding 
successive iterations of develop-release-measure cycles. 

In the academia, various statistics have been derived and 
analyzed from past gaming data.  There have been studies 
where the focus has been total time played [2-3], with Weibull 

distribution providing a good fit. Wide applicability was 
reported in [2], where the authors fitted the Weibull 
distribution to over 3000 games in Steam, and used kernel 
archetype analysis to distinguish four prototypical total time 
played distributions. Session length and inter arrival times are 
another such quantities, often analyzed in combination with 
multiple other game statistics and fitted with the Weibull 
distribution [4-6], with one of the earliest studies using 
Exponential distribution for session lengths and heavy-tailed 
distribution for inter arrival times [7]. Player churn has been 
analyzed previously by training general purpose machine 
learning methods on game features and aggregate session 
statistics [8-9] or multiple arbitrary event frequencies [10] to 
predict churn or first purchase. Player engagement has been 
treated as a regression problem on a vector of game features to 
dynamically adjust the game to optimize session level retention 
[11] or improve game design [12]. Empirical distributions of 
various engagement metrics were studied in [13] and short 
term engagement metrics were found to correlate to other short 
term but less so to long term engagement metrics. In contrast to 
game measurements, life circumstances and personal 
motivations have also been investigated as a predictor of 
engagement [14-15]. 

Tracking user retention is both important and difficult. 
Because majority users in mobile games exhibit very short 
lifetimes and the highly important but small engaged minority 
very long lifetimes, gathering enough data to make reliable 
deductions over long timespans is a challenge. Interest in long-
term retention may require spending thousands of dollars at the 
acquisition cost of 1$ per user to obtain a small cohort of long 
term users and then waiting an extended period of time to be 
able to calculate retention metrics. Furthermore, the data is 
based on an environment of incomplete knowledge since one 
cannot observe the event of user quitting, but merely lack of 
activity on the user’s part. This makes deductions about the 
user base inherently approximative and uncertain. 

To our knowledge, previous research has not investigated 
the user process as a whole. In contrast, popular retention 
metrics for example are based on the population of user 
processes over their lifetimes. Furthermore, previous research 
has not been conducted in the setting where the user process is 
still ongoing and one cannot assume last session was the final 
one. In data gathered from users with a long history the data 
may be processed with an assumption that the users have quit, 
which is analytically convenient but does not reflect reality in 
the industry. One can afford to wait months to gather data for 
research purposes, but in the industry one needs to know what 
effect changes had before starting the next development cycle. 
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B. Retention Metrics 

There is no generally settled upon terminology for different 
retention metrics. We use the terms retention, rolling retention 
and lifetime retention for the most popular metrics. They are 
defined as follows: 

• X’th day retention is defined as the number of users 
who were playing X calendar days from the day they 
started, divided by the total number of users who started 
that day. 

• X’th day rolling retention is the percentage of users who 
are active X calendar days from the day they started, 
where active user is defined as a user who is playing 
either on that day or any day after it. 

• X’th day lifetime retention is the percentage of users 
who played X or more days in total given the day they 
started. 

Each retention metric is defined for a cohort of users 
starting the same day and consists of one measure for each day. 
For example, if 1000 users start on Monday and of those 143 
users are playing on Sunday, 6-day retention is then 14.3%. If 
we look at data available for the entire month to see that 267 
users were playing at or after that Sunday, rolling retention for 
that day is 26.7%. Retention is commonly used in iterative 
development cycles to evaluate the product quality and identify 
weak points in game content. Rolling retention aims to quantify 
the number of users who have not quit the game, but it has the 
weakness that values inherently depend on the number of days 
we can observe up to the current day. Some players will return 
in the future but they are interpreted as having quit in the 
calculation of this metric. Same problem applies to lifetime 
retention. 

C. Research Goal 

This motivates mathematical modelling of user engagement 
with three-fold aims: 

1. Understanding user engagement through the 
underlying model components and parameters. 

2. Accuracy and extrapolation of metrics based on few 
samples and limited observation window. 

3. Robust comparison of game versions, user cohorts 
within the game and variables affecting engagement. 

We present a parametric model which is able to describe 
and predict user activity data binned to day accuracy at the 
level of a single user, incorporating ambiguity inherent in user 
disengagement. Having been fitted to observed data, this model 
implies long-term player behavior and can be used in analytical 
and predictive modelling of population level retention metrics.  

The model developed is to our knowledge novel in the 
gaming industry and was found to categorize certain stochastic 
processes and be closely related to models used in survival 
analysis with a peculiar censoring setup. To foster 
collaboration we utilize the problem setting from that field. To 
evaluate the applicability of the model, we consider five mobile 
games with both millions of players and in-development games 
using periodic user acquisition tests. 

II. DATA SET 

A. Mobile Games 

We consider the user data produced by the following five 
mobile games developed by Tribeflame, Ltd.: 

TABLE I.  MOBILE GAMES USED IN THE STUDY 

Game Description Genre 

Benji Bananas 
“Exciting and fun physics based 

adventure!” 
Endless 
Runner 

Benji Bananas 
Adventures 

“Everyone's favorite swinging 
monkey returns for more action in 

the jungle.” 

Arcade 
Platformer 

Mad-Croc 
“Mad Croc is an endless runner 

where you control the fierce Mad 
Croc crocodile!” 

Endless 
Runner 

Hipster Mazea 
“Help this unique sheep in his quest 

of finding the next big thing!” 
Brain Puzzle 

Dragon 
Fortressa 

“Build your epic fortress and make 
it invincible!” 

Combat City 
Builder 
a. In Development 

The last two titles are under development whereas Mad-
Croc was launched in December 2015. Both games in the Benji 
franchise are well-established; the sequel Benji Bananas 
Adventures launched May 2014 and the original Benji Bananas 
in 2013 varying by platform. We do not have exact data on 
every single unique player over all versions and days for the 
Apple App Store and Window store; the number of players is 
estimated at the time of collection 19.2.2015 as follows: 

TABLE II.  NUMBER OF PLAYERS 

Game 
Google 

Play 
Apple Store Windows 

Store 
Total 

Benji Bananas 53 000 000 8 000 000 1 100 000 62 000 000 

Benji Bananas 
Adventures 

9 000 000 2 000 000 200 000 11 000 000 

Mad-Croc 100 000 40 000  140 000 

Hipster Mazea 3600   3 600 

Dragon 
Fortressa 

11 000   11 000 

B. Data Set and Limitations 

The data we use is based on Tribeflame’s in-house logging 
framework which sends custom events at pre-defined actions in 
the game. It stores these events locally as they occur and sends 
them in batches. However, the data suffers from various issues 
which can lead to systematic biases as abnormally long user 
processes or idling periods: 

1. The user id is not unique: since user device generates 
the user id two ids may collide. In later versions long 
user id leads to this being moderately rare. 

2. Events may not be sent: if user device is offline long 
periods the local message buffer may overflow, leading 
to missing events in-between. This again is quite rare. 

3. Final events are not sent: when user quits the game for 
good through ‘home’-button, the logging framework 
has no chance to send accumulated events. This 
censors the ending time of the very last session. 
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Because of the non-unique id problem caused by short id in 
early versions combined with immense popularity of Benji 
Bananas and a hard drive failure affecting Benji Bananas 
Adventures, their data is constrained to begin at 2015-09-01. 
Mad-Croc data begins at release 2015-12-09, Hipster Maze in-
development data since 2015-06 and Dragon Fortress in-
development data since 2015-09. The data for Dragon Fortress 
is recorded up to 2015-12-30 and the others to 2016-02-19. 
Data is filtered to exclude the users (~3-7%) where it can be 
verified first or second issue occurred. These problems can be 
mitigated by changes to the logging framework, and are 
irrelevant to the applicability of the model. 

In our study, we focus on two events sent by the 
framework: session_start and session_end. The session_start 
message is sent when user brings the game to foreground by 
starting the game or resuming the running game. The 
session_end message is sent when the game is put to 
background by pressing the ‘home’-button. Both events contain 
the running session number and timestamp. Our data in stacked 
format consists of the following tuples: 

user id session number timestamp start timestamp end 

Fig. 1. Continuous timeline 

This data is visualized in Fig. 1. as a timeline for five 
players, consisting of intervals of activity and inactivity with 
vertical ticks denoting day limits in the picture. 

Fig. 2. Discrete timeline 

Because we are interested in retention, we may bin the data 
to days as in Fig. 2. by setting each day active or inactive based 
on whether user played that day. In the picture each day is 
denoted by an interval of activity between midnights when 
there was a session within that day. Dashed vertical ticks 
denote day limits and solid vertical ticks months. Retention is 
then computed by summing vertically over all players to obtain 
number of players playing each day or horizontally to obtain 
total lifetimes. 

Note that the data set is right-censored. Given a cohort of 
users who started playing on the same day 0 we have data from 
days {0,1,2,…,N} only up to the current day N. For each subject 
we have only N+1 days of data for a given observation 
window. Indexing starts at 0 for the convenience of speaking of 
N’th day retention, which is 100% for day 0 by definition. 
Since retention is based on number of days passed, it is also 
possible to combine users from different days into a single 
cohort. One use case is pooling together users from a single 
acquisition spanning one week. In this case the number of days 
observed up to the censoring limit Ni varies for each user. A 
practical model needs to be able to robustly deal with censoring 

where users continue playing after N+1 or Ni +1 days without 
having data to describe the behavior thereon. 

C. Data Set Modelling 

Intuitive understanding of the user process is assisted by 
considering a theoretical player who probabilistically produces 
the observed data by being in one of three states: playing, 
idling and gone. The continuous process is fully specified, 
given number of sessions n, by an alternating sequence of 
durations Pi in playing state and durations Ii+1 in idling state 
with a sequence r=(I1, P1, I2, P2,…, Pn): 

Fig. 3. Continuous state transition process 

Since the continuous model in Fig. 3. has additional 
components without implications to retention, such as number 
of sessions on a given day or the length of a session, we 
discretize the data functionally performing a type of filtering. 
The process s⊆ 2ℕ is specified by a sequence of 1s or 0s corresponding to playing and not playing. In the playing 
state, the player is active and engaged with the game (1=݅ݏ) 
whereas in the idling state the player is active but is not playing 
the game (0=݅ݏ) at that time. In the gone state, the player has 
quit the game for good and will never return (00=݅≤ݏ…): 

Fig. 4. Discrete state transition process 

Notice that while there are three states in Fig. 4, in reality 
the state producing the final interval is latent variable since 
both gone and idling produce sequence of 0s. This is 
demonstrated in the conceptual diagram in Fig. 5. One then 
wishes to find a probabilistic model that correctly specifies a 
probability ܲ for every discrete activity sequence ݏ in the 
sample space 2ℕ and which can be robustly fit to data because 
this would imply aggregate statistics. 

Fig. 5. Conceptual state transition diagram with a latent state 

2016 IEEE Conference on Computational Intelligence and Games (CIG’16) 64



 

In the continuous case, a natural approach is to model the 
distribution of duration each state lasts, or the survival of the 
state until time t when a transition occurs. The duration of each 
session, here duration Pi of the playing state, and the total time 
played, i.e. total time ∑iPi in playing state, is known follow 
Weibull distribution [2-6]. We verified this to be the case, and 
in our data even the session inter arrival times, here duration Ii 
of the idling state, follow Weibull distribution in the aggregate 
for most of their domain. However, we found that there is a 
strong and complicated dependence of idling times on previous 
player history and time. Based on preliminary experiments, a 
simple process generating independent and identically 
distributed (i.i.d.) Weibull idling durations Ii alternating with 
i.i.d. Weibull session durations Pi does not describe the player 
process. This is because modelling underlying dependence is 
needed for such process to aggregate to correct statistics. 

The observation that duration of each state and total time in 
playing state is Weibull distributed is reasonable, since time in 
a state is akin to survival and Exponential and Weibull 
distributions are known to be the most widely applicable 
distributions in survival analysis [16]. User playing a mobile 
game over the length his or her engagement could be expected 
to diverge from a regular process, so complete independence of 
idles would have been remarkable. 

The discrete process measures essentially the same 
distributions on a coarser scale with fewer dependence 
structures present. We investigated the assumption that total 
number of days played is generated by a process similar to total 
time played since they are quite closely related. Furthermore, 
one may assume each user goes to idling state by sleeping at 
midnight by the latest and then idles thereon to play at some 
time in the future. This again would resemble the inter session 
idling process and be approximately Weibull underneath. We 
formed the discrete model by specifying the following two 
component distributions where H(t) denotes the player history 
up to the previous day played at time t: 

• P(Days Played = k | H(t)) 

• P(Days to Next = k | H(t)) 

First distribution specifies the total number of days played 
over k=1,2,… and the second the number of days to next day 
played over k=1,2,… In general these distributions are not i.i.d, 
but may have a complex dependence on previous history H(t). 
With these components it is possible to give a generative model 
specifying the probability of any user activity sequence up to 
any future date. To model the data, next challenge is then two-
fold: specify distributional form for these components and 
specify the simplest dependence structure possible. While the 
continuous process is complicated, the discrete formulation is 
very close to the kind of data simple processes in survival 
analysis would discretize into [17]. We therefore utilize a 
survival analysis formulation, popular distributions therein and 
widely used dependence structures in recurrent event models to 
investigate their suitability for user engagement in gaming data.  

III. SURVIVAL ANALYSIS 

A. Time to Event 

Assume we have a data set with subjects, variables 
associated to the subjects and one or more events for each 
subject. Survival analysis is concerned with modelling the time 
to event(s) and quantifying the effect of variables to this time 
[18]. Usually the time is measured as a continuous variable, 
and it may be censored if the event is not included in the 
observation window. We present the formulation given in [16]. 

Denoting time to event random variable T with probability 
density function f(t) (PDF) and cumulative density function 
F(t) (CDF), the survival function S(t) (SF) measures the 
probability of an event occurring after time t:  

  (2) 

Τhe hazard function h(t) measures the instantaneous event 
rate at time t given that the event has not occurred yet. It is 
formally defined: 

  (3) 

Τhe cumulative hazard Λ(t) describes the accumulated risk 
up to time t, defined as the integral of the hazard function: 

  (4) 

Ιt is straightforward to derive the following results which 
relate these functions and are often used in formulation of 
survival models: 

  (5) 

Since we are dealing with censored data where event times 
occurring after W are not observed, instead of event time Ti for 
subject we observe Ti = min(Ti, W) with a censoring indicator 
Ci = Ι(Ti > W). 

B. Recurrent Events and Time Dependence 

In general, i’th subject may experience multiple events 
Ti1,…, Tin(i). Survival Analysis approaches to such data have 
been developed relatively recently [17]. There are three popular 
approaches to specifying the hazard depending on which time 
interval the subject is considered to be at risk for events over: 
calendar time, gap time and marginal time [19-20]. 

2016 IEEE Conference on Computational Intelligence and Games (CIG’16) 65



Fig. 6. Example of Weibull hazard over different risk intervals 

In calendar time interval at risk is defined over calendar 
time passed. If user starts at calendar time 0 and hazard is 
defined as a function of calendar time t, the cumulative hazard 
up to first event t1 is Λ(t1). The cumulative hazard to next event 
t2 given first event t1 is obtained by integrating the hazard over 
the corresponding calendar time at risk: Λ(t2, t1) = Λ(t2) - Λ(t1). 
Event occurrence process which is independent of previous 
event history is known as a Poisson process. If such process is 
independent of time as well it is homogeneous, otherwise 
inhomogeneous.  

In gap time the interval at risk is defined as time passed 
since previous event. Denoting calendar time t and time of last 
event T- with gap time hazard h’(w) defined as a function of 
time passed w, the cumulative hazard is Λ(t-T-). This 
formulation is also known as a renewal process, named 
accordingly since an event in a sense resets the subject making 
history preceding the renewing event irrelevant to further 
events. 

Marginal time approach is the simplest, since it assumes 
events are independent and the subject is at risk for each event 
since the beginning. Common hazard function for each event 
makes them identically distributed, which is clearly an 
oversimplification in this case. This approach is most suited for 
limited number of events where each event can be considered a 
separate process and their order irrelevant. 

The calendar time and gap time models can be combined so 
that hazard depends on both the calendar time and gap time 
[21]. Assuming additive hazards we specify the effect of 
calendar time h1 and gap time h2 hazards to the total hazard as 
h(t|T-)=h1(t)+h2(t-T-). These risk formulations are visualized in 
Fig.6. In general the hazard is constrained to be positive and 
may arbitrarily depend on event history.  

C. Subject Dependence  

It is common for time to event measurements to exhibit 
greater variation than predicted by a theoretical model [18]. 
One source of variation is a subject specific propensity to 
events, commonly called frailty in the survival analysis 
literature. This effect is important in recurrent event models 
because this implies a dependence structure between events 

[23] where within subject event times are correlated. Popular 
formulation of frailty assumes a subject specific latent variable 
ui with multiplicative effect to hazard hi(t)=uih(t) [18]. 

Since variable ui is unknown, it is assumed to be distributed 
according to a population level prior distribution of unknown 
hyperparameters. Satisfactory results are often achieved using 
the Gamma distribution [22] with unknown variance θ and 
mean equal to one when the base hazard h(t) includes a 
constant. This makes the hazard a random variable with ui 

~Gamma(1/θ,θ). 

D. Time to Event Distributions 

In survival analysis time to event is most commonly 
evaluated for fitting the exponential distribution or Weibull 
distribution [18]. Exponential distribution is defined simply by 
assuming a constant hazard h(t)=λ, which implies the 
following:  

  (8) 

Τhe Weibull distribution specifies a hazard h(t)= λctc-1  and 
thus generalizes the Exponential distribution (c=1), allowing 
for both decreasing hazard (c<1) and increasing hazard (c>1):  

  (9) 

Ιn modelling discrete phenomena distributions with discrete 
support k=1,2… should be used. In binned data one may 
hypothesize that the underlying phenomena is continuous and 
aggregates to densities predicted by the Exponential and the 
Weibull distributions. In this case the CDFs are binned 
versions of their continuous counterparts. Such motivation 
leads to the Geometric and Discrete Weibull distributions [24], 
which are defined such that their CDF is equal to the 
corresponding continuous CDF at the discrete support as in 
Fig.7. Discrete probability mass function (PMF) can be derived 
from the CDF F(x) through a simple relation P(X=k) = F(k) - 
F(k-1) = S(k-1) - S(k). 

Fig. 7. Geometric and Discrete Weibull distributions 
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The Geometric distribution, informally Discrete 
Exponential, is defined:  

  (10) 

Τhe Discrete Weibull distribution is defined:  

  (11) 

Ιn these formulas h(k) denotes a discrete hazard. It is 
defined h(k)=f(k)/S(k-1) reminiscent of the continuous hazard, 
instead giving the proportion experiencing event at k of 
population surviving without event to k. 

E. Hidden Quit 

Unlike most survival analysis settings, a subject in our 
study may randomly quit without us having information the 
subject has done so. In settings where this information is 
available it is common to consider such subjects censored or 
incorporate a second event terminating the event process [18]. 
We acquire user data as long as the user is playing the game 
and stop acquiring data once he or she has quit, making 
termination of an event process in our case indistinguishable 
from continuation of the event process without events. 

One solution is to assume that the probability of the event 
process remaining active and the user remaining at risk of 
events follows some law. For example, number of events may 
be assumed to follow a specified distribution and we then 
consider both possibilities. The lack of activity following last 
event is caused by being active and remaining at risk for an 
event without experiencing subsequent event before censoring 
or the event process may have become inactive and stops 
producing events. For subject not experiencing events for gap 
time t after the last event, tail probability is conceptually:  

  (12) 

We found an analogous result from medical literature with 
cure models, an old concept [25] recently gaining recognition 
[26-28]. In cure models, a proportion of subjects are assumed 
to be ‘cured’, i.e. immune to events. Such immunity may be 
either a feature of the population or caused by an intervention 
in response to events or other features of the process. In our 
case if every player is observed over a long time span with a 
long period of inactivity the quit assumption is justified. As 
stated previously, this is not feasible in game analytics if we 
seek to make decisions to guide development cycles. Our 
model is able to fit extremely time-limited data by 
incorporating tail term to allow for ambiguity between quitting 
and idling. 

F. Model Specification 

Many survival models are relatively simple, often assuming 
Poisson or Renewal process and considering frailty as a 
possible complication with the calendar, gap or marginal time 
risk formulations [20-22]. We implicitly consider these models 

through their discrete counterparts. Denote the calendar day t 
of next day played where T- is the calendar day of previous day 
played and we have the following correspondence:  

TABLE III.  MODELS 

Name C. Survival D. Survival 

Exp.  
Weibull 
Cal.   
Weibull 
Gap.   
Weibull 
Cal.Gap.   

 

Since the exponential distribution has a constant hazard the 
process corresponds to a homogeneous Poisson process 
regardless of risk formulation [17]. Weibull hazard over 
calendar time is an inhomogeneous Poisson process, Weibull 
hazard over gap time is a Renewal process and calendar&gap 
time cannot be categorized as either. The distributions we fit to 
days to next day played are discretized Exponential, Gap 
Weibull, Calendar Weibull and Gap&Calendar Weibull with 
and without frailties. We fit the Weibull distribution to the 
number of days played to model surviving playing or quitting. 
We found that the effect of the cure model is non-negligible 
even when we are operating with a long observation window. 

IV. MODEL FIT AND VERIFICATION 

A. Parameters and Likelihood 

Denote N total players and for i’th player: total days played 
ni, days played tij and censoring time ti. Given the PMF and SF 
of days to next day played and total days played parameterized 
in terms of θ1 and θ2 respectively, the distributions are fit by 
maximizing the likelihood:  

  (13) 

Fitting the model produced following table of parameters 
and negative log-likelihood score (n.l.l.) for total days played 
Weibull(k|pd,cd) and days to next day played Exponential(k|p0), 
Weibull.Cal(k|p1,c1), Weibull.Gap(k|p2,c2), Weibull.Cal.Gap(k| 
p1,c1,p2,c2): 

TABLE IV.  MODEL PARAMETERS AND LIKELIHOOD 

Game pd cd p0 p1 c1 p2 c2 n.l.l. 

Benji 
Adventures 

0.55 0.59 0.22     48656 

0.55 0.58  0.78 0.53   43492 

0.55 0.59    0.57 0.44 41500 

0.55 0.59  0.55 0.40 0.45 0.39 40999 

Benji 
Bananas 

0.44 0.63 0.28     309189 

0.44 0.62  0.83 0.55   279141 

0.44 0.63    0.58 0.48 268894 
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0.44 0.62  0.61 0.44 0.45 0.41 265026 

Hipster 
Maze 

0.42 0.64 0.24     8674 

0.42 0.62  0.74 0.58   8024 

0.42 0.63    0.54 0.48 7579 

0.42 0.62  0.45 0.44 0.45 0.43 7521 

Mad-Croc 

0.86 0.36 0.26     9484 

0.86 0.36  0.66 0.60   8981 

0.86 0.35    0.53 0.51 8695 

0.86 0.35  0.40 0.46 0.42 0.47 8646 

Dragon 
Fortress 

0.67 0.68 0.34     1368 

0.67 0.67  0.72 0.58   1282 

0.66 0.68    0.67 0.39 1201 

0.66 0.67  0.38 0.45 0.57 0.31 1196 

 

There are limitations to interpreting model fits in terms of 
the likelihood. Since likelihood is decreasing for increasing 
amount of data regardless of goodness-of-fit, these models can 
only be compared within a given dataset. Smaller n.l.l implies 
increasing likelihood and better distributional fits. Results are 
aligned with expectations: Since the calendar and gap time 
Weibull distributions generalize the Exponential distribution 
and the calendar&gap time Weibull generalizes both, the 
likelihood is increasing according to this hierarchy. We see that 
the gap time formulation has consistently larger likelihood than 
the calendar time formulation. 

The frailty model which included a gamma frailty term in 
all cases produced a small variance θ ≈ 0.01. This translated to 
almost no effect in aggregate statistics so we refrain from 
reproducing the table with it. This would imply a random 
variable p0/p1/p2 resembling a normal distribution with 3 s.d. 
region bounded by ±0.1. 

B. Model Interpretation  

One way to interpret the model is to plot discrete hazards 
which gives the proportion of users remaining without events 
at t experiencing event at t. We used Hipster Maze whose 
parameters have similarities with the Benji franchise. Perhaps 
the component of most game development interest is quitting 
as a function of days played Weibull(k|pd,cd). The hazard over 
the number of days played demonstrates churning of the 
remaining population as a function of total days played. 

Fig. 8. Discrete hazard of Weibull distributed days played 

In Fig. 8. we see that a large 43% fraction of players quit 
after the first day played and the next few days have an 

elevated risk of ~10% decreasing slowly towards zero. One 
could claim that the quit rate stabilizes to 10% after churning 
out uninterested users with a slight tendency to commit users. 

Fig. 9. Discrete hazard of Weibull distributed days to next day played 

In Fig. 9. we observe that in exponential model 24% of 
idlers re-engage, whereas in Weibull Cal. players idle little 
when the game is novel and quickly become habituated to an 
approximately 20% play rate. The gap time denoted in red is 
impervious to calendar time passed and has a high re-
engagement rate in the day following a day played, slowly 
decreasing. One can say playing state is self-exciting. The 
calendar&gap time formulation combines novelty and self-
excitatory effects to produce initially short idles and thereon 
resembles the gap time model. 

C. Visual Verification 

Retention statistics can be computed from this model by 
generating sequences according to the fitted probabilities. Note 
that the model has not been fitted to any particular aggregate 
statistic, and the result in Fig. 10. is faithful only to the extent 
to which the underlying process is being modelled.  
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Fig. 10. True and model fits of retention metrics 

Due to a rapid initial decrease obfuscating the tail, we plot 
retention and rolling retention in Fig. 10. from day 7 onwards 
where they are better visible. We see that Weibull Cal. and 
Weibull Cal.Gap. fit retention in this region in an unbiased way 
up to the maximum observation limit of 150 days. Smaller 
observation limits are denoted with a vertical dash. Days 2-6 
excluded from these plots have a small systematic 1-3% 
absolute percentage point pessimistic bias relative to 10-50% 
absolute values. 

Indeed it is quite difficult to distinguish the smooth shape 
of the rolling retention from the Weibull Cal. and Weibull Cal. 
Gap fits. Upon closer inspection Weibull Cal.Gap is slightly 
better, suggesting with likelihood that gap time does model an 
aspect in addition to the novelty effect. The Exponential model 
has an unacceptably large bias which Weibull Gap. shares with 
roughly half the magnitude suggesting data is not modelled by 
a homogeneous Poisson process and neither appreciably so by 
a simple renewal process. Lifetime retention in Fig.10. has very 
good fits for every model, confirming that total days played is 
Discrete Weibull distributed. 

D. Conclusion and Future Work 

We demonstrated that discretization of the dataset and 
discretized versions of popular survival analysis methods lead 
to a problem formulation which makes modelling user 
engagement possible. The entire user process at the individual 
level is construed as a simple generative model having two 
components: 2 parameter D. Weibull distribution for total days 
played and 1-3 parameter D. Weibull distribution for days to 
next day played with an optional 1 parameter frailty term. This 
model reveals interesting connections to survival analysis and 
certain classes of stochastic processes. Retention, rolling 
retention and lifetime retention computed from the model 
suggest that the gap&calendar and to an extent the calendar 
time formulation accurately describe the underlying 
phenomena in mobile games. In addition to insight obtained it 
is possible to apply this model to analytical and predictive 
modelling of any day activity based aggregate statistics such as 
retention. 
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Abstract—The recent success of AlphaGO has shown that it is
possible to combine machine learning with Monte Carlo Tree
Search (MCTS) in order to improve performance in games
with large branching factors. This paper explores the question
of whether similar ideas can be applied to a genre of games
with an even larger branching factor: Real-Time Strategy games.
Specifically, this paper studies (1) the use of Bayesian models to
estimate the probability distribution of actions played by a strong
player, (2) the incorporation of such models into NaiveMCTS,
a MCTS algorithm designed for games with combinatorial
branching factors. We call this approach informed MCTS, since
it exploits prior information about the game in the form of a
probability distribution of actions. We evaluate its performance
in the µRTS game simulator, significantly outperforming the
previous state of the art.

I. INTRODUCTION

The recent success of AlphaGO [1] has shown that it is
possible to combine machine learning with Monte Carlo Tree
Search (MCTS) [2] in order to improve performance in games
with large branching factors. This paper explores the question
of whether similar ideas can be applied to games with an even
larger branching factor: Real-Time Strategy (RTS) games.

RTS games are a videogame genre where players command
large armies in real time in order to defeat the other players.
RTS games pose a significant challenge to artificial intelli-
gence due to two main reasons: they have huge branching
factors, and they are real-time, leaving very little time for
players to decide which actions to play [3], [4]. Several
approaches have been proposed to handle these games, such
as MCTS for games with combinatorial branching factors [5],
[6], portfolio approaches [7], [8], abstraction (simplify the
game state and search in a simplified space) [9], [10], [11],
hierarchical search [12], adversarial HTN planning [13], or
case-based reasoning [14].

In this paper, we build upon work on MCTS approaches for
RTS games, and study how to bring ideas from AlphaGO into
this game genre. Specifically, we present:
• A collection of Bayesian models to estimate the proba-

bility distribution of actions played by a strong player,
evaluating them by attempting to model a collection of
bots in the context of an RTS game. These models are
analogous to the policy network in AlphaGO.

• We incorporate these models into NaiveMCTS, a MCTS
algorithm designed for games with combinatorial branch-
ing factors to inform the search process, resulting in what

we call an informed MCTS approach. Our hypothesis is
that the Bayesian models proposed in this paper (simpler
than the deep neural networks used in AlphaGO) are
enough to significantly improve MCTS.

We use the µRTS game simulator as our evaluation domain1,
and report results significantly outperforming the previous
state of the art, LSI [5] and NaiveMCTS [6]. µRTS is de-
terministic, fully-observable and a forward model is available
(necessary to implement game-tree search approaches).

The remainder of this paper is organized as follows. Section
II introduces RTS games from an AI point of view. Section
III presents our Bayesian probability distribution estimation
models. Section IV describes how can they be incorporated
into MCTS approaches, and finally Section V presents an
empirical evaluation of the proposed approach.

II. REAL-TIME STRATEGY GAMES

Real-time Strategy (RTS) games are complex adversarial
domains, typically simulating battles between a large number
of military units, that pose a significant challenge to both
human and artificial intelligence [3]. Designing AI techniques
for RTS games is challenging because:
• They have huge decision spaces: the branching factor of

a typical RTS game, StarCraft, has been estimated to be
on the order of 1050 or higher [4] (for comparison, that
of Chess is about 35, and that of Go about 180).

• They are real-time, which means that: 1) RTS games
typically execute at 10 to 50 decision cycles per second,
leaving players with just a fraction of a second to decide
the next action, 2) players can issue actions simultane-
ously, and 3) actions are durative.

The reason for which the branching factor in RTS games is
so large is that players controls many units, and players can
issue multiple actions at the same time (one per unit). We will
refer to those actions as unit-actions. A player-action is the set
of unit-actions that one player issues simultaneously in a given
game cycle. Thus players issue only one player-action at any
given time (which will consist of zero or more unit-actions).

To illustrate this, consider the situation from the µRTS
game shown in Figure 1. Two players, max (shown in blue)

1A fork of the µRTS project containing all the source code and
datasets necessary to replicate the results reported in this paper can
be downloaded from https://sites.google.com/site/santiagoontanonvillar/code/
CIG-2016-microRTS-source-code.zip.
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"max" 
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"min" 
player 
units 

Fig. 1. A screenshot of the µRTS simulator. Square units correspond to
“bases” (light grey, that can produce workers), “barracks” (dark grey, that can
produce military units), and “resources mines” (green, from where workers
can extract resources to produce more units), the circular units correspond to
workers (small, dark grey) and military units (large, yellow or light blue).

and min (shown in red) control 9 units each. Consider the
bottom-most circular unit in Figure 1 (a worker). This unit
can execute 8 actions: stand still, move left or up, harvest the
resource mine to the right, or build a barracks or a base in
any of the two adjacent cells. In total, player max can issue
1,008,288 different player-actions, and player min can issue
1,680,550 different player-actions. Thus, even in relatively
simple scenarios, the branching factor is very large.

In the remainder of this paper, we will use the following
definition for an RTS game. An RTS game is a tuple G =
(P, S,A, Lu, Lp, T,W, sinit), where:

• P = {max,min} is the set of players.
• S is the set of possible states. We will write units(p, s)

as the set of units that belong to player p in state s.
• A is the finite set of unit-actions that units can execute.
• Lu(u, a, s) → {true, false}, is a function that re-

turns whether unit u can execute unit-action a in state
s. For simplicity, we will write Lu(u, s) = {a ∈
A|Lu(u, a, s) = true}, and ready(p, s) = {u ∈
units(p, s)|Lu(u, s) 6= ∅}.

• Lp(p, α, s) → {true, false}, is a function that re-
turns whether player p can execute player-action α in
state s. Given the set of ready units ready(p, s) =
{u1, ..., un}, a player-action α is defined as alpha =
{(u1, a1), ..., (un, an)}, such that Lu(ui, ai, p) = true
for 1 ≤ i ≤ n. Thus, the ready function determines the
set of units that can execute unit-actions, Lu determines
which actions can each of those units execute, which
determines the set of possible player-actions, and Lp
determines which of those possible player-actions is legal.

• T (st, αmin, αmax) → S is the deterministic transition
function, that given a state st ∈ S at time t, and the
player-actions of each player (αmin and αmax), returns
the state that will be reached at time t+ 1 (i.e., T is the

forward model of the game).
• W : S → {maxwins,minwins, draw, ongoing} is a

function that determines the winner of the game, if the
game is still ongoing, or if it is a draw.

• sinit ∈ S is the initial state.

III. UNIT-ACTION PROBABILITY ESTIMATION

AlphaGO used a deep neural network (DNN) to estimate the
probability of each of the legal actions in a game state to be
played by an expert player (the policy network). This network
was trained from a large collection of expert games available
on-line. A working hypotheses of this paper is that a simpler
machine learning model than a DNN suffices to significantly
improve the performance of MCTS. To assess such hypothesis,
we propose simpler Bayesian models, based on the idea of the
Naive Bayes classifier [15], and thus, with negligible training
time. We present the proposed probability estimation models
and how to generate training data below.

A. Bayesian Models

Given a game state s, a player p, and a unit u ∈ ready(p, s),
we would like to model the probability P (a|s, u) with which
an expert would select each of the actions a ∈ Lu(u, s).

In order to model such probability distribution, we as-
sume that the game state s (from the perspective of u)
is represented by means of a feature vector x(u, s) =
{x1(u, s), ..., xn(u, s)}, and that the distribution is estimated
from a training set I = {(s, u, a), ...}, where each training
instance has a game state s, a unit u, and the action a that was
chosen. The feature set used in our experiments is described
in Section III-C. We experimented with two different models:
• Calibrated Naive Bayes Model (CNB): while the Naive

Bayes classifier [15] often works very well for classi-
fication purposes, it is well known that the probability
distribution it estimates is not well “calibrated” [16],
i.e., values tend to be very extremely close to either
0 or 1. Several approaches exist to better calibrate the
posterior probability estimates of Naive Bayes classifiers,
such as fitting them via a sigmoid function [16], or
binning [17]. We propose a much simpler method, which
achieved good results in our experiments: introducing
a calibration parameter κ > 0 into the standard Naive
Bayes formulation, as follows:

P (a|u, s) = 1

Z

(
P (a)

∏
i=1...n

P (xi(u, s)|a)

) 1
1+κn

where n is the number of features used to represent the
game state, P (xi(u, s)|a) and P (a) are estimated from
the training set2, Z is just a normalization constant to
make all the probabilities add up to 1, and κ is a calibra-
tion parameter, whose effect is to make the probability

2All probability estimations from the training set were estimated us-
ing Laplace estimation. For example, when estimating P (a), we add 1
to the numerator, and |A| to the denominator, resulting in P (a) =
number of times a is selected+1

size of the training set+|A|
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values less extreme. Thus, notice the CNB model is
identical to the standard Naive Bayes formulation, except
for the addition of the 1

1+κn calibration exponent.
In our experiments, κ is determined via simple grid
search using the training set, testing values between 0.0
to 1.0 at intervals of 0.05, and keeping the value that
maximizes the likelihood of the training data given the
model. Intuitively, when κ = 0, no correction is applied
to the probabilities, and when κ grows, the probabilities
grow less extreme. In the limit, when κ → ∞, all
probabilities would converge to the same number, making
P (a|u, s) the uniform distribution. In the particular case
when κ = 1, the model corresponds to a geometric mean
of the different factors in the probability estimation.

• Action-Type Interdependence Model (AIM): the previ-
ous model does not consider that some actions might have
a low or a high probability based on which other actions
are legal. The AIM model captures the distribution given
the actions that are legal in the current game state.
Moreover, in order to reduce the number of parameters to
estimate, we assume the existence of a function type(a),
which assigns a type to an action a from a predefined
set of action types (e.g., move, attack, etc.). So, even if
actions such as “move up” and “move down” are different
actions, they both have the same type, “move”. Let us
define legaltypesu(u, s) = {type(a)|a ∈ Lu(u, s)} as
the set of action types that unit u can perform in state s.
The AIM model is defined as follows:

P (a|u, s) = 1

Z
(P (a) L(type(a), T ) F (a, u, s))

c

where, c = 1
1+κ(n+|T |) , T = legaltypesu(u, s), and

F (a, s) is the product of the factors contributed by the
features in x(s), as in the CNB model:

F (a, u, s) =
∏

i=1...n

P (xi(u, s)|a)

Finally, L(type(a), T ) is the product of a collection of
new factors that estimate the probability that a certain
unit-action type is legal, given the type of the unit-action
that was selected:

L(t, T ) =
∏
t′∈T

P (t′ is legal|t was selected)

Here, P (t′ is legal|t was selected) is the estimated prob-
ability that an action of type t′ was legal in a game state
where an action of type t was selected.

In practice, we observed that learning a different model
for each different unit type in the game (workers, bases,
barracks, etc. in µRTS), resulted in better estimation of the
probabilities3. Additionally, we also observed that adding
feature selection also slightly improved the estimation. So, for
the experiments reported in the remainder of this paper, we
generated the probability models in the following way:

3The CNB model has learnable 6141 parameters, and AIM has 10971.

• For each unit type: we train a model using the subset of
the training data referring to such unit type. If this subset
is empty, then just train with the whole training set (i.e.,
if we have no training data to model the way a specific
unit is controlled, we just train a model with the whole
training set for such unit, hoping it will reflect what the
expert would have done).

• After training each model, we use a greedy additive
wrapper feature selection method [18] to determine the
subset of features from x(s) that maximize the predictive
accuracy in the training set (by doing cross validation).

• After feature selection is performed, for each model, we
find the parameter κ that maximizes the likelihood of the
training set given the model.

B. Extending Unit-Action to Player-Action Distributions

When using the trained models to generate actions, it is
necessary to actually generate player-actions, and not just
unit-actions. When a player-action for player p needs to
be generated in a game state s according to a unit-action
distribution P (generated with either the CNB or the AIM
models), we use the following procedure:

1) Push all the units that require unit-actions, ready(p, s),
to a queue Q in a random order. Initialize an empty
player-action α = ∅.

2) If Q is empty, return α.
3) Otherwise, remove the first unit u from Q. Let l = {a ∈

Lu(u, s)|Lp(p, α∪ (u, a), s)}, i.e., the set of legal unit-
actions for u that when added to the player-action α still
keep α being legal.

4) If l = ∅, restart the process from 1.
5) Otherwise, sample one action a from l according to P ,

add it to α as: α = α ∪ (u, a), and go back to 2.

The previous process samples a player-action using the
unit-action distributions, while respecting unit-action legality
(Lu) and player-action legality (Lp). Moreover, notice that in
practice, l will never be ∅ in step 4, since units in RTS games
can always execute the idle action, which does not conflict
with any other action. So, in practice this algorithm can sample
a player-action without ever requiring going back to step 1.
Also notice that choosing a random order in step 1 is necessary
to prevent any undesired biases that can be caused by the order
in which units are processed in steps 2 and 3 (since some unit-
actions might prevent some other unit-actions).

C. Generating Training Data

Given that no available training data from expert players
is available for µRTS, we generated training data in the
following way. We selected the two current best reported
Monte Carlo search-based bots in the literature (LSI [5], and
NaiveMCTS [6]), and four hard-coded bots built into µRTS
(WorkerRush, LightRush, HeavyRush, and RangedRush), and
played a round-robin tournament (all 36 combinations of each
of the 6 bots playing as player 1 and as player 2) in 8 different
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maps4, resulting in a total of 288 = 36 × 8 games. The
configuration used for NaiveMCTS and LSI was the default
one as implemented in µRTS, where playouts are limited to
be at most 100 game frames long, after which an evaluation
function is applied. We also experimented with the AHTN bot
[13], but found that it only performed well in 2 of the 8 maps
used in our evaluation, probably because the domain definition
used was tailored to some specific type of maps.

Moreover, we repeated this round-robin tournament four
times giving NaiveMCTS and LSI a computation budget of
500, 1000, 2000, and 5000 playouts per game frame respec-
tively5, resulting in four sets of game logs: RR500, RR1000,
RR2000 and RR5000. We then constructed twelve datasets:
• IWR: consisting of all the unit-actions of WorkerRush

from RR500 (25739 instances).
• ILR: consisting of all the unit-actions of LightRush from

RR500 (38844 instances).
• IHR: consisting of all the unit-actions of HeavyRush from

RR500 (28321 instances).
• IRR: consisting of all the unit-actions of RangedRush

from RR500 (32753 instances).
• I500LSI , I1000LSI , I2000LSI , I5000LSI : consisting of all the unit-actions

of LSI from RR500, RR1000, RR2000 and RR5000
respectively (89029, 74564, 70696, and 60000 instances).

• I500nmcts , I1000nmcts , I2000nmcts , I5000nmcts : consisting of all the unit-
actions of NaiveMCTS from RR500, RR1000, RR2000
and RR5000 respectively (84784, 77200, 75462, and
70071 instances).

The feature vector x(u, s) used to represent each game
state contains only eight features: the number of resources
available to the player, the cardinal direction (north, east,
south, west) toward where most friendly units are, the cardinal
direction toward where most enemy units are, whether we have
a barracks or not, and four features indicating the type of the
unit in the cell two positions north, east, south or west (or
whether these cells are empty or are a wall). Adding more
features could certainly improve performance, which will be
part of our future work.

D. Empirical Evaluation

We evaluated the probability distribution models presented
above in two different ways. By measuring how accurately
can they predict the behavior of the bots (Table I), and by
using them directly to play against the same six bots used to
generate the training data (Table II).

a) Model Predictive Accuracy: Table I shows the pre-
dictive accuracy of both proposed models in each of the 12
datasets using a 10-fold cross validation. There is a total of 69
different actions unit can perform in µRTS, but each individual

4Specifically, we used the maps OneBaseWorker8x8, TwoBasesWorkers8x8,
ThreeBasesWorkers8x8, FourBasesWorkers8x8, OneBaseWorker12x12,
TwoBasesWorkers12x12, ThreeBasesWorkers12x12, and FourBasesWork-
ers12x12 included with µRTS.

5Notice that “500 playouts per frame” does not mean “500 playouts per
decision”. Both LSI and NaiveMCTS spread computation across multiple
frames when all units are busy in order to maximize playouts per decision.

TABLE I
CLASSIFICATION ACCURACY, AND AVERAGE LOG-LIKELIHOOD ACHIEVED

WITH THE PROPOSED MODELS IN THE 12 DATASETS.

CNB AIM
Dataset Acc. Exp. l.l. Acc. Exp. l.l.
IWR 0.651 -0.952 0.679 -0.892
ILR 0.800 -0.509 0.836 -0.441
IHR 0.860 -0.381 0.877 -0.345
IRR 0.846 -0.409 0.892 -0.318
I500LSI 0.380 -1.262 0.381 -1.229
I1000LSI 0.392 -1.237 0.397 -1.211
I2000LSI 0.410 -1.223 0.413 -1.193
I5000LSI 0.419 -1.211 0.425 -1.175
I500nmcts 0.393 -1.242 0.396 -1.206
I1000nmcts 0.407 -1.228 0.412 -1.193
I2000nmcts 0.418 -1.222 0.423 -1.181
I5000nmcts 0.429 -1.203 0.440 -1.160

Fig. 2. Expected log-likelihood of the actions (vertical axis) in the training
set for the AIM model using various training sets as a function of the κ
calibration parameter (horizontal axis).

unit can perform only between 5 and 33 unit-actions. We
measure both classification accuracy (1.0 corresponding to
perfect predictions), and expected log-likelihood of the data.
We can see that both models manage to predict the behavior of
the four hard-coded bots very well (and specially the Ranged
Rush, which the CNB model predicts with 0.846 accuracy and
the AIM model with 0.892), but have a harder time predicting
the behavior of the LSI and NaiveMCTS bots. Moreover,
notice that the higher the computation budget, the easier LSI
and NaiveMCTS are to predict, indicating that they might
be converging to a more stable strategy. Moreover, the AIM
model is systematically more accurate than the CNB model.

We also report the expected log-likelihood of the actions
in the dataset given the model. This is a better metric to
consider than classification accuracy given that we want to
estimate the probability distribution of the actions, and not
just predicting the most likely action. The best possible log-
likelihood would be 0. As we can see, the trends follow exactly
those for classification accuracy.

Figure 2 shows how the expected log-likelihood of the
actions in the dataset change as a function of the calibration
parameter κ for some of the datasets when a single AIM model
is trained with all the data and without feature selection. As
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we can see, introducing the calibration parameter improves the
probability estimation significantly with respect to not having
the calibration factor (κ = 0). In particular, values around
the 0.1 to 0.3 range tend to obtain better results, but the
maximum is achieved at a different value of κ depending on
the training set. Finally, notice that the κ parameter does not
have any effect on classification accuracy, since the relative
order of which action has higher probability is not affected.
κ only affects the probability distribution estimation, making
the probabilities less extreme (i.e., less close to either 0 or 1).

b) Model Play Strength: Table II shows the average
results of playing (by sampling from the trained distribution)
in all eight maps described above, and against all the eight
bots used to generate the training data. Each model played
20 games against each bot (10 as player 1, and 10 as player
2). Thus, each number in the table is the average of 160
games. Games longer than 3000 game frames were considered
a draw. Bots scored 1 point for winning, and 0.5 for reaching a
draw. We compare these results against those obtained by two
baseline distributions: Rnd, which picks actions randomly, and
RndBiased, where the attack, harvest and return actions have 5
times more probability than the rest of actions. The first thing
we can see is that the CNB models perform much worse than
the AIM models. For example, when training from the IWR

dataset, they achieve a score of 0.196 and 0.518 respectively
in average. Models trained with the IWR dataset achieved
the highest score (mostly because WorkerRush employs a
very aggressive strategy that works well against other, less
aggressive, strategies). We also see that models trained from
LSI and NaiveMCTS achieved better scores when trained from
datasets generated with a higher computation budget. No
model managed to win any game against the WorkerRush bot
or NaiveMCTS, and only one bot won one game against LSI.
So, although none of the trained models are strong enough to
defeat the MCTS bots, they are significantly stronger than the
baselines. The fact that the AIM model trained with the IWR

dataset can defeat most of the hardcoded bots is remarkable
since: (1) it plays purely reactively, (2) the time required to
train these models is negligible.

IV. INFORMED MONTE CARLO TREE SEARCH

We incorporated the models described above into Monte
Carlo Tree Search (MCTS), a family of planning algorithms
based on sampling the decision space rather than exploring it
systematically [2]. MCTS employs two different policies to
guide the search: (1) a tree policy determines which nodes in
the tree to explore (i.e., given a node in the tree, which of its
children to consider next), and, (2) each time a new node is
added to the tree, a simulation (a playout or rollout) of how the
game would unfold from that state until the end of the game
(or until a predefined maximum playout length) is executed
by using a default policy to generate actions for both players.

Thus, the action probability models learned above can
be used in MCTS in two ways: to define tree policies or
default policies. While an action probability model can be
used directly as a default policy, in order to be used as a tree

policy, it needs to be incorporated into a multi-armed bandit
policy. Below, we describe informed ε-Greedy sampling and
informed naive sampling, two informed policies, required to
then explain INMCTS, our proposed algorithm.

A. Informed ε-Greedy Sampling

The tree policy of MCTS algorithms is usually defined as
a multi-armed bandit (MAB) policy. A MAB is a problem
where, given a predefined set of actions, an agent needs
to select which actions to play, and in which sequence,
in order to maximize the sum of rewards obtained when
performing those actions. The agent has no information of the
expected reward of each action initially, and needs to discover
them by iteratively trying different actions. MAB policies are
algorithms that tell the agent which action to select next,
by balancing exploration (when to select new actions) and
exploitation (when to re-visit actions that had already been
tried in the past and looked promising).

MAB sampling policies traditionally assume that no a priori
knowledge about how good each of the actions are exists.
For example, UCT [19], one of the most common MCTS
variants, uses the UCB1 [20] sampling policy, which assumes
no a priori knowledge about the actions. A key idea used in
AlphaGO is to employ a MAB policy that incorporated a prior
distribution over the actions into a UCB1-style policy. Here,
we apply the same idea to ε-greedy and then (in the next
section) to Naive Sampling.

As any MAB policy, informed ε-greedy sampling will be
called many iterations in a row. At each iteration t, an action
at ∈ A is selected, and a reward rt is observed.

Given 0 ≥ ε ≥ 1, a finite set of actions A to choose
from, and a probability distribution P , where P (a) is the a
priori probability that a is the action an expert would choose,
informed ε-greedy sampling works as follows:
• Let us call rt(a) to the current estimation (at iteration t)

of the expected reward of a (i.e., the average of all the
rewards obtained in the subset of iterations from 0 to t−1
where a was selected). By convention, when an action has
not been selected before t we will have rt(a) = 0.

• At each iteration t, action at is chosen as follows:
– With probability ε, choose at according to the prob-

ability distribution P .
– With probability 1− ε, choose the best action so far:
at = argmaxa∈Art(a) (ties resolved randomly).

If P is uniform, this is equivalent to ε-greedy.

B. Informed Naive Sampling

Naive sampling is based on the idea of combinatorial multi-
armed bandits (CMABs) [6] and internally uses a collection
of ε-greedy sampling policies. Here we define informed naive
sampling, as a result of replacing some of the internal ε-greedy
sampling policies by informed ε-greedy.

Informed naive sampling takes four input parameters: a unit-
action probability distribution P , and three constants ε0, εl
and εg , and determines which player-action to choose using a
collection of MABs:

2016 IEEE Conference on Computational Intelligence and Games (CIG’16) 74



TABLE II
GAMEPLAY STRENGTH OF THE MODELS TRAINED WITH DIFFERENT DATASETS, COMPARED AGAINST TWO BASELINES (Rnd, AND RndBiased).

CNB AIM
Bot Rnd RndBiased IWR I500LSI I5000LSI I500nmcts I5000nmcts IWR I500LSI I5000LSI I500nmcts I5000nmcts

Rnd 0.500 0.944 0.263 0.206 0.344 0.231 0.331 1.000 0.881 0.906 0.844 0.938
RndBiased 0.025 0.469 0.019 0.006 0.025 0.019 0.044 0.881 0.163 0.400 0.288 0.463
WorkerRush 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
LightRush 0.013 0.050 0.375 0.013 0.063 0.000 0.038 0.650 0.075 0.200 0.075 0.113
HeavyRush 0.038 0.063 0.488 0.038 0.138 0.038 0.075 0.825 0.213 0.313 0.200 0.300
RangedRush 0.038 0.050 0.425 0.025 0.088 0.025 0.100 0.775 0.163 0.250 0.125 0.263
LSI (500) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.000 0.000 0.000 0.000
NaiveMCTS (500) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Average 0.077 0.197 0.196 0.036 0.082 0.039 0.073 0.518 0.187 0.259 0.197 0.259

• A set of Local MABs: For each unit ui ∈ ready(p, s), we
define MAB i that only considers the unit-actions of ui.

• Global MAB: MABg considers each player-action that
has been sampled so far. This means that in the first
iteration, t = 0, MABg contains no player-actions at all.

Specifically, at each iteration t:
• With probability ε0 choose explore and with probability

1− ε0 choose exploit:
– If explore was selected: a legal player-action αt is se-

lected by using an informed ε-greedy policy (with εl)
to select a unit-action for each unit ui ∈ ready(p, s)
independently (i.e., the policy is used n times, one
per local MAB), while ensuring the resulting player-
action is legal. αt is added to the global MAB.

– If exploit was selected: a player-action αt is selected
by using an ε-greedy policy with εg over the player-
actions already present in the global MAB.

Intuitively, when exploring, informed ε-greedy is used to
select unit-actions that take into account both the prior prob-
ability distribution of unit-actions, and the current reward
estimation of the unit-actions. When exploiting, the global
MAB is used to find the player-action, among all the explored
ones, with the maximum expected reward. After each iteration,
the reward estimates of all the individual MABs are updated.

INMCTS (informed NaiveMCTS), is the result of replacing
naive sampling from NaiveMCTS [6] by informed naive
sampling.

V. EMPIRICAL EVALUATION

In order to evaluate the play strength of INMCTS, we
performed four sets of experiments, reported in the following
three subsections. All the experiments presented in this section
are performed under the same conditions as those reported in
Table II. The computation budget used for experiments was
500 playouts per cycle.

A. Experiment 1: Baselines

Table III shows the results of evaluating the gameplay
strength of a collection of baseline algorithms against all the
bots used for generating the training data, averaged over all
the eight maps used in our experiments. The two left-most
columns show the performance of NaiveMCTS, using two

TABLE III
GAMEPLAY STRENGTH OF VARIOUS BASELINE CONFIGURATIONS

AVERAGED OVER THE EIGHT MAPS USED IN OUR EXPERIMENTS (20
GAMES PER MATCH-UP PER MAP). 1 DEFAULT CONFIGURATION OF

NAIVEMCTS AS ORIGINALLY REPORTED IN [6].

Algorithm NaiveMCTS NaiveMCTS1 LSI INMCTS
Tree Policy - - - RndBiased
Default Policy Random RndBiased RndBiased RndBiased
Random 1.000 1.000 1.000 1.000
RndBiased 1.000 1.000 1.000 1.000
WorkerRush 0.600 0.725 0.725 0.700
LightRush 0.713 0.900 0.744 0.894
HeavyRush 1.000 1.000 1.000 1.000
RangedRush 0.700 0.788 0.725 0.862
LSI 0.363 0.669 0.500 0.688
NaiveMCTS 0.300 0.500 0.325 0.613
Average 0.709 0.823 0.752 0.845

different default policies: Random and RndBiased (described
in Section III-D). We can see that going from Random to
RndBiased has a large effect in the gameplay strength, going
from 0.709 for Random to 0.823 for RndBiased. The third col-
umn shows the performance of LSI, which is a bit lower than
NaiveMCTS. Although previously reported results showed that
LSI outperformed NaiveMCTS [5], in our experiments, that
was the case for the smaller maps, while in the larger maps,
when the branching factor grows drastically, NaiveMCTS
outperforms LSI. This is analyzed later in Section V-D.

The right-most column shows the performance of INMCTS
when using RndBiased to inform both the tree policy and
the default policy. The table shows that using RndBiased to
inform the tree policy provides an additional performance
improvement, going up to 0.845.

B. Experiment 2: Informed Sampling in the Tree Policy

Table IV shows results when we used RndBiased as the
default policy in INMCTS, but we used different learned
models to inform the tree policy. We do not show results with
all the models shown in Table II due to space limitations,
but we show some representative instances. The first thing we
observe is that the AIM models outperform the CNB models.
For example, when training models with the WorkerRush
dataset (IRW ), we observed a performance of 0.813 with CNB
versus 0.883 with AIM. Moreover, comparing Table IV with
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TABLE IV
GAMEPLAY STRENGTH OF INMCTS USING DIFFERENT MODELS AS THE

TREE POLICY (20 GAMES PER MATCH-UP PER MAP).

Algorithm INMCTS INMCTS INMCTS INMCTS
Tree Policy CNB(IWR) AIM(IWR) AIM(I500nmcts) AIM(I5000nmcts)
Default Plcy RndBiased RndBiased RndBiased RndBiased
Random 1.000 1.000 1.000 1.000
RndBiased 1.000 1.000 1.000 1.000
WorkerRush 0.700 0.781 0.713 0.748
LightRush 0.900 0.975 0.900 0.975
HeavyRush 1.000 1.000 1.000 1.000
RangedRush 0.863 0.906 0.838 0.875
LSI 0.594 0.763 0.638 0.675
NaiveMCTS 0.450 0.644 0.575 0.625
Average 0.813 0.883 0.833 0.861

TABLE V
GAMEPLAY STRENGTH OF INMCTS USING DIFFERENT PROBABILITY

MODELS IN THE PLAYOUTS (20 GAMES PER MATCH-UP PER MAP).

Algorithm INMCTS INMCTS INMCTS INMCTS
Tree Policy AIM(IWR) AIM(I500nmcts) AIM(I5000nmcts) AIM(I5000nmcts)
Default Plcy AIM(IWR) AIM(I500nmcts) AIM(I5000nmcts) AIM(IWR)

Random 1.000 1.000 1.000 1.000
RndBiased 1.000 1.000 1.000 1.000
WorkerRush 0.888 0.731 0.838 0.950
LightRush 0.925 0.675 0.763 0.925
HeavyRush 1.000 0.981 1.000 1.000
RangedRush 0.963 0.838 0.825 0.950
LSI 0.844 0.556 0.669 0.794
NaiveMCTS 0.813 0.450 0.513 0.650
Average 0.929 0.779 0.826 0.909

Table III we can see that informing the tree policy with the
AIM model significantly outperforms NaiveMCTS.

The second effect we see is that when training models with
the NaiveMCTS or LSI datasets, performance increases when
training from datasets generated with a higher computation
budget. For example, the performance of INMCTS when using
an AIM model trained with I500nmcts is 0.833, and it goes up
to 0.861 when trained with the I5000nmcts dataset.

Finally, we see that the best performance was achieved
when using the AIM(IWR) model (trained with the Work-
erRush dataset), which outperformed models trained form
NaiveMCTS or LSI. Our hypothesis is that this is because:
1) WorkerRush is a very aggressive early rush strategy, which
works very well in the small maps used for testing; 2)
WorkerRush is a deterministic strategy which is easy to model
using our probability models; on the other hand, as can be
seen from Table I, NaiveMCTS is harder to learn.

C. Experiment 3: Probability models as Default Policies

Table V shows results from similar experiments to the
previous subsection, but where we used trained AIM models
as the default policy. The three left-most columns show results
when using the same model for both informing the tree policy
and as default policies, where we can see that when using the
model trained with the WorkerRush dataset, results improve
significantly (to 0.929), but when using the models trained
with NaiveMCTS data, performance goes down with respect

TABLE VI
MEDIAN, AVERAGE AND MAXIMUM BRANCHING FACTOR ENCOUNTERED

IN EACH OF THE EIGHT MAPS.

Branching
Map Median Average Max

1BW8x8 14.50 1466.35 2.65× 105

2BW8x8 84.00 1.87× 106 2.49× 109

3BW8x8 106.00 4.53× 105 1.75× 108

4BW8x8 342.50 9.52× 105 3.74× 108

1BW12x12 30.50 1.23× 106 6.14× 108

2BW12x12 112.00 1.56× 1012 2.90× 1015

3BW12x12 − − −
4BW12x12 − − −

NaiveMCTS

LSI
INMCTS (IWR, IWR)

INMCTS (I5000
nmcts , IWR)

Fig. 3. Performance (vertical axis) in each of the 8 maps used in our experi-
ments (horizontal axis) of two baselines, and the two INMCTS instantiations
that performed better in our experiments, with computation budget 500.

to just using the RndBiased policy. The right-most column
shows results when using a model trained with the NaiveMCTS
dataset for informing the tree policy, and one trained with the
WorkerRush dataset as the default policy, showing also very
good performance (0.909).

In conclusion, we can see that the the idea of using informed
sampling has the potential to significantly improve the perfor-
mance of MCTS-based bots. The best combination reported
in this paper (left-most column on Table V) has a win rate of
over 80% against NaiveMCTS, and even higher against LSI.
This is remarkable, since the probability distribution model
we are using (AIM) is much simpler than the complex deep
neural network (DNN) approach employed by AlphaGO. This
confirms the hypothesis that simpler probability distribution
models are enough to significantly improve the performance
of MCTS. However, we still believe that performance can be
increased even more by using better probability distribution
models. In particular, more complex models, such as DNNs
might be required when training models from complex bots
such as NaiveMCTS or LSI, at the cost of increased compu-
tational cost during training.

D. Effect of the Branching Factor

Table VI shows the median, average and maximum branch-
ing factor encountered in each of the eight maps when making
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some of the baseline bots play against each other. As can be
seen, the 12x12 maps result in significantly higher branching
factors, and specially in the last two maps (where players start
with 3 and 4 bases respectively), where branching factors were
beyond the range we could calculate them exactly (but we
could estimate some cases to be over 1018).

Figure 3 shows the score achieved by two baseline models
(NaiveMCTS and LSI) and the two best instantiations of
INMCTS in our experiments in each of the eight maps. As
can be seen, performance in each of the maps varies greatly.
For example, performance in the first four maps (8x8 in size)
is higher than in the second four maps (12x12 in size). We can
also see that while LSI performs similar to NaiveMCTS in the
first 4 maps, its performance drops significantly in the larger
four maps. Moreover, in experiments where we increase the
computational budget (to 5000 playouts per game frame, not
reported in this paper), LSI actually outperforms NaiveMCTS
in the first 4 maps, but still performs worse in the larger four
maps (consistent with results reported by [5]).

Finally, all bots struggled to perform well in the fifth map
(12x12 in size, and players starting with only one base and
one worker). This is the map where the distance between the
starting positions of the players is the largest. It is so large
in fact, that the maximum length of the playouts used in our
experiments (100 game frames) is not long enough to simulate
a unit traveling all the way to the enemy base. Thus, MCTS-
based bots behave erratically at the beginning of the game.

VI. CONCLUSIONS

This paper has explored the idea of informed sampling in the
context of MCTS for games with combinatorial branching fac-
tors. The goal was to understand whether one of the key ideas
that made AlphaGO surpass existing MCTS approaches can
be also help in games with even larger branching factors. For
that purpose, we proposed two probability distribution models,
CNB and AIM, which play the role of the policy network
of AlphaGO and were trained from datasets generated from
existing bots. Our experimental results showed the proposed
approach significantly outperforms the current state of the art.

Moreover, when modeling probability distributions from
bots employing a simple strategy (such as WorkerRush), our
probability estimation models are enough to significantly im-
prove MCTS. In order to learn distributions from bots, or
humans, employing more complex strategies (such as NaiveM-
CTS), a more complex probability model might be required.

As part of our future work, we would like to explore
better probability distribution models, and compare also results
against models trained using DNNs (which would likely
require larger datasets to avoid overfitting). Moreover, in this
paper we did not consider other components of AlphaGO, such
as the value network, or learning by self-play, which we would
like to study in the future. We would also like to study the
scalability of the approach with respect to the game definition.
For example, the number of parameters to be learned from data
grows linearly with the number of possible unit-actions for the
CNB model, but quadratically for the AIM model. Variables

such as “map size” affect the MCTS search process, but not
the probability distribution model learning process. Finally,
we believe the idea of informed sampling can be generalized
to many other MCTS algorithms for other domains. We have
already started work on these ideas on StarCraft, where the
main new challenges are the fact that the game is partially
observable, and that we do not have a forward model.
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Abstract—This paper describes a search-based generative
method which creates game levels by evolving the intended
sequence of player actions rather than their spatial layout. The
proposed approach evolves graphs where nodes representing
player actions are linked to form one or more ways in which
a mission can be completed. Initially simple graphs containing
the mission’s starting and ending nodes are evolved via mutation
operators which expand and prune the graph topology. Evolution
is guided by several objective functions which capture game
design patterns such as exploration or balance; experiments
in this paper explore how these objective functions and their
combinations affect the quality and diversity of the evolved
mission graphs.

I. INTRODUCTION

Procedural content generation (PCG) in games has received
considerable academic interest in the last decade, exploring
different ways to represent, generate and evaluate game con-
tent such as rulesets, card decks, puzzles, weapons, terrain,
etc. Among the most prominent generative techniques being
explored are search-based techniques [1] which often use
artificial evolution to explore a vast search space guided by
an objective function, constraint-based techniques [2] which
carefully define the space of viable solutions, and generative
grammars [3] which define the creation and expansion rules
of an artifact and can gradually increase its level of detail.

The vast majority of PCG research focuses on game level
generation, following the trends of the game industry where
PCG primarily creates game spaces such as the dungeons
of Diablo (Blizzard 1996), the gameworlds of Civilization V
(Firaxis 2010) or the mansions of Daylight (Zombie Studios
2014). While commercial games primarily use constructive
generative techniques [1], academic interest in PCG has moved
beyond this narrow focus and has tested a broad variety of
techniques, representations, and types of game levels which
can be generated. Most often, such generators create the level’s
layout and then evaluate its spatial characteristics such as its
navigable regions [4] or functional characteristics derived from
e.g. playtraces of artificial agents running through it [5]. In
the case of [6], the generator creates a tile-based layout of
a dungeon for a role-playing game adventure module, which
is then used to derive a room connectivity graph for placing
encounters to follow the progression of a player from the
dungeon’s entrance. However, an inverse generative process
is also possible, where the structure of the player experience
(with all its possible variations and branches) is generated first
and is used to derive the spatial structure of the game level.

This paper presents a search-based approach for generat-
ing levels through an indirect representation, evaluating and
evolving the player’s sequence of possible actions rather than
the explicit sequence of rooms they have to visit. While the
level geometry and the action sequence are linked (i.e. the
latter constrains the former), the action sequence is a more
concise representation as it does not contain trivial information
such as empty rooms or walls. Moreover, the action sequences
are represented as a graph of nodes while game levels tend
to be represented as some form of bit array [7]; this allows
the design of genetic operators (for adding, removing, or
connecting nodes) which have a better locality and result
in non-trivial yet non-destructive changes to the phenotype.
Finally, parsing the graph directly allows for fast and simple
evaluations of the decision density of a player traversing a
level from start to finish. The paper focuses on the generation
of mission graphs for the dungeon crawl game Dwarf Quest
(Wild Card Games 2013), with nodes representing the start
and end of the mission, puzzles, rewards and combat sections.
Results show that many different types of mission graphs
can be generated, from simple, short playthroughs to complex
structures with multiple paths to the goal. The Dwarf Quest
levels created from these mission graphs similarly range from
straightforward and short to maze-like and grueling.

II. RELATED WORK

Procedural content generation has been used in the game
industry, and primarily for the generation of game levels,
since the 1980s with games such as Rogue (Toy and Wichman
1980) and Elite (Acornsoft 1984). Level generation has only
increased in scale and commercial appeal in recent years with
games such as Minecraft (Mojang 2011) and No Man’s Sky
(Hello Games 2016) embracing it as a major selling point.
Academic interest in level generation is similarly extensive,
with levels for first person shooters [4], puzzle games [2], side-
scrolling platformers [8], strategy games [9] and many other
game genres being generated using a diverse set of techniques.

Particularly relevant to the current work are search-based
and grammar-based techniques for generating levels. The
family of search-based PCG [1] methods attempt to gradu-
ally improve a level by applying local changes; most often,
artificial evolution is used and the local changes take the form
of mutation of tiles in a grid-based map or recombination of
the layouts of two parents to create offspring that combine the
features of both parents. In search-based PCG, it is common
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to select the most promising parents to create the next batch of
results (generation) based on a quantifiable objective function
which evaluates how appropriate a game level is: examples
include the length of its paths [9], the combat duration between
artificial agents [4] or the distribution of its treasures [5].

As their name suggests, grammar-based techniques take
advantage of generative grammars, which represent a set of re-
write rules which transform expressions. Although originally
designed to analyze and classify language phrases, grammars
can be used to transform any expression. For level generation,
grammars have been described and used extensively by Dor-
mans [10] while the most well-known commercial application
of grammar-based level generation is Spelunky (Mossmouth
2008) [11]. At its core, a generative grammar is a set of rules
which can be iteratively applied to increase the complexity
of an expression (e.g. a game level). Such rules can frame
the problem (e.g. dungeon → obstacle + treasure) or can be
recursive (e.g. obstacle → monster + obstacle). If multiple
rules can be applied to the expression, one is chosen randomly.

The dual representation for game levels (as a mission
and as a space) was first introduced in [3] and expanded
in [10], where the mission graph was created via a graph
grammar while the architecture was built from shape grammars
which rewrite mission nodes into rooms of various sizes.
The paradigm was applied to the game Dwarf Quest in [12],
where both mission graph and layout was created through
grammars: the layout solver places rooms on a 2D grid based
on the mission graph, obeying requirements on planarity and
orthogonality and applying pre-processing steps as needed to
repair non-conforming missions. In [13], the generation of
missions and spaces in Dwarf Quest was enhanced through
a human-computer interface that allowed a human designer to
interject in (or replace) the generative grammars with her own
intuitions. The tool allowed the designer to create missions
in varying levels of detail, e.g. authoring a rough sketch of a
mission and allowing the generative grammars to expand on
that sketch automatically (or with some human curation).

III. METHODOLOGY

This paper uses search-based techniques to evolve a mission
graph representing the player’s possible action sequences,
which is then used to create a level architecture for Dwarf
Quest (Wild Card Games 2013). The representation of the
mission graph and the types of nodes it can contain is
described in III-A, the details of the evolutionary approach
and its mutation operators in III-B, the objectives which drive
evolution in III-C, and finally the methods for converting the
evolved mission graphs into game levels in III-D.

A. Mission Representation

The evolved artifacts consist of mission graphs represented
as a list of nodes and edges. The nodes represent abstract
player actions, such as solving a puzzle. This abstract action
will later be transformed into a specific action by a grammar,
which is then transformed by a layout solver into one or
more rooms where gameplay will take place. A more detailed

Fig. 1. In-game screenshot of Dwarf Quest (Wild Card Games 2013), showing
a fight node with doorways to two adjacent rooms.

TABLE I
LIST OF POSSIBLE NODE TYPES SPLIT INTO CATEGORIES.

Neutral Reward Fight Puzzle
Start RandomItem Enemy DoorPuzzle
End HealthPotion Boss BridgePuzzle

BattleCard ChestPuzzle
Treasure FloorTrap
Altar

description of this process is provided in [13]. There are 14
types of nodes described in Table I, split into four categories:
fight, puzzle, reward, and neutral. Fight nodes involve ac-
tive opposition from monsters, puzzle nodes involve passive
opposition (e.g. locked doors), while reward nodes have no
opposition but provide power-ups for future fights1. Neutral
nodes are the start node, where the player is initially placed,
and the end node where the player completes the level; the
goal of the mission is to traverse the graph starting from the
start node and reaching the end node. For evolution, each node
is stored as an integer acting as the identifier of its node type.

Edges connect two nodes, and are represented by three
parameters: the index of the starting node, the index of the
ending node, and a flag on whether the edge is directed.
For example, edge(0,1,false) represents a bidirectional
edge between element 0 and element 1 in the node list. Since
the corridors in Dwarf Quest are bidirectional the current work
ignores the third parameter, but this representation supports
other game modes involving e.g. one-way portals.

B. Mission Evolution

The generative approach followed in this paper evolves an
initial population of individuals in order to maximize a fitness
function consisting of one or more objectives (covered in
III-C). The initial population consists of identical individuals
representing the simplest possible mission: a start node, an end
node and an edge between them. The following generations
increase the topology of these initial individuals, and after
the first generation the selection process favors individuals
with a higher fitness. The algorithm uses an elitism of 10%,

1Among the reward nodes, battle cards act as one-time powerups while
altars function like a shop in which potions and battle cards may be purchased.
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TABLE II
LIST OF MUTATION OPERATORS.

Name Description
Insert Node A randomly chosen edge is split and a random node

is inserted between the edge’s start and end nodes, con-
necting the inserted node via two edges to the initial start
and end nodes. This creates longer action sequences.

Add Node As the insert node operator except the chosen edge is
not deleted, providing multiple paths between its start
and end nodes (directly or indirectly via the new node).

Change Node A randomly chosen non-neutral node changes into a
random other non-neutral node type.

Delete Node A randomly chosen non-neutral node is deleted with the
following constraints: if the node has one edge, both
the node and its edge is deleted; if the node has two
edges, an edge is added linking the nodes connected to
the deleted node; nodes with 3 or more edges are not
deleted as it would be too destructive.

Add Edge Two randomly chosen nodes are connected with a bidi-
rectional edge. This can create duplicate edges, except
when the individual only contains a start and an end
node (in which case this mutation can not be applied).

Delete Edge A randomly chosen edge is deleted, unless it is a node’s
last edge.

making copies of the fittest parents in the next generation;
the remaining individuals in the next generation are mutations
of parents chosen via fitness-proportionate roulette wheel
selection. The same parent can be selected multiple times, thus
generating multiple mutated offspring. Evolution is carried
out via mutation alone, and each offspring is a copy of its
parent to which multiple mutation operators can be applied
based on a probability. Several mutation operators are designed
in order to change the topology of the mission graph while
obeying constraints to avoid undesirable results. The mutation
operators are summarized in Table II. Mutation operators are
not allowed to place more than one boss node and more than
one altar node per level; other node types are chosen in those
cases. The mutation probabilities are based on preliminary
testing and favor adding nodes and edges over deleting them,
as the latter is more disruptive in most fitness landscapes.

C. Mission Objectives

There are several desirable patterns that evolved mission
graphs should exhibit. Inspired in part by the general design
patterns of [14] and their mathematical formulations in [15],
five fitness dimensions are designed to drive evolution (alone
or combined into a weighted sum). Steps have been taken
to convert all the metrics into a [0,1] value range, with high
scores representing more desirable content. Designer intuition
was applied to specify the desirable value ranges of several of
these metrics (e.g. a desired shortest path of 5 to 10 nodes).
• Shortest Path. The number of nodes along the shortest

path between start and end nodes (ds,e) is normalized by
eq. (1) to give optimal scores to paths with 5 to 10 nodes.

fp = min
{
(1 + e3−ds,e)−1, 1− (1 + e13−ds,e)−1

}
(1)

• Exploration. Inspired by [15], this function uses flood
fill from the start node to evaluate how much the player
will need to explore the level before reaching the end

node. Eq. (2) normalizes this metric to give optimal
scores to exploration covering three times as many nodes
as the shortest path.

fe = 1− 1
3 |Fs,e − ds,e| (2)

where Fs,e is the number of nodes covered by a flood fill
algorithm starting from the start node and stopping once
the end node is covered.

• Variation. The percentage of edges that connect nodes of
different categories, excluding start and end nodes.

fv =
Ed

E
(3)

where Ed is the number of edges connecting non-neutral
nodes of different categories (e.g. a fight node and
a reward node), and E is the total number of edges
connecting non-neutral nodes.

• Dispersed rewards. Based on [15], eq. (4) evaluates the
number of nodes considered safe to rewards (i.e. nodes
which are much closer to one reward node versus all other
reward nodes).

fa =
1

N

R∑
i=1

Ai (4)

where N and R is the number of nodes and reward nodes
in the mission, respectively, and Ai the number of nodes
with a safety score for reward i above a threshold of 0.35.
Details of how safety is calculated can be found in [15].

• Balanced rewards. Based on [15], eq. (5) evaluates
whether every reward has an equal number of safe nodes
around it as every other reward.

fb = 1− 1

R(R− 1)

R∑
i=1

R∑
j=1
j 6=i

|Ai −Aj |
max{Ai, Aj}

(5)

D. From Mission Graphs to Levels

In order to create the game’s final levels, evolved mission
graphs are interpreted by the layout solver described in [12],
which is in turn constrained by the map options of the Dwarf
Quest game. Due to these constraints, three post-processing
steps must be applied on the evolved mission graphs:

1) The room with the player’s spawn point (start node) has
only one corridor. If the start node has more than one
edge, we create an empty node linked to the start node
and move the start node’s edges to the empty one.

2) If there are three nodes that are all pair-wise connected,
the layout solver cannot decide which of the rooms
to place first. To solve this, we insert an empty node
between one of the edges.

3) Dwarf Quest rooms must have at least two corridors:
non-neutral nodes with only one edge are omitted.

Furthermore, the layout solver considers the edges between
nodes as directional edges, even though they are not imple-
mented as such in Dwarf Quest, and uses them to determine
the relative positions of the rooms. To achieve that, a flooding
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TABLE III
MEAN FITNESS SCORES (AND THEIR STANDARD DEVIATION) OF THE FITTEST INDIVIDUAL AFTER 100 GENERATIONS.

Fitness fp fe fv fs fb

Single Objective 0.99 (0.00) 0.67 (0.21) 1.00 (0.00) 0.68 (0.18) 0.99 (0.02)
fp+fe 0.90 (0.05) 0.84 (0.10) – – –
fe+fv – 0.70 (0.25) 0.99 (0.03) – –
fv+fa – – 1.00 (0.00) 0.67 (0.08) –
fp+fe+fv 0.87 (0.09) 0.64 (0.12) 0.98 (0.03) – – –
fp+fe+fa 0.91 (0.07) 0.83 (0.12) – 0.73 (0.03) –
All 0.89 (0.08) 0.67 (0.17) 0.95 (0.04) 0.67 (0.03) 0.71 (0.02)

algorithm turn the bidirectional edges of the mission graph
into directed ones, based on each node’s distance to the start.
If the result has nodes with only incoming or outgoing edges,
an edge is chosen (based on the distance of its linked node to
the end node) and its direction is flipped.

IV. RESULTS

The experiments in this paper assess the performance of
evolution on mission graphs optimizing each objective indi-
vidually, optimizing all objectives simultaneously, and a few
sample combinations of objectives. Each experiment included
20 independent runs of 100 generations, on a population of 100
individuals. The reported values are averaged from these 20
runs, and the standard deviation is displayed in parentheses
or error bars (in tables and figures respectively). Statistical
significance tests are performed via two-tailed Student’s t-tests
(assuming unequal variance) with a significance threshold of
5%. Since post-processing only contributes to the interpreta-
tion of the mission and not to the mission itself, the results
below are based on the graphs before post-processing.

A. Optimization Performance

Table III displays the average scores in several fitness
dimensions of the fittest evolved individuals after 100 gener-
ations. Results are derived from optimization runs targeting a
single objective (in the single objective row), all objectives
and a sample of the possible combinations of objectives.
In case of multiple objectives, the overall fittest individuals
are considered (according to the summed fitness dimensions’
scores). Observing Table III, it is surprising that missions
evolved towards fe and fa individually have a high deviation
and low scores while they often reach higher scores when
combined with other objectives (significantly higher for fp+fe
and fp + fe + fa). Other objectives exhibit a less surprising
behavior, reaching high scores when evolution targets them
individually. Among the objectives, fv manages to achieve
near-optimal values in all runs and in all combinations of
objectives. This may point to the fact that this objective tends
to dominate others during multi-objective evolution, although
it is equally likely that its fitness score formulation in eq. (3)
can reward optimal values to a broad range of mission graphs.

It should be noted that the efficiency of the GA was tested
against a baseline which ran 20 evolutionary runs with the
same parameters, but rewarding all individuals with a constant
fitness score (i.e. random selection). The final maximum scores

(a) Single objective evolution for each
of the objective functions.

(b) Evolution towards a linear combi-
nation of all objectives.

Fig. 2. Progression of the best individuals’ fitness scores during evolution,
for the fitness functions in Table III and all fitness functions combined. The
error bars show the standard error.

of individual fitnesses in the baseline was significantly lower
than the respective single-objective optimization runs; while
fv was relatively close, fitness scores in fa and fe were
18 times and 6 times those of the baseline respectively.
Comparing the best individuals for all objectives (summed)
between the baseline and the optimization run targeting it,
similar differences were found, with optimization runs creating
individuals with 2.8 times the fitness scores of the baseline.

Figure 2a shows the optimization behavior of each fitness
dimension when used as a single objective. It is obvious that
fp and fv are quick to optimize, reaching optimal scores in the
first 10 to 20 generations; by comparison, fb reaches optimal
scores much more slowly, with a high standard deviation in
most generations (shown as error bars) indicating an unpre-
dictable optimization behavior. On the other hand, fe and fa
reach lower scores (as evidenced by Table III) and improve
much slower than the other objectives: fa in particular seems
to be the slowest to reach even sub-optimal scores.

Figure 2b shows how the scores in individual fitness dimen-
sions fluctuate in the overall fittest individual when evolution
targets the sum of all five objectives. Comparing Fig. 2b
with Fig. 2a, the differences are surprising. While fv and
fp unsurprisingly reach optimal scores quickly and remain
high throughout evolution, fb also increases quickly (reaching
far higher scores than when evolving individually) and then
drops, stabilizing at lower final scores than in Fig. 2a. The
optimization behavior of fs and fe is similarly affected: while
they reach similar final scores as in Fig. 2a, fa optimizes faster
when combined with other objectives and fe optimizes far
slower. This is likely due to the way that fe is computed:

2016 IEEE Conference on Computational Intelligence and Games (CIG’16) 81



TABLE IV
MEAN AND STANDARD DEVIATION OF THE DUNGEON METRICS FOR A SAMPLE OF THE FITNESS FUNCTIONS.

Fitness Graph Size Shortest Path Branching Factor Fights Ratio Puzzles Ratio Rewards Ratio
fp 9.25 (0.43) 9.00 (0.00) 1.85 (0.12) 0.14 (0.13) 0.39 (0.18) 0.47 (0.19)
fe 8.60 (2.67) 2.75 (0.43) 2.75 (0.21) 0.20 (0.17) 0.45 (0.19) 0.35 (0.24)
fv 4.10 (0.30) 2.90 (0.70) 1.99 (0.30) 0.23 (0.25) 0.38 (0.20) 0.39 (0.20)
fa 12.15 (4.40) 6.55 (3.47) 2.24 (0.40) 0.05 (0.07) 0.21 (0.10) 0.69 (0.21)
fb 5.90 (1.81) 3.10 (0.94) 2.38 (0.36) 0.09 (0.13) 0.32 (0.18) 0.59 (0.13)
fp+fe 22.35 (1.88) 6.36 (0.65) 2.68 (0.15) 0.14 (0.06) 0.50 (0.09) 0.36 (0.12)
fv+fe 8.75 (3.86) 2.55 (0.50) 2.87 (0.23) 0.21 (0.15) 0.37 (0.13) 0.42 (0.19)
fv+fa 12.76 (3.11) 6.03 (3.05) 2.35 (0.16) 0.19 (0.08) 0.35 (0.08) 0.45 (0.10)
fp+fe+fv 17.85 (2.35) 6.15 (0.85) 2.57 (0.13) 0.21 (0.05) 0.40 (0.04) 0.39 (0.06)
fp+fe+fa 22.75 (1.61) 6.55 (0.74) 2.58 (0.11) 0.10 (0.06) 0.35 (0.10) 0.55 (0.10)
All 19.00 (0.45) 6.35 (0.08) 2.56 (0.02) 0.18 (0.02) 0.39 (0.00) 0.43 (0.02)

(a) fp (b) fv (c) fb

(d) fa (e) fe

Fig. 3. Mission graphs of the fittest individuals evolved on single objectives.

since it depends on ds,e for its normalization procedure, when
ds,e is quickly optimized due to the fp dimension then the
number of nodes which must be added before fe reaches even
sub-optimal score increases — requiring more mutations and
thus more generations.

B. Quality of Final Mission Graphs

While observing the progress of optimization in Section
IV-A from a purely quantitative perspective provides insights
on the fitness design, it is perhaps more worthwhile to observe
the final mission graphs from the perspective of their potential
in-game use. Towards that effect, this section evaluates the
fittest final mission graphs (according to different objective
functions) in terms of their size, shortest path length, branching
factor and composition. Such metrics, which are shared by all
mission graphs regardless of the objective function used to
evolve or evaluate them, allow for a better comparison between
the patterns favored by the different objectives.

Table IV contains the metrics’ scores of the fittest individ-
uals evolved towards different objectives; the level heuristics
chosen evaluate the structure of the graph (e.g. its size and
branching factor) and the composition of its nodes (i.e. how
many of them belong to the reward, fight, or puzzle category).
We observe that the ratio of puzzles, fights and rewards tends
to fluctuate significantly (based on the standard deviation)
between individuals, even when they are optimized towards the

(a) fp + fe (b) fe + fv

(c) fv + fa (d) fp + fe + fa

(e) fp + fe + fv (f) All

Fig. 4. Mission graphs of the fittest individuals evolved on multiple objectives.

same objective. This should not be surprising considering the
fact that when adding new nodes or changing existing ones,
the node type is picked randomly. Moreover, the objectives
fp and fe do not differentiate between node types. In graphs
evolved towards fp or fe or their combination, the number of
puzzle and reward nodes is roughly equal, with fight nodes
being roughy half the number of each other node category.
In the case of fv , the fitness of eq. (3) rewards changes in
type between adjacent nodes, although this does not seem to
affect the number of fight nodes in a significant way; therefore,
variation likely alternates between reward and puzzle nodes
rather than adding more fight nodes. Finally, since fa and fb
specifically focus on reward nodes when evaluating their safety
or balance, they create mission graphs with far more rewards
than any other type. However, when combining fv with fa or
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fb (e.g. for fv + fa or all objectives), the number of rewards
stays close to that of puzzles due to the variation requirement.

Regarding the topology of the missions, from Table IV it
is obvious that fe and fa create larger mission graphs (graph
size) although that does not ensure that the end node is far
from the start node. Meanwhile, the fittest mission graphs for
fp always have a shortest path between start and end node
equal to 9 in all runs; this is not surprising as this fitness
directly rewards mission graphs with 5 to 10 nodes and the
highest value of eq. (1) is when ds,e is around 9. Additionally,
optimal graphs for fp have only slightly larger graph size than
shortest path length: all nodes of the mission graph are on
the shortest path as evidenced by the low branching factor.
Missions evolved towards fe have the highest branching factor
as fe directly rewards a much larger flood filled area around
the start node than the shortest path length to the end node.
Mission graphs for fv and fb can reach optimal values without
reaching a large graph size; this explains why in Fig. 2a these
fitness dimensions are optimized so quickly as a few mutations
which add nodes to the mission can yield optimal scores.
However, these same fitness dimensions when combined with
others (fa, fp or fe) can create large graphs which still have
high scores in that dimension (e.g. in fp + fe + fv). Finally,
combining all fitness dimensions seems to create levels with
the best traits of each objective: large graphs, with long paths
from start to end node (although not as long as when fp
is optimized alone) and a high branching factor. It should
be noted that when optimizing both fe and fp (e.g. when
combining all fitness dimensions), the graph size is larger than
when fe is optimized by itself since fp rewards longer paths,
pushing fe to add more nodes to the mission graph in order
to increase the covered area between start and end node up to
triple the length of the shortest path.

Figures 3 and 4 show the fittest mission graphs for each
of the objectives when optimized alone or in combination,
respectively. These graphs support the conclusions from Table
IV: the graph for fp has no side-passages outside the single
path to the end node, the graph for fe is large but only one
node separates start and end node, the graph for fv and fa
are very small while the graph for fa mostly contains reward
nodes. It is worthwhile to investigate why fv and fa are
optimal despite their small size: the graph for fv has only
two non-neutral nodes, which are different and thus assign an
optimal fv score according to eq. (3). Indeed, having more
than three non-neutral nodes (granted that there are three such
categories) would be more difficult to optimize due to random
node assignment, causing fv to actively favor smaller graphs.
On the other hand, the graph for fb has two rewards placed
symmetrically to all other nodes: due to the reward nodes’
connections, all nodes are actually unsafe (i.e. equally close)
to both rewards and thus the mission graph is “balanced” in
terms of safe areas around rewards, with the caveat that there
are no such safe areas for either reward.

Observing Figure 4, we observe that all graphs are much
larger and complex when optimizing multiple objectives. The
paths from start to end node also seem more ‘interesting’ from

(a) fp (b) fe

(c) fv (d) fa

(e) fb (f) All

Fig. 5. Graph size versus average branching factor of all final populations
evolved for different objectives.

the perspective of progression between node types (fe + fv is
an exception, as the hero can reach the exit node by crossing
one fight node). Of particular note is the graph for fa + fv ,
where the path to the end node (which lacks many side-
passages) consists of shifts between reward nodes and fight
or puzzle nodes, shaping a gameplay that oscillates between
tension and relaxation. When all objectives are optimized
in Fig. 4f, an interesting pattern emerges: there is extensive
branching in the first steps between start and end node, so if
the hero takes the right choice at the start then they can reach
the exit quickly and without much decision-making later (no
branching paths near the end node) or much challenge (one
fight along that path). However, if the hero takes the wrong
initial decision they can get lost in mazelike side-passages
which can make them go in circles back to the start node.

C. Expressivity Analysis

While observing the fittest mission graphs in Section IV-B
provides vital insight into the patterns favored by these objec-
tives, only the one fittest individual per run is assessed. On
the other hand, the expressive range [16] of the generator can
assess the variety of possible results when optimizing different
objectives. The two dimensions explored in this paper are the
graph size and branching factor: both of these metrics are not
directly targeted by the objectives, as suggested by [16], and
are indicative of the actions the hero has to make and the
decisions they have to take respectively.

Figure 5 shows heatmaps of the branching factor and graph
size values of the final populations of all runs, i.e. a total of
2000 individuals per objective. We observe that the fp, fv and
fb have the most consistent results, with little spread and most
individuals centered in specific areas of this expressivity space.
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The vast majority of graphs evolved for fp have a branching
factor of less than 2 and a size of 9 nodes, although when the
branching factor increases the graph size also increases (since
the shortest path is likely still 9 nodes, the extra branching
paths add to the graph size). Most graphs evolved for fv are
very small (4 or 5 nodes) and no mission graphs have more
than 6 nodes; a similar expressivity is exhibited by fb although
the branching factor is higher. In contrast, graphs evolved for
fe or fa exhibit more expressivity, being able to create very
small mission graphs (e.g. with only start and end nodes in the
case of fa as shown by the bottom-left corner of its heatmap)
but tending towards larger mission graphs. Graphs evolved
towards fe tend towards more branching paths than those
evolved via fa, which tend towards larger graphs. Finally,
when combining all objectives, the expressivity of the results
is interesting as it is not similar to that of any individual fitness
dimension. Evolved graphs of Fig. 5f are larger with average
branching factors, and the values are less dispersed on either
metrics than for most of the dimensions. This points to an
interesting consensus reached by the — sometimes conflicting
— fitness dimensions being optimized.

D. Example Level

Since the player will experience the evolved mission graphs
as a spatial layout of the dungeon of Dwarf Quest, it is
worthwhile to investigate how such a level architecture would
be. The evolved mission graphs are post-processed and then
refined via the mixed-initiative grammar-based system of [13],
which creates a larger and more detailed mission graph. This
refined mission graph is converted into Dwarf Quest levels by
the layout solver described in [12].

Figure 6 illustrates level architectures for Dwarf Quest
based on the evolved mission graphs of Figures 3 and 4. The
actual rooms which contain nodes in the mission graph are
shown in circles of different colors. The level in Fig. 6a is
created from the mission graph of Fig. 4f, which was evolved
to maximize all objectives. It is immediately obvious that most
rooms in the final level layout are empty and in many cases
form long corridors to connect the nodes. This is due to the
high branching factor of the graph in Fig. 4f, which forces
the layout solver to connect areas far away spatially to their
adjacent nodes in the mission graph. In contrast, the central
part of the dungeon has fewer empty rooms, with only a couple
of rooms between each pair of mission graph nodes.

It should be noted that simpler mission graphs with less
branching, such as the graph evolved for fp in Fig. 3a, result
in far fewer empty rooms as the level is essentially a single
path from start node to end node (see Fig. 6b). Similarly the
small yet branching mission evolved for fb in Fig. 3c creates
a similarly simple level (see Fig. 6c) which contains several
empty rooms without being exaggerated. The layout solver
used for these conversions seems less suited for creating levels
with high branching factors or complex topologies, which
is also evidenced by the need for the post-processing steps
described in Section III-D. By adjusting the layout solver to

(a) Level layout for all objectives

(b) Level layout for fp (c) Level layout for fb

Fig. 6. Level layouts created from missions of Fig. 4f, 3a and 3c. Rooms
included in the mission graph are highlighted as circles of different colors.
Red, yellow, and blue circles indicate fights, rewards, and puzzles respectively.
Gray circles are the start node (left-most) and end node (right-most). In the
above illustrations, bright rooms were necessary to place this mission into
space, while dark rooms were added as part of the variation process.

place graph nodes closer to one another, many of the issues
of extraneous rooms could be avoided.

V. DISCUSSION

The results in this paper highlighted the strengths and
weaknesses of search-based mission generation, as well as
the patterns favored by different objectives of Section III-C.
Overall, evolving towards a single objective tends to result
in one-dimensional graphs which e.g. have no branching (and
thus require no decision-making from the player) or have very
trivial level traversals with a couple of non-neutral nodes.
Meanwhile, aggregating the scores of multiple fitnesses into a
simple sum results in more interesting mission graphs with
emergent features such as a larger size or pacing between
challenge and relaxation. Observing the way each fitness
dimension is optimized when aggregating all objectives hints
at the fact that some of the objectives are conflicting and thus
a multi-objective optimization approach [17] would probably
enhance the quality of the results. However, even with the
admittedly naive aggregated approach the outcomes are use-
ful: optimizing all objectives simultaneously creates the most
interesting missions with long paths to the end, multiple side-
passages and a variety of fight, reward and puzzle nodes.
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When assessing the quality of the fittest individuals with
respect to their topology and variety of nodes, it is obvious
that there are far fewer fight nodes than other types. From
a designer’s perspective, fights are the most challenging and
interesting encounters to be had in the dungeon as they involve
the most varied game mechanics (including expending rewards
found in the dungeon, such as battle cards). The lack of
fight nodes was an artifact of the random node type selection
in the different mutation operators: the two types of fight
nodes were less often picked than the 4 or 5 node types in
the other categories, especially since the boss node could be
picked once per level. This could be countered by biasing
the choice of fight nodes with a higher probability. More
interestingly, designing objectives on the ‘quality’ of the fight
node progression could also enhance the importance of fights
in the generated missions. To a degree, the variation (fv)
objective achieves that effect, and mission graphs that optimize
it (such as in Fig. 4c) alternate between fight or puzzle nodes
and reward nodes. However, putting explicit emphasis on fight
nodes and e.g. the placement of the boss node towards the end
of the mission could improve the current results.

As noted in Section IV-D, the level layouts created from
the mission graphs often contain too many empty rooms.
The mission generator for the most part creates graphs that
adhere to the rules of the level generator, especially after post-
processing. Post-processing steps may seem overbearing, such
as omitting nodes with one edge: these steps are less destruc-
tive than it seems, however, since the mutation operators rarely
result in single-edge nodes (none of the examples in Fig. 3
and 4 have non-neutral nodes with one edge). Nonetheless,
the resulting spatial structure may be less suited for gameplay
than the mission graph suggests. Apart from changes to the
level layout solver in order to better handle the branching
mission graphs created by some objectives, this limitation can
be addressed by evaluating the final level instead of — or in
conjunction to — the mission graph. An interesting approach
could be to evaluate how much empty space (i.e. non-node
rooms) are in the final level layouts of a certain mission graph,
applying a penalty to its fitness (calculated as per Section
III-C) proportionate to the amount of empty rooms.

VI. CONCLUSION

This paper described an approach for generating game
levels by evolving their indirect representation (a player’s
action sequence) rather than their direct representation (room
layout). Mission graphs representing the possible paths of
the player for reaching the goal (end node) were evolved
towards different objectives inspired by general game design
patterns such as exploration, balance and safety of resources
[14]. Experiments in evolving mission graphs towards different
objectives individually and in conjunction showed that while
different objectives favor different patterns, combining multi-
ple objectives (or even all objectives) results in more complex
and more interesting mission graph structures. These more
complex graph structures similarly result in quite complex
level layouts, which may increase player fatigue when navigat-

ing them. How to address such limitations, and evaluate both
the graph structure and the final level layout (i.e. the direct
and indirect representation of a game level) is a promising
direction for future research.
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Abstract—In procedural content generation (PCG), how to
assure the quality of procedural games and how to provide
effective control for designers are two major challenges. To tackle
these issues, this paper exploits the synergy between rule-based
and learning-based methods to produce quality yet controllable
game segments in Super Mario Bros (SMB), hereinafter named
constructive primitives (CPs). Easy-to-design rules are employed
for removal of apparently unappealing game segments, and sub-
sequent data-driven quality evaluation function is learned based
on designer’s annotations to deal with more complicated quality
issues. The learned CPs provide not only quality game segments
but also an effective control manner at a local level for designers.
As a result, a complete quality game level can be generated online
by integrating relevant constructive primitives via controllable
parameters. Extensive simulation results demonstrate that the
proposed approach efficiently generates controllable yet quality
game levels in terms of different quality measures.

I. INTRODUCTION

Procedural content generation (PCG) is of great interest to
game design and development as it generates game content
automatically. In PCG research, a number of methods have
been proposed for game content generation in different game
genres [1]. Super Mario Bros (SMB), a classic 2D platform
game, has become a popular test bed for PCG-related research
[2], [3]. In this platform game, a player runs from the left
side of the screen to the right side, fights enemies, and
rescues Princess Peach. SMB has a number of different game
elements (e.g., enemies, tubes, and cannons) that can be used
in PCG. In recent years, several SMB level generators have
been developed for level generation track of the Mario AI
Championship [4] as well as presented in publications [5]–
[11].

Although wide varieties of PCG techniques have been pro-
posed, there are still some open challenges faced by SMB level
generation as well as generic PCG techniques. One challenge
in PCG is how to assure the quality of procedural content.
Procedural levels sometimes contain unplayable structures [1],
aesthetically unappealing items [8], unexplainable difficulty
spikes [12] and unreachable resources [13], which could result
in negative gameplay experience. Another challenge is how to
effectively control the geometrical features (e.g., coordinate
of each enemy and tube) and some properties of procedural
levels (e.g., linearity [14] and density [6]). In general, a game
designer has to encode the desired properties in handcrafted
rules (e.g., theory-driven evaluation functions) to control the
procedural levels [12], that could slow down the level gener-
ation [13].

This paper presents an alternative approach to address the
aforementioned issues. Motivated by the learning-based PCG
(LBPCG) framework [16] and other existing works, we explore
the content space in SMB from a different perspective by tak-
ing short game segments into account. To address the quality
assurance issue, we exploit the synergy between rule-based and
learning-based methods. Easy-to-design rules are employed
for removal of apparently unappealing game segments, and
then a data-driven evaluation function is constructed based on
designer’s annotations about the quality of game segments.
Once the data-driven evaluation function is constructed, we use
it along with the aforementioned rules to produce high qual-
ity game segments, hereinafter named constructive primitives
(CPs). Those CPs not only provide quality game segments but
also enable to control the geometry and the level properties
effectively. As a result, a complete quality game level can
be generated online by integrating relevant CPs together via
controllable parameters. Experimental results demonstrate that
our data-driven evaluation function could implicitly encode
multiple quality-related criteria, and improve the quality of
procedural level with respect to different quality measures.
Results also show that our generator is capable of generating
procedural levels of desired properties online.

The main contributions of the paper are summarized as fol-
lows: a) a novel approach to producing quality yet controllable
game segments or CPs in SMB; b) a controllable online level
generator based on CPs; and c) a thorough evaluation of our
proposed approach.

II. LEARNING CONSTRUCTIVE PRIMITIVES

In this section, we first describe the motivation underlying
our approach and then present our approach to producing
constructive primitives (CPs) in SMB.

A. Motivation

By a close look at existing SMB level generators, we
observe that the content space on all the complete procedural
levels is huge. As there are an enormous variety of combina-
tions among game elements and structures at procedural levels,
an approach working on such content space inevitably faces a
greater challenge in managing quality assurance and generation
efficiency in PCG. Nevertheless, a complete procedural level
in SMB can be decomposed into a number of segments as
evident in [7]–[9]. Partitioning levels into fixed-size game
pieces permits us to decompose the level design problem [15].
As a result, all the possible segments form a new content
space of lower complexity. We believe that it is less difficult to

2016 IEEE Conference on Computational Intelligence and Games (CIG’16) 86



understand the properties and quality of short game segments
and hence the use of those segments as building blocks would
facilitate tackling aforementioned non-trivial issues in SMB.

For quality assurance, there are generally two method-
ologies in developing such a mechanism in PCG [1], [16]:
deductive vs. inductive. To adopt the deductive methodology,
game developers have to understand the content space fully
and know how to formulate/encode their knowledge into rules
explicitly. In the presence of a huge content space, however, it
would be extremely difficult to understand the entire content
space. Thus, less accurate (even conflicted) rules might be used
in PCG, which could generate low quality games. Nevertheless,
we observe that some rules are easy to design/identify while
a complete set of rules for evaluating the content quality are
hard to handcraft. For example, overlapped tubes in SMB is
unacceptable and can be easily detected with a simple rule.
On the other hand, a learning-based PCG (LBPCG) framework
[16] was recently proposed where an inductive methodology,
i.e. learning from data, was advocated for quality assurance.
As game content is observable but less explainable, it is easier
for game developers to make a judgement on quality for a
specific game by applying their knowledge implicitly than to
encode their knowledge into rules or constraints [8]. Thus,
the LBPCG suggests that a quality evaluation function should
be learned from data annotated by game developers. Hence, a
hybrid approach to quality assurance would allow us to exploit
the synergy between rule-based and learning-based methods.

For controllability, game developers usually encode desired
properties (e.g., linearity, leniency) into theory-driven evalu-
ation functions (e.g., [5], [7]). Then, game level of desired
properties can be generated via generate-and-test method,
which is not efficient. We observe that it could provide more
efficient and effective control for designers if they directly
select game from desired region of content space instead of
using theory-driven evaluation functions to explore the content
space.

With the motivation described above, we propose a hybrid
approach to producing CPs, quality yet controllable game
segments, in SMB. Fig. 1 illustrates the main steps of our
approach. First of all, game developers choose a region of
interest from the entire content space via controllable parame-
ters. Then game segments in the region of interest are evaluated
by a set of easy-to-design handcrafted conflict resolution rules
and the subsequent data-driven quality evaluation function that
deals with more complicated quality issues. Survivals of game
segments become CPs.

Fig. 1. The constructive primitive (CP) generation process for SMB.

B. Content Space

We observe that it is sufficient to cover rich yet diverse
types of levels by using a game segment of 20 in length and 15
in height. Some typical game segment instances are illustrated
in Fig. 2.

Fig. 2. Game segment instances.

The SMB content is naturally specified by a 2D grid similar
to an image. However, this leads to a 300-dimensional content
space in our case where there are a lot of redundancies, e.g., the
uniform background. In this paper, we employ a list of design
elements as our content space representation where a design
element refers to an atomic unit used in a procedural level
generation, e.g., enemy, boxes, coins, cannon, and gap. By
using this representation, we can not only specify the content
space concisely but also gain the direct controllability on low-
level content features, e.g., coordinates of enemies and coins.
As listed in Table I, 85 controllable features are employed
in our representation. Such representation is similar to the
previous work [5], [6]. In this representation, x, y, width,
height, and type refer to the x coordinate, y coordinate, width,
height, and type of each design element, while wbefore and
wafter refer to width of the platform before and after each
tube/cannon. Among these features, types of gap, tube, boxes
and coins are nominal features, while the rests are ordinal
features. In our content space, the design elements in each
type are sorted in decreasing order along x dimension.

TABLE I. CONTENT FEATURES

ID Description
1 height of initial platform
2 number of gaps
3 - 11 x, width and type of the 1st - 3rd gap
12 number of hills
13 - 18 x, width and height of the 1st and 2nd hill
19 number of cannons
20 - 34 x, y, height, wbefore and wafter of the 1st - 3rd cannon
35 number of tubes
36 - 53 x, y, height, wbefore, wafter and type of the 1st - 3rd tube
54 number of boxes
55 - 62 x, y, width and type of the 1st and 2nd boxes
63 number of enemies
64 - 78 x, y and type of the 1st - 5th enemy
79 number of coins
80 - 85 x, y and width of the 1st and 2nd coins

While design element parameters in Table I have a wide
range that specifies a huge content space, we confine our
concerned content space to a non-trivial region of the content
space by setting the maximum number of gaps, hills, tubes,
cannons, boxes, coins, and enemies appeared in a game seg-
ment are 3, 2, 3, 3, 2, 2, and 5 respectively. These design
decisions are made based on our game design knowledge.
Consequently, there are roughly 9.72 × 1037 game segments
in our content space. This content space should be sufficient
for generating content with a variety of geometrical features,
level structures and difficulties required by SMB.

The content space defined in Table I is an explicit control-
lable space, which means that game designers can effectively
control the properties of game segments by specifying the
desired region of content space. For instance, a pure linear
segment can be generated if designers set the number of hills,
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y coordinate of tubes and cannons as zero, and set the rest of
controllable features on random; a mountainous segment can
be generated by setting the number of hills as 1 or 2, and set
the rest of controllable features on random.

C. Conflict Resolution

In our content space, there are quite a number of
game segments that contain conflicting design elements. For
instance, “. . . Tube(5,0,2,0,0,normal). . . Cannon(5,0,4,0,0). . . ”
represents a game segment of at least one tube and one cannon.
The x, y, height, wbefore, wafter, and type of this tube
are 5, 0, 2, 0, 0, and normal respectively, while the x, y,
height, wbefore, and wafter of this cannon are 5, 0, 4, 0,
and 0 respectively. We can see from above description that
their x coordinates are same. Thus, the cannon and tube are
overlapped together and this conflicting situation makes the
segment aesthetically unappealing.

To address this issue, we adapt a class of rules presented
in [5], [6] for our requirement. Whenever two design elements
in a game segment are overlapped together, this game segment
is discarded during CP generation. In our approach, gap,
enemy, tube, cannon, boxes, and coins are not allowed to be
overlapped with each other, while hills of different heights can
be overlapped together. In addition, enemy/tube/cannon can be
overlapped with hills.

D. Learning Constructive Primitives

After filtering out those obviously unappealing game seg-
ments, the tailored content space still contains a lot of low
quality segments, e.g., segments of unplayable or aesthetically
unappealing structures, segments of unreachable or unbalanced
resources, and segments that lack a sense of progression.
Inspired by the LBPCG work [16], we would learn a quality
evaluation function from annotated game segments to remove
unplayable/unacceptable segments. To carry out this idea, a
binary classifier is trained where its input is the 85D feature
vector of a game segment and its output is a binary label
that predicts the quality of a game segment. Binary classifier
rather than multi-class classifier is chosen since it is easier for
annotator to make binary decision about segment quality and
avoid using knowledge explicitly. Game segments labeled as
positive are CPs and would be used for online level generation
described in Sect. III.

To establish a data-driven evaluation function, training
examples are required but have to be provided from game
developers. As the tailored content space is still huge, it is
infeasible to annotate all possible games in this content space.
To keep the content space manageable, a proper sampling can
be applied to achieve a much smaller data set of the same
properties as the content space. Motivated by the success in the
LBPCG work [16], we conduct clustering analysis on the data
set and further employ active learning based on the clustering
results to create a data-driven quality evaluation function (or
classifier). Clustering algorithm is used since it can get a better
estimation of data distribution, while active learning is chosen
to minimize a game developer’s efforts in data annotation. In
summary, this CP learning process is depicted in Fig. 3.

Fig. 3. The constructive primitive learning process.

1) Sampling: For sampling, we apply the simple random
sampling (SRS) with replacement [17] to the tailored content
space for a manageable data set. In contrast to other sampling
techniques, SRS is an unbiased sampling technique which
can ensure that each game segment in this content space has
the equal probability of selection. In addition, it can handle
unknown data distribution without any prior knowledge since
we do not know the distribution of content space. As a result,
we randomly set all the controllable features in the tailored
content space to form a data set.

In sampling, an important question is how large a sample
should be. Large sample size can guarantee that sample is
representative enough, but can also result in increased human
work. The size of our data set is determined via the sample
size determination (SSD) algorithm suggested in [17] since this
algorithm is designed for simple random sampling. According
to SSD algorithm, necessary sample size can be calculated as
follow:

n ≈ z2δ2

d2
=

1.962 × 49.4490

0.102
= 18996.32 ≈ 19000 (1)

where z is the z-score 1.96 for 95% confidence interval, and
d is 0.10 which refers to a small allowable difference. These
values are suggested in typical SSD algorithm. δ2 is 49.4490
which refers to maximum variance of content space among
different features. The value of δ2 is determined using an
engineering guesstimate [18]. With the theoretical justification,
the SSD can decide the size of a sampled data set without loss
of non-trivial information. By applying the SSD to our tailored
content space, it is suggested that a data set of 19,000 games
should be sufficient.

2) Clustering: We apply the CURE algorithm [19] on
the sampled segment set for clustering analysis since this
hierarchical clustering algorithm can deal with data set with
unknown data distribution and discover the clusters of different
sizes. We can achieve good clustering results without any
prior knowledge of data distribution within our data set [20].
There are four parameters in CURE algorithm: the number
of clusters, sampling rate, shrink factor, and the number of
representative points. By using the dendrogram tree achieved,
the number of clusters is automatically decided based on the
longest k-cluster lifetime [21]. The rest of parameters are set to
defaults suggested in [19]; i.e., 2.5% for sampling rate, 0.5 for
shrink factor and 10 representative points, respectively. Due to
the existence of two different feature types, i.e. nominal and
ordinal, we employ the mixed-variable distance metric [20] in
the CURE. After clustering, we found 106 clusters from this
sampled data set. Game segments within same cluster tend to
have similar structures (e.g., same number of design elements),
while segments in different clusters may look different. The
clustering results would be used to facilitate active learning.

3) Active Learning: For binary classification, there are two
error types: false negative (type-I error) where a high quality
segment is misclassified as low quality and false positive
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(type-II error) where a low quality segment is misclassified
as high quality. Obviously, a type-II error could result in a
catastrophic effect while a type-I error simply shrinks the
content space slightly. As a result, we formulate our classi-
fication as a cost-sensitive learning problem where the type-II
error incurs a higher cost. By looking into several state-of-
the-art classification techniques, we found that the weighted
random forests (WRFs) [22], a cost-sensitive oblique random
forests [23] classifier, fully meet our requirements for active
learning. Random forests are an ensemble learning method
for classification and regression by training different decision
trees based on different subsets of the data. Such classifier can
handle data set with different feature types, and allows us to
know which feature is more important during training. WRFs
is a cost-sensitive version of random forests in which the class
weights are taken into consideration. Such algorithm is easy
to incorporate into typical random forests, and allows us to
control the weights of two types of errors easily. In our work,
the parameters of WRFs [22] are set via validation as follows:
2:1, 50, 5, 10, and 9 for the cost ratio, the number of trees,
the number of combined features, the number of feature groups
selected at each node, and depth of trees, respectively.

After clustering, a small number of segments are selected
from each cluster to form a validation set in order to evaluate
the generalization performance of a classifier during active
learning. The number of segments selected from each cluster is
proportional to the cluster size. Totally, there are 800 segments
in the validation set. One of author annotates each game
segment in the validation set by visual inspection. In general,
it takes us less than five seconds to annotate a game segment.

During active learning, we randomly choose 100 segments
and annotate them via visual inspection to train the initial
WRFs. In each iteration, we find 100 segments of the highest
uncertainty scores, defined by si = 1−P (ŷ|xi) where ŷ is the
predicted label of segment xi, and P (ŷ|xi) is the probability
of this prediction, and annotated them to be examples for re-
training WRFs. The active learning stops when the accuracy
of WRFs on the validation set no longer increases. Although
there are other active learning techniques, our active learning
algorithm based on uncertainty sampling is efficient to handle
a data set of of 19,000 points. Such algorithm is summarized
in Algorithm 1.

Once the evaluation function is learned, we use it along
with the rules described in Sect. II.C to produce CPs in a
generate-and-test way, and a combination of proper CPs via
controllable parameters leads to an online procedural level
generator as described in next section.

III. ONLINE LEVEL GENERATION

As described in Sect. II, CPs provide quality building
blocks and hence lumping them together can easily lead to
a procedural level of aesthetically appealing content with a
path between entrance and exit. In SMB, there are a variety of
procedural levels that can be categorized based on a number
of properties, e.g., density [6], leniency [14], and linearity
[14]. As our CPs are represented by design elements, we
can generate a procedural level of pre-setting property via the
corresponding controllable level generation parameters.

Algorithm 1 Active Constructive Primitive Learning
Input: Sampled data set U and clustering results on U .
Output: WRFs binary classifier.
Initialization: Based on the clustering analysis results,
create a validation set V of 800 examples.
Active Learning:
Annotate 100 segments randomly selected from U via visual
inspection to form a training set L. Train WRFs on L to
obtain an initial binary classifier.
repeat

for all xi ∈ U do
Label xi with the current WRFs.
Calculate the uncertainty score si of xi.

end for
Annotate 100 segments of the highest uncertainty score
in U to form a new training set L.
Re-train the WRFs with the examples in L.

until The overall accuracy on V does not increase.
return Classifier WRFs.

Motivated by the previous works [6], [14], we employ three
controllable level generation parameters, i.e., density, leniency,
and linearity, to generate a variety of levels online. The density
controls the complexity of geometrical structures, e.g., a high
density leads to many overlapping hills. The leniency decides
the level difficulty in gameplay; intuitively, a high leniency
results in an easy-to-play level. The linearity is yet another
parameter that ensures there is a linear structure in a generated
level; a large value leads to a level of highly linear structures.
Each level generation parameter is set to {1, 2, 3}, and carried
out by setting the proper values to relevant content features
in CPs as defined in Table II. It is worth stating that linearity
may conflict with density. Hence, we stipulate that the density
and linearity parameters cannot be used together.

TABLE II. PARAMETERS USED IN GAME GENERATION

Parameter Value Description
1 number of enemies ≥ 2; number of gaps ≥ 1

Leniency 2 number of gaps ≤ 2; width of gaps < 3; 1 ≤
number of enemies ≤ 3; enemies without wings

3 number of enemies ≤ 1; number of gaps ≤ 1; number
of cannons = 0; width of gaps < 3; no turtle enemy

1 0 ≤ number of hills ≤ 2; height of the first platform
= 2

Linearity 2 y coordinates of tubes and cannons = 0; number of
hills ≤ 1; number of hills ≤ 1; height of the first
two platforms = 2

3 y coordinates of tubes and cannons = 0; number of
hills = 0; number of hills = 0; height of the first
three platforms = 2

1 0 ≤ number of hills ≤ 1
Density 2 0 ≤ number of hills ≤ 2

3 number of hills ≥ 1; number of gaps ≥ 1

To generate a complete level, we first specify the desired
values to controllable parameters that fix the values of relevant
content features and set other irrelevant content features in
game segments randomly. Thus, game segments of desired
properties are generated, and evaluated by rule-based and
data-driven quality evaluation functions. Survivals of game
segments become CPs, and an iterative process is undertaken
by merging the CPs of the specified properties together until
reaching a pre-specified length.

As depicted in Fig. 4, our CP-based online generation
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algorithm first uses a generate-and-test method to produce
CPs for quality assurance, and a complete procedural level is
then constructively generated by sequentially lumping CPs of
specified properties together via setting controllable parameters
at a local level.

Fig. 4. Online procedural level generation.

IV. EXPERIMENTAL RESULTS

In this section we report results in the CPs learning and
level generation to study the implications and benefits of
our data-driven evaluation function, and examine whether our
generator is capable of generating controllable yet quality
game level efficiently in terms of different quality measures.
The game engine adopted in our experiments is a modified
version of the open-source Infinite Mario Bros used in the
Mario AI Championship [4], [24]. Our level generator that
yields results reported in this section are publicly available on
our project website1.

A. Results on Constructive Primitives Learning

Based on the learning algorithm described in Sect. II, Fig. 5
illustrates the evolutionary performance of our active learning
on the validation set, including types-I and -II error rates as
well as their average, the half total error rate (HTER). From
Fig. 5, it is observed that the active learning converges after
1100 data points.

Fig. 5. Performance evolution on the validation set during active learning.

While the final HTER is around 11.67%, the corresponding
type-I error rate is around 19.66%. It is evident from Fig. 5
that our cost-sensitive classifier performs well in minimiz-
ing the type-II error; the type-II error rate is approximately
3.69%. Among those segments that yield type-II error, about
0.74% segments contain unreachable resources and the rest
segments consist of unexplainable difficulty spikes, imbalanced
resources, and aesthetically unappealing structures. While such

1http://staff.cs.manchester.ac.uk/s̃hipa/mario.html

segments may result in negative gameplay experience, fortu-
nately, none of unplayable segments in the validation set was
misclassified.

Some correctly classified and misclassified instances are
shown in Fig. 6. Segment instances in Fig. 6 (A) and (B) are
positive examples, while instances in Fig. 6 (C) and (D) are
negative examples. The label of each instance is determined
according to our labeling criteria. For instance, the 1st example
in Fig. 6 (C) consists of unplayable structure which does
not allow a player to pass through. The 4th example in
Fig. 6 (C) contains unreachable boxes. The 1st, 2nd and 3rd
examples in Fig. 6 (D) consist of unbalanced resources and
difficulty spikes. All the game elements (e.g., boxes, enemy,
cannon, gap) are centralized in the middle of game segments,
which will dramatically increase the difficulty in the middle
of game segments. The 2nd example in Fig. 6 (C) contains
simple structures which lack a sense of progression. The
rest segments in Fig. 6 (C) and (D) consist of aesthetically
unappealing combination since enemies, gap, boxes, tubes and
cannons are arbitrarily lumped together without any meaning.
In contrast, segments in Fig. 6 (A) and (B) contain playable
structures, reachable resources and meaningful combination
which capture an area of challenge and convey a sense of
progression. Among all these instances, game segments in
Fig. 6 (B) and (D) will yield type-I and -II errors respectively.

Fig. 6. Segment instances. (A) Correctly classified positive examples. (B)
Segments leading to type-I error. (C) Correctly classified negative examples.
(D) Segments leading to type-II error.

By analysing clustering analysis results, we found that
segments located in same region of content space tend to
be classified as same category. For instance, the 5th example
in Fig. 6 (B) and rest examples in its cluster are classified
as negative since most instances in this cluster are annotated
as negative examples. During training, WRFs finds a single
split that optimizes the information gain to classify these
instances. Thus, some of them are misclassified. The 2nd
example in Fig. 6 (B) is also misclassified due to same reason.
In addition, segments of complicated data distribution are
likely to be misclassified. For instance, the 5th example in
Fig. 6 (C), 4th and 5th examples in Fig. 6 (D) share similarities
since they both have boxes above the rock gap, but these
instances are located in different regions of content space
due to their representations. During training, WRFs has to
find three different splits instead of one split to classify these
segments. Thus, some of them will be misclassified since these
splits cannot optimize information gain. The data distribution
of this type of segments is complicated since these data points
look similar from perspective of annotator, but spread through
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whole content space due to their representations. This is the
main source of this type of errors. The 1st, 3rd, and 4th
examples in Fig. 6 (B) are also misclassified due to this reason.
Moreover, some “rare segments” are likely to be misclassified.
The proportion of some types of game segments (see the 1st,
2nd and 3rd examples in Fig. 6 (D)) in whole content space
is small. On one hand, those segments are located in several
quite small regions of the content space, and unlikely to be
selected in both training and validation set. On the other hand,
WRFs uses greedy strategy to find an optimal split according
to the split criteria. These “rare instances” maybe overlooked
and then misclassified since these splits cannot optimize the
information gain.

Experimental results demonstrate that our data-driven eval-
uation function can effectively eliminate low quality segments
in terms of our labeling criteria. This argument is supported by
the low type-II error achieved from active learning. In addition,
this function can implicitly encode multiple quality-related
criteria, which could avoid the design and use of multiple
evaluation functions.

B. Quality Analysis

This section further examines the implications and benefits
of our data-driven evaluation, and compares our approach
to other generators in terms of quality. Unlike [8] that uses
human subjects to evaluate their generator, we use different
quality measures to compare our system with others since
these metrics are capable of evaluating large numbers of levels
objectively.

In this experiment, we use strategic resource control (fs),
area control (fa), area control balance (ba), and exploration
(E) defined in [25] as our metrics for evaluation since they
are domain-independent metrics which are verified by game
developers. Among these metrics, fs measures how close
treasures (e.g., coins, boxes) are to enemies; fa measures the
placement of design elements (e.g., enemies, tube flowers,
cannons) away from each other; ba measures how balanced
distribution of design elements; E evaluates the exploration
efforts to reach the exit starting from entrance. Mathematical
definitions of these metrics are defined in [25]. Apart from
above measures, we also employ Peter Lawford’s A* agent
[24] in small state to evaluate the playability (P ) of game
levels since this agent can survive from most playable game
levels no matter how difficult they are.

As we aim to examine the benefits of our data-driven
evaluation function, we use our generator to generate two
sets of levels. Each level in the first set is composed of
randomly generated constructive primitives, while each level
in the second set is composed of game segments which survive
from conflict resolution rules but are rejected by data-driven
evaluation function. For a thorough evaluation, we compare our
approach with a number of SMB level generators, including
Notch [3], Grammar Evolution (GE) [6], and generators devel-
oped for level generation track of the Mario AI Championship
[4]. Each of level generators generates 100 procedural levels
of 200 in width and 15 in height for evaluation in terms of
aforementioned metrics. The level generation parameters used
in ours are set randomly and others use their default settings.
The E scores are normalized to the range of [0,1].

Table III illustrates the mean and the standard deviation
of quality scores achieved from different level generators. We
now use one-tailed Wilcoxon rank sum test to make a pairwise
comparison between our approach (levels in set 1) and others
with respect to different quality metrics. From Table III, it
is evident that both ours (levels in set 1), GE generator, and
Mawhorter’s generator receive high fs scores, which implies
that treasures (e.g., coins, boxes) in these levels are close to
enemies acting as their “guardians” [25]. In contrast, design
elements (e.g., enemies, boxes, coins) in procedural levels of
set 2 are arbitrarily lumped together without any reason, which
leads to relatively lower fs score. Regarding area control (fa)
and area control balance (ba), our generator tends to generate
levels with significantly higher fa score than others and moder-
ate ba score, which implies that design elements (e.g., enemies,
tube flowers, cannons) in our procedural levels are placed far
away from each other, and have balanced distribution. For
exploration (E), Mawhorter’s generator [11] tends to generate
levels with complicated structures and multiple paths, which
leads to highest E score. In contrast, ours generate levels
of low E score in comparison to others due to the initial
content space defined in our approach. We found that our
density parameter could increase E score since it controls
the complexity of geometrical structures. Such result is not
presented here since this experiment only examines the bene-
fits of data-driven evaluation function instead of controllable
parameters. For playability (P ), both ours, Notch generator and
Takahashi’s generator achieve a high percentage of playable
levels. The playability results of these three approaches are
significantly better than the rests. Please notice that P score
value is dependent on A* agent’s gameplay performance and
sampled levels. Procedural levels that A* agent cannot pass
through are not necessarily unplayable.

TABLE III. AVERAGE QUALITY SCORE.

Generator fs fa ba E P

Ours (set 1) 0.34(0.11) 0.46(0.08) 0.48(0.07) 0.20(0.07) 1.00(0.00)
Ours (set 2) 0.29(0.10) 0.36(0.09) 0.45(0.07) 0.18(0.06) 0.92(0.27)
Notch 0.27(0.26) 0.24(0.19) 0.42(0.24) 0.12(0.05) 1.00(0.00)
GE 0.34(0.19) 0.41(0.12) 0.42(0.09) 0.17(0.05) 0.96(0.20)
Weber 0.29(0.05) 0.40(0.07) 0.43(0.06) 0.33(0.14) 0.28(0.45)
Shimizu 0.24(0.05) 0.29(0.04) 0.50(0.06) 0.32(0.07) 0.93(0.26)
Mawhorter 0.32(0.06) 0.42(0.07) 0.43(0.07) 0.44(0.19) 0.81(0.39)
Takahashi 0.23(0.09) 0.19(0.10) 0.54(0.15) 0.18(0.05) 1.00(0.00)
Baumgarten 0.18(0.05) 0.20(0.05) 0.53(0.06) 0.31(0.11) 0.86(0.35)

Extensive simulation results show that our data-driven
evaluation could improve the quality of procedural games with
respect to different quality measures, and our generator is
capable of generating game levels with high fs, fa, and P
scores.

C. Controllability

In this section, we evaluate the controllability of our level
generator. In general, controllability can be reflected in the
expressive ranges of procedural levels generated with different
level generation parameter settings [7]. Expressive range refers
to the range and variation of procedural levels according to an
evaluation metric [14]. This paper uses linearity [14], density
[6], and leniency [14] as our metrics since they can reveal
global properties of game levels generated by a level generator.
For linearity, we use the method suggested in [13] to find a line
that fits the profile of a procedural level, and the coefficient of
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determination r2 is used to estimate the degree of linearity. For
density, we count the number of all possible standing positions
in a game level [6]. For leniency, we assign a value to each
type of game elements as same as used in [6], [7] (i.e., enemy:
-1.0, gap, cannon or flower tube: -0.5, and powerup: +1.0). The
overall leniency score is the sum of the three values.

As ours have three level generation parameters and each
may take one of three values as described in Sect. III, we
exhaustedly generate nine sets of levels by fixing one pa-
rameter with a specific value and randomly setting all other
parameters each time. To see the controlling effect clearly,
we also generate a set of levels by setting all the parameters
randomly. Thus, we achieve 10 level sets where each contains
100 levels for reliability. A game level is confined to a 2D
map of 200 in width and 15 in height, as same as the setting
in previous work, e.g., [5]. In terms of linearity, density and
leniency, the expressive ranges of levels controlled by different
parameters are shown in Fig. 7 where it is clearly seen that
the levels of a specific property are generated by properly
controlling a parameter.

Fig. 7. Expressive ranges of our level generator corresponding to different
controllable parameter values.

For exemplification, Fig. 8 illustrates some levels generated
by controlling parameters in a specific way. Level in Fig. 8
(C) consists of 14 hills, which leads to highest density value.
Levels in Fig. 8 (A) and (B), however, contain 2 and 8 hills
respectively, which leads to lower density values. In addition,
there are more complicated geometrical structures (e.g., more
overlapping hills) in the level shown in Fig. 8 (C) than those
shown in Fig. 8 (A) and (B).

Experimental result demonstrates that our generator pro-
vides control for designers by controlling relevant content
features in CPs locally, and generates a complete procedural
level of desired properties.

D. Generation Efficiency

Generation efficiency is often evaluated by the actual time
taken in a level generation. By testing on a PC (Intel Core i5-
3470 processor with 8GB memory), our level generator takes
only 0.057 sec on average to generate a procedural level, 200×
15 2D map, which should be able to meet the online generation
requirements.

V. DISCUSSION

In this section, we discuss the issues arising from our work
and relate ours to pervious works.

Quality assurance is an open challenge in the area of
PCG since automatically generated procedural levels are gen-
erally worse than those handcrafted levels [12]. Different

types of approaches have been proposed to tackle this issue.
For instance, Shaker et al. [6] presented a system which
used design grammars and handcrafted fitness functions for
generating SMB levels via grammatical evolution algorithm;
Smith et al. developed the Launchpad generator [7] which
used handcrafted critics for quality assurance and designer
control. In general, identifying proper constraints and formu-
lating heuristic evaluation functions is difficult since game
content is observable but hard to explain and abstract. Thus,
Reis et al. [8] merged human-annotated game segments to
form complete aesthetical appealing and enjoyable levels.
However, they did not train a model to generalize the annotated
data. Dahlskog and Togelius [9] used design patterns learned
from human-authored SMB levels to generate levels, while
Snodgrass and Ontañón [10] learned Markov chains from
human-authored SMB levels as constructive rules for level
generation. These approaches aim to generate levels with
training data (e.g., human-authored levels) instead of domain
knowledge. However, infering/learning reliable constructive
rules (or diverse design patterns) from these levels without
any domain knowledge might be difficult since the number of
human-authored levels are limited (e.g., 32 human-authored
levels in SMB). In our approach, we explore and exploit the
synergy between rule-based and learning-based methodologies
to assure the quality of game content. Easy-to-design rules
are employed for removal of apparently unappealing game
content, while a learning-based approach addresses the rest of
quality assurance issues with a single evaluation function. Our
data-driven evaluation function implicitly encodes multiple
quality-related criteria based on game developers’ judgment
on quality of training examples, and improves the quality of
procedural game with respect to different quality measures.
However, a learning-based approach rarely yields the error-
free performance, which could be a potential weakness of such
approach.

Another issue in PCG is to effectively control the properties
of procedural content. In general, a game designer has to
encode the desired properties in handcrafted rules (e.g., theory-
driven evaluation functions) in order to control the procedural
levels (e.g., [5], [7]). While those evaluation functions may
work less efficiently especially for generating procedural levels
of a considerable length. In contrast, our online level generator
clearly benefits from CPs, it provides effective and efficient
control for designers. On the one hand, our generator is
proposed based on a direct content representation concerning
low-level geometrical features. By controlling relevant con-
tent features directly, game content of desired properties are
directly selected from the specified region of content space.
This process is more efficient than aforementioned approaches
since using theory-driven evaluation functions to explore the
content space is computationally expensive. On the other hand,
our representation is working at a local level for CPs. Thus, our
generator generates a procedural level efficiently by integrating
CPs of desired properties. It is noticed that the desired level
properties have to be specified via setting controllable parame-
ters at a local level. This would be a potential weakness when
such properties are unknown or hard to specify. In addition,
the expressive ranges of procedural levels are also mainly
determined by local controllable parameters. Game developer
could generate procedural levels of wide expressive range by
tuning controllable parameters locally.
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Fig. 8. Exemplar levels generated with different density values. (A) density = 1. (B) density = 2. (C) density = 3.

In general, our online level generator may be viewed as a
hybrid PCG approach if we position it in light of the existing
taxonomy [1]. On the one hand, we use a generate-and-test
method to produce CPs for quality assurance. On the other
hand, a procedural level is constructively generated via a num-
ber of controllable parameters for effective control. Apparently,
ours distinguishes from aforementioned approaches in terms of
quality assurance and resultant controllability.

In conclusion, we have presented a novel approach to
online level generation in SMB. Our approach can also be
used for offline game generation, which allows for using more
complex controlling parameters to generate richer content in
contrast to our online generation. We explore and exploit the
synergy between rule-based and learning-based methodologies
to produce controllable yet quality constructive primitives. A
complete quality game level can be generated by integrat-
ing relevant constructive primitive together via controllable
parameters on geometrical features and level properties. We
have further carried out a thorough evaluation on our pro-
posed approach and other approaches. The experimental results
demonstrate that our approach online generates quality yet
controllable levels efficiently. In our ongoing research, we have
been working on the application of CPs to generate adaptive
games for personalization and extension of this approach to
first-person shooter (FPS) games.
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Abstract—In general video game playing, the challenge is to
create agents that play unseen games proficiently. Stochastic
tree search algorithms, like Monte Carlo Tree Search, perform
relatively well on this task. However, performance is non-
transitive: different agents perform best in different games, which
means that there is not a single agent that is the best in all the
games. Rather, some types of games are dominated by a few
agents whereas other different agents dominate other types of
games. Thus, it should be possible to construct a hyper-agent
that selects from a portfolio, in which constituent sub-agents will
play a new game best. Since there is no knowledge about the
games, the agent needs to use available features to predict the
most suitable algorithm. This work constructs such a hyper-agent
using the General Video Game Playing Framework (GVGAI).
The proposed method achieves promising results that show the
applicability of hyper-heuristics in general video game playing
and related tasks.

I. INTRODUCTION

In order to be generally intelligent, an agent (artificial or
natural) needs to be capable of behaving intelligently in a
wide range of problems or environments. While one can use
artificial intelligence methods to solve a particular problem, the
resulting AI application is AI in only a narrow sense. To create
general AI, one therefore needs to develop algorithms that are
capable of solving a large number of problems. At least, this is
the definition of intelligence and artificial intelligence implied
by Legg and Hutter [1], variants of which are widely accepted
in the Artificial General Intelligence community [2]. In other
words, the AI application should not be dependent on the
human designer re-tailoring the algorithm for each problem,
otherwise we simply have a set of narrow AI solutions, with
a human designer choosing which one to apply where.

This is also part of the reasoning behind the General
Game Playing (GGP) [3] and General Video Game Playing
(GVGAI) [4] competitions. In both, competitors submit game-
playing agents, or controllers, that play any game adhering to
a given interface. The developers of these controllers do not
know at submission time which games their algorithms will
be tested on and the winner is the controller which plays these
unseen games best.

So far, the winners of the GGP and GVGAI competitions
are mostly based on generic tree search algorithms. In partic-
ular, algorithms based on some version of Monte Carlo Tree
Search (MCTS) [5] have been performing well. However, other
very general algorithms, such as rolling horizon evolutionary
planning [6] have also achieved good results.

It stands to reason that an algorithm that is capable of
solving a large number of dissimilar problems will in some
way be adaptive, such that it chooses which strategy to adopt
depending on the problem. The analogy is that a human
approaches different problems in various ways, depending
on some familiarity with the type or initial experiences with
solving these problems. In an artificial intelligence context,
we could imagine an agent that includes several problem-
solving algorithms or sub-agents, and chooses which one of
them to use every time it encounters a new problem. The
general concept of a method that selects sub-level methods to
solve a problem seems to have been proposed independently
in different lines of research and is couched in different
terminologies. These ideas have been expressed in hyper-
heuristics [7] [8], algorithm selection [9], meta-learning [10],
[11] and ensembles [12].

In this paper, we describe the creation of a “hyper-agent”
for general video game playing that utilizes the strengths of
multiple individual controllers to play unseen games better
than any of them individually. This hyper-agent uses an offline
learning approach, i.e. it uses set of trained instances to acquire
information about controllers performance and create a selec-
tion model that generalizes well for new, unseen games. For
clarity, we use the term hyper-agent instead of hyper-controller
because it does not directly control the main character but it
selects the best controller to do so.

Such an undertaking assumes that playing strength is non-
transitive, i.e. different controllers excel at different games,
and that there is some kind of regularity to which games are
played best by which controllers. It also assumes that we can
find game features that let us explore this regularity and use
it to predict which controller would play an unknown game
best. These assumptions are, as far as we can tell, hitherto
untested for our target domain (general video game playing),
making this paper the first attempt at using algorithm selection
or hyper-heuristic techniques in general video game playing.

For the experiments in this paper, we use the GVGAI
framework (the software used for the GVGAI competition),
and a number of controllers developed for the competition.
Based on a set of games, classifiers are trained to predict which
controller excels at a given game. Then a hyper-agent uses the
best classifier in games it has never been trained on. The final
goal is to choose the best controllers to play each game in real
time.
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The paper is structured as follows. The next section de-
scribes general video game playing and the GVGAI framework
as well as some principles of hyper-heuristics and algorithm
selection. Section III describes our methodology: which con-
trollers we used as constituent controllers for our hyper-
heuristic agent, how we extracted features to use and collected
data on controller performance, and train classifiers to predict
the best controllers. Section IV describes the results of using
these classifiers in a hyper-heuristic agent, as well as an
attempt to use the cluster analysis to understand the game
space induced by the selected game features.

II. BACKGROUND

Hyper-heuristics are methods or learning mechanisms for
selecting or generating heuristics to solve computational
search problems [13]. To classify these methods two com-
ponents are considered: the nature of the heuristics’ search
space, and the different sources of feedback information.
According to the nature of the search space, the methods
can be defined as heuristic selection, when used for selecting
existing heuristics, and heuristic generation, when the goal
is to use existing heuristics to generate new ones [7], [9].
By this definition, heuristic selection has a large overlap with
the algorithm selection problem, where the goal is to select
the best algorithm to solve different instances of the problem
without modifying the algorithm [14]. In this work, we explore
the literature from both fields and although we prefer to use
the term hyper-agent, we acknowledge that it can also be
considered as an algorithm selection approach.

A. Hyper-heuristics

With regard to the feedback information, a hyper-heuristic
is considered a learning algorithm if it uses feedback from the
search process to improve its performance. This feedback can
be online and offline. It is online when the learning happens
while the algorithm is solving an instance of a problem. It is
offline if it uses information in the form of rules or programs,
from a set of training instances, that will hopefully generalize
well for unseen instances [13][15]. There are also hybrid
methodologies that combine online and offline feedback [16],
and heuristic selection with heuristic generation [17] [18].

Three requirements can be considered when defining a
hyper-heuristic approach. It has to manage a set of low-level
heuristics, it searches for a good method rather than for a good
solution, and most importantly, it uses only limited problem-
specific information in order to generalize well for other
applications [19]. The method proposed in this paper fulfills all
three requirements and can be classified as a selection hyper-
heuristic that uses offline feedback information.

A similar method has been proposed to explore patterns
of regularities of two heuristics for constraint satisfaction.
The collected performance of heuristics is used to generate
a heuristic that selects others in the constructive process to
produce a solution [20]. Another study uses feature extraction
and hyper-heuristics to improve the problem state representa-
tion of irregular packing problems [21].

Most of the applications of hyper-heuristics approaches have
been focused on problems in domains such as production
scheduling [22] and education timetabling [23]. In the games
domain, Li and Kendall use a heuristic selection mechanism
integrates a number of existing heuristics for specialized
strategic games into an automated game player [24]. Elyasaf
et al. evolve heuristics to guide staged deepening search to
develop top-notch solvers for the hard game of FreeCell [25].
Using a evolutionary algorithm to pick from a set a low-
level heuristics, Salcedo-Sanz et al. proposed a hyper-heuristic
method for the puzzle-game Jawbreaker [26] and Benbassat et
al. presents two types of approaches, ”minimalist” (less human
knowledge in the setup) and ”maximalist” (using human
knowledge in the setup) to evolve game strategies for board
games [27].

Although in the same domain, the methods proposed differ
from our problem in significant ways such as: the type of
games, the type of the heuristics’ search space and feed-
back information, and the information available to the hyper-
heuristic about the game and the low-level heuristics.

B. Algorithm Selection

One influential taxonomy of algorithm selection methods [9]
suggests that an algorithm can be identified in steps. First it
analyzes the type of portfolios, i.e the set of algorithms that
will be selected. A portfolio can be static [28], [29] if the
algorithms are defined a priori and never change or dynamic
if the portfolio changes while solving the problem [30]. From
the portfolio, methods can select the single best algorithm
or allocate times slots to combine results from different
algorithms. Concerning to when they select, the methods can
pick before the solving of the actual problem starts or while the
problem is being solved [31]. Another important step is how
this selection is made. The decision involves, for example,
analyzing accuracy, computational cost and time and even
number of low-level heuristics to manage [18]. Finally, there is
also an essential step that concerns about finding information
to help the selection, such as feature selection and extraction
[32],[28] and the use of the performance of the selected
algorithms in the past.

Based on the problem and data that we have and following
the proposed organization, our method can be defined as
using a static portfolio, that selects the best single algorithm
before the problem is being solved. Our selection method uses
machine learning models based on the previous performance
of our algorithms (controllers) in each instance (games). To
train these models we manually select features available at
the start of each game.

Algorithm selection has been applied to domains such as
linear algebra [33], linear systems [34] and specially to
combinatorial search problems [31], [29]. The use of algorithm
selection in games seems to be restricted to game theory [35]
and we could not find any applications in video games in the
literature.
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C. General video game playing

In the past decade, video games have become increasingly
popular as an AI benchmarks, as they require a rich repertoire
of cognitive capabilities for humans to play well, but can be
simulated simply and cheaply on a computer. A number of
recent AI competitions have been based on different kinds of
video games. The GVGAI competition was created mainly to
counteract the problem that these competitions allow partici-
pants to tailor their submissions strongly to a particular game.
Instead, game-playing controllers submitted to the GVGAI
competition are pitted against a number of unseen games [4].
This separates it from e.g. the Arcade Learning Environment,
where controllers are trained to play a number of well-known
games [36]. Another difference is that GVGAI controllers get
access to a structured representation of the game state as well
as a simulator that allows the use of tree search algorithms to
play the games.

So far, the results have shown that methods based on
MCTS and MCTS-like algorithms have done very well on
this benchmark, but based on the algorithm superiority [37]
and in our observation, we see that performance is non-
transitive: different controllers play different games best. This
can be seen even when adding seemingly minor modifications
to the core MCTS algorithm; modifications that improve
performance of MCTS on one game may degrade performance
on another [38].

III. METHODS

A. Games

The games in the GVGAI platform are created using a Video
Game Description Language (VGDL) that is designed around
objects that interact in two dimensional space [39]. Using
level description and game description, VGDL can describe a
wide variety of video games, including approximate versions
of Space Invaders, Sokoban, Pong, Pac-Man, and Mario Bros.

In this work, we use 41 games available in the GVGAI
framework as of December 2015. Each game has five different
levels that differ from each other through variations on the
locations of sprites, resources available and variations on non-
player character (NPC) behavior.

B. Game-playing controllers

Since the hyper-agent selects the best low-level controllers,
its performance is directly related to the performance of the
controllers available in its portfolio. In light of that, it seems
reasonable to think that the portfolio should be composed
of the best controllers. However, based on previous work
[40] and on our analysis of the competition, we noticed
that the overall champions are able to perform well in most
of the games but fail badly in playing some specific ones.
Meanwhile other overall low-performance controllers are able
to win in these specific games. Therefore, we want a bal-
anced portfolio composed of complimentary controllers with
different strengths that, together, win a broader variety of
games. Another important characteristic is to select a number

of different controllers that guarantees variability but is not so
large that makes hard for the model to choose from [28].

Within these considerations, we use a static portfolio com-
posed of seven controllers. Three of them are high-performing
algorithms that were among the best places in 2014 and 2015
competition. The other four are standard algorithms created
by the developers of the framework with mediocre overall
performance but with good results in specific games where
the high-performing algorithms fail.

The controller adrienctx (ACT), created by Adrien
Couëtoux and first place in 2014, uses the algorithm Open
Loop Expectimax Tree Search (OLETS) [4], which is inspired
by the Hierarchical Open-Loop Optimistic Planning algorithm
(HOLOP) [41]. It uses a method called Open Loop Expec-
timax (OLE) with uses nodes containing a reward function
that can store the empirical average reward obtained from
simulations that exited in the node and the maximum of reward
functions values from the nodes children.

The second place in 2014, created by Jerry Lee, is called
JinJerry (JJ). JinJerry is based on a MCTS with a selection
strategy similar to the one used in [42]. In every game cycle,
It creates a one-level tree with the current game state as the
root node and the one-action-ahead states of all actions as the
leaf nodes. After that, it needs to evaluate the immediate and
potential score of all the leaf nodes so that it can use a scoring
heuristic to evaluate the states. The action selection strategy
is to select the action with a safe state and a high score. If
the random actions lead to a state where the game is over, the
potential score is not considered. Finally, the potential score
will replace the immediate score if it has a higher score.

The champion algorithm for 2015 is YOLOBOT (YB)
created by Tobias Joppen, Nils Schroeder and Miriam Moneke.
It combines methods like breadth first search and MCTS to
analyze the current state and simulations of future states reach-
able through one-action-ahead. It also creates an observation
list of all the sprites reachable in the state and defines the most
interesting target based on a function that analyzes empirical
values from the observations.

There are also four sample controllers. Sample One Step
Look Ahead (SOS) uses an simple heuristic function to
evaluate the states reached within one move from the current
state and select the action with highest reward. The Genetic
Algorithm controller (GA) implements an online (rolling
horizon) genetic algorithm, where each individual represents
a sequence of actions and its fitness is evaluated using an
heuristic function. Small populations are evolved in each game
step and the move returned is the first action of the best
individual found.

The last two controllers, the sample MCTS (MCTS) and
OL-MCTS (OLMCTS), use a similar vanilla Monte Carlo Tree
Search implementation [5]. The sample MCTS is extended
with common enhancements such as using an Upper Con-
fidence Bound for trees selection and a random expansion.
The algorithm evaluates the states by giving a high reward
for a won game and a negative reward for a lost game. If
the final state is not reached, it uses the score achieved. OL-
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MCTS player is a sample MCTS that uses an Open Loop
implementation, focusing more on information gained from
the current state of the game [4].

C. Non-Transitive nature
To evaluate the non-transitive nature of the controllers,

we played all the games using the procedures explained in
Section III-H. Table I shows the sum of victories that each
controller achieved for five levels in each game and Table II
shows the normalized average scores. The intensity of the cells
is proportional to the performance of the controller, where
higher and lower values are respectively presented in lighter
and darker cells. These results show that our portfolio is
composed of complimentary controllers that can excel in a
wide variety games.

D. Game Features
Features have a direct impact in the performance of our

classifier. Although the game in the GVGAI platform is
unknown to the controller, the state observation of the game
provides information about various elements, such as number
and type of NPCs, type of resources, dimensions of the map,
action set, and types and number of sprites. We analyzed the
classes available in the general state observation of all games
and defined 14 features that are presented in each of them and
we believe would represent different types of games. Table III
shows the features, the group they belong to, and a description
of each of them.

The first group is the resources available in the game. We be-
lieve that theses features provide important information about
changes in the rules of the game, such as when pacman eats
a pill and can eat enemies. The second group refers to Non-
Player Characters (NPCs) and it provides certain information
about the type of game, for example, if the agent has enemies
or it is alone (like in a puzzle game). Dimensions is used
to give an idea about the space the agent has in the game.
Although elements such as block size seems like an unusual
choice, Figure 2 shows that it provides useful information in
the decision tree model.

The Sprites groups provide information mainly about mov-
able things in the game and how it affects the agent. Portals,
similarly to resources, is a good indication of changes in
the game. For example, a game with portals can offer more
changes because new enemies or resources can come out
of them. Finally, the actions group gives very important
information about what the user can do in the game, such
as move up or down and attack enemies.

E. Data collection
For feature extraction, we analyzed different games in their

start (game tick = 0) and after a period of time (game tick >
0). Except for number of NPCs, all of our features are static,
i.e. they remain the same during gameplay. We then created a
collector bot that saves the features at the initial state of each
level in each game.

In our approach, the labels are the best controllers for each
level of the games. In order to compare the these controllers,

we ran the experiments described in Section III-H. Using
the features extracted and the average performance of the
controllers, we created a dataset composed of 205 instances
(41 games times 5 levels) with 14 features and 205 labels (best
controller for each instance).

F. Classification
Using the dataset from the data collection, we utilize

multiclass supervised learning to create a model for algorithm
selection using methods implemented in the Weka machine
learning software [43]. Similar to previous work in the field
[44], [45], we choose algorithms that could achieve good accu-
racy, such as Support Vector Machines (SVM, using libSVM
implementation [46]) and Multi-Layer Perceptrons (MLP),
and methods that could also report an understandable strategy
for the classification, like Decision trees (J48 implementation
in Weka) and logistic regression (LR), like in previous works.

Our labels for the classification are the ones obtained
during data collection described in section III-E. To prevent
overfitting due to the small size of our dataset, we perform
two types of cross validation. First we use a normal 10-
fold cross-validation (CV-1) where in each round the data
is shuffled and partitioned in training and test subsets. Then
validation results are averaged over the rounds. In the second
method (CV-2), to ensure that the model would be tested with
truly unseen data, we manually divided the dataset into 10
different subsets, where each test subset is composed of four
different games with five levels. We then perform the 10-fold
cross validation and in each round the model was trained in
37 games (37*5=185 levels/instances) and tested in 4 (4*20
levels/instances) completely unseen games.

G. Online playing
The hyper-agent works following a sequence of three steps:

feature collection, algorithm classification and algorithm selec-
tion (Figure 1). In feature collection, the hyper-agent uses the
state observation of the game to collect the selected features.
Then it normalizes them using the same filter as in the offline
training. This creates a dataset similar to the one used for
training the model. In algorithm classification, it uses the
trained model to predict the best controller to play the current
game. Finally in algorithm selection, it uses the output decision
and loads the best controller. This controller will play the rest
of the game, returning actions using its own defined strategy.

H. Experiments
To collect data and compare the proposed hyper-agent with

those submitted to the GVGAI competition, we use the same
software, scoring method and ranking criteria [4]. All the
levels for each game are played five times by the seven
controllers in our portfolio and by two variations of hyper-
agents. This represents a total of 1,025 game plays by each
controller/agent and an overall total of almost 10,000 game
plays. The experiments were performed locally using the
framework available on the competition website.

Three measures were applied to the experiments: victories,
score and time. Since it is more important to win the game
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TABLE I
NON-TRANSITIVITY FOR VICTORIES - FIVE LEVELS FOR EACH GAME ARE PLAYED FIVE TIMES AND WE SUM THE WIN RATE FOR EACH AGENT. THE

INTENSITY OF THE CELLS IS PROPORTIONAL TO THE RESULTS AND THEY INDICATE THAT DIFFERENT AGENTS EXCEL AT DIFFERENT GAMES, SHOWING
THE NON-TRANSITIVE BEHAVIOR OF OUR SET OF AGENTS WITH REGARDING TO VICTORIES.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21
MCTS 25 1 23 0 5 11 4 6 12 2 1 0 0 22 1 3 0 12 23 1 1
OLMCTS 25 1 23 0 5 16 1 7 7 4 2 0 4 20 0 5 0 11 25 3 0
GA 25 1 23 0 6 13 3 6 12 6 0 0 7 19 0 3 0 11 21 0 2
SOS 25 1 23 0 1 14 4 6 13 1 1 0 1 21 0 3 0 14 20 0 2
YB 25 7 25 11 24 22 21 21 13 25 25 1 25 25 6 24 2 1 24 12 20
ACTX 25 15 25 14 6 10 25 4 10 25 5 0 5 25 0 23 14 18 25 1 3
JJ 12 0 25 8 20 25 0 3 10 13 8 0 10 23 2 17 0 9 6 1 1

G22 G23 G24 G25 G26 G27 G28 G29 G30 G31 G32 G33 G34 G35 G36 G37 G38 G39 G40 G41 Total
MCTS 0 2 3 1 3 0 19 2 0 9 14 1 17 0 0 0 6 25 1 2 258
OLMCTS 0 6 3 0 4 0 14 0 0 6 19 0 10 0 0 0 5 25 0 1 252
GA 0 2 1 0 4 0 19 2 0 5 15 2 16 0 0 0 5 25 5 3 262
SOS 0 3 3 0 4 0 18 4 0 5 14 2 13 0 0 0 5 25 2 3 251
YB 0 9 10 25 20 25 24 25 25 24 10 1 23 0 14 10 10 25 10 5 654
ACTX 0 22 0 2 5 13 4 25 0 6 25 0 22 0 0 18 0 25 2 6 453
JJ 0 0 3 1 6 5 1 17 0 4 5 7 25 0 0 0 25 25 5 5 327

TABLE II
NON-TRANSITIVITY FOR SCORES - IN THE GVGAI FRAMEWORK, DIFFERENT GAMES HAVE DIFFERENT SCORES. IN ORDER TO COMPARE THEM,
RESULTS ARE NORMALIZED SO THAT THE ALGORITHM WITH THE HIGHEST SCORE RECEIVES 1, THE LOWEST RECEIVES 0 AND THE OTHERS ARE

RANKED BETWEEN THOSE VALUES. SIMILAR TO THE VICTORIES, ALGORITHMS ALSO PRESENT NON-TRANSITIVE BEHAVIOR FOR SCORES.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21
MCTS 0.23 0.17 0.61 0.41 0.18 0.27 0.16 0.2 0.3 0.14 0.04 0.77 0.06 0.08 0.25 0.22 0.49 0.11 0.14 0.1 0.08
OLMCTS 0.32 0.19 0.48 0.46 0.25 0.35 0.04 0.37 0.02 0.12 0.08 0.66 0.39 0.09 0.23 0.14 0.62 0.1 0.31 0.31 0
GA 0.24 0.18 0.55 0.45 0.2 0.27 0.12 0.25 0.28 0.34 0 0.47 0.34 0.09 0.16 0.15 0.52 0.14 0.14 0.05 0.14
SOS 0.13 0.17 0.43 0.02 0 0.3 0.16 0.28 0.32 0.07 0.04 0.33 0.04 0.11 0.18 0.21 0.39 0.21 0.14 0.05 0.14
YB 1 0.34 0.1 0.86 1 0.77 0.84 1 0.45 0.21 1 1 1 0.57 0.97 0.68 0.08 0.2 0.86 0.81 1
ACTX 0.14 0.92 0.11 0.94 0.45 0.25 1 0.2 0.99 1 0.2 0.53 0.51 1 0.5 0.76 1 0.78 0.67 0.06 0.24
JJ 0.58 0.17 0.14 0.92 0.82 0.87 0 0.2 0.73 0.57 0.32 0.58 0.23 0.49 0.81 0.53 0.7 0.64 0.11 0.2 0.16

G22 G23 G24 G25 G26 G27 G28 G29 G30 G31 G32 G33 G34 G35 G36 G37 G38 G39 G40 G41 Total
MCTS 0.28 0.23 0.45 0.17 0.03 0.03 0.19 0.11 0.06 0.36 0.45 0.47 0.45 0.07 0.08 0.55 0.87 0 0.1 0.63 0.1
OLMCTS 0.22 0.19 0.31 0.09 0.14 0.06 0.21 0.03 0.12 0.24 0.28 0.55 0.16 0.05 0.04 0.52 0.69 0 0.14 0.28 0.07
GA 0.35 0.24 0.1 0.04 0.14 0.06 0.22 0.11 0.09 0.2 0.45 0.58 0.69 0.01 0.01 0.52 0.86 0 0.31 0.46 0.1
SOS 0.21 0.22 0.3 0.1 0.13 0.03 0.29 0.16 0.13 0.2 0.46 0.45 0.59 0.04 0.03 0 0.86 0 0.23 0.2 0
YB 0 0.34 0.7 1 1 1 1 1 1 1 0.47 0 0.32 0.15 0.8 0.77 0.92 0.79 1 0.98 1
ACTX 0.41 1 0.2 0.22 0.49 0.52 0.16 1 0.95 0.24 0.05 0.07 0.49 0.8 0.33 1 0.12 0.91 0.23 0.7 0.66
JJ 0.5 0.1 0.48 0.21 0.42 0.19 0.03 0.68 0.95 0.08 1 0.98 0.87 0 0.29 0.57 1 0 0.42 0.71 0.53

TABLE III
SELECTED FEATURES USED TO REPRESENT UNKNOWN GAMES.

Group Feature Description

Resources

gameHasResources If there are resources in the game
avatarHasResources If the avatar has resources
nTypeResourcesGame Number of types of resources
nTypeResourcesAvatar Resources that the controller has

NPC nNPC Number of NPCs in the game
nTypeNPC Number of types of NPCs

Dimensions Area The area of the game
blockSize The number of pixels of a block

Sprites nTypeImmovableSprites Number of types of immovable Sprites
nTypeMovableSprites Number of types of movable Sprites

Portals hasPortals If the game has portals
nTypePortals Number of types of portals

Actions MoveVertically If the controller can move vertically
CanShoot If the controller can attack enemies

than fail with a high score, the GVGAI competition weighs
the number of victories higher than the achieved score. The
time measure is used only as a second tie-breaker because
high score victories are weighted higher than fast wins.

IV. RESULTS

From the results presented in Table IV, we selected SVM
and J48 to be selection models for the hyper-agent. SVM
achieved the best accuracy in both validations and J48 was
the second best in the second validation, which is the most
important. Besides, it provides an understandable decision tree
(Figure 2) that justifies its selection strategy. Although MLP
had good results in the first validation, the second validation
shows that model overfits the dataset an its performance is

Fig. 1. The framework with steps for online playing.

inferior to ZeroR algorithm that just selects the majority class
in the dataset.

A. Controller selection at start

With trained models from SVM and J48, we created two
variations of the hyper-agents, HA-SVM and HA-J48. They
both use the framework for online playing, but differ in the
model selected to perform algorithm classification.

To show that the hyper-agents significantly differ from the
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TABLE IV
CLASSIFICATION ACCURACY FOR THE MACHINE LEARNING ALGORITHMS

USING NORMAL CROSS-VALIDATION (CV-1) AND DOMAIN-AWARE
CROSS-VALIDATION (CV-2).

Accuracy
Algorithms CV-1 CV-2
SVM 0.7125 0.6373
MLP 0.6976 0.4801
J48 0.6878 0.5936
LR 0.6023 0.5201
ZeroR 0.5042 0.5042

Fig. 2. J48 decision tree using features with high information gain. For each
leaf, it shows the controller selected and the number of correctly classified
instances out of the total instances reaching the leaf.

other algorithms, we compare their distributions through a
statistical test using the a Mann-Whitney-Wilcoxon (MWW)
approach [47]. Table V shows the p-values for victories and
scores for the hyper-agents and the competition controllers. If
the p-value is small (p<0.05), it is possible to reject the null
hypothesis, which in this case says that difference is due to
random sampling, and conclude instead that the populations
are indeed distinct. The victories and scores for HA-J48, and
victories for HA-SVM, are proven to be significantly differ-
ent from the others. However, although HA-SVM achieved
higher scores than YB, the null hypothesis cannot be entirely
discarded because the p-value between the two distributions is
0.08.

In Table VI we show general results for the controllers and
an illustration that visually shows the superior performance of
the hyper-agents in victories, scores and time, over standard
and competition algorithms. To compare the controllers in each
game, we sum the wins for each level as in Table I and average
the values for score and time, as in Table II. We consider that
a controller dominates a game if it wins more than 3 levels
of that game. In Table VII, the total results show that HA-
SVM dominates 28 games and HA-J48 25, achieving first and

TABLE V
P-VALUES FROM COMPARING THE VICTORIES AND SCORES

DISTRIBUTIONS FOR HYPER AND LOW AGENTS USING MWW TEST. IF
P-VALUE < 0.05, THE NULL HYPOTHESIS CAN BE DISCARDED.

Victories YB ACT JJ
HA-SVM 0.014 0.000 0.000
HA-J48 0.035 0.000 0.000

Scores YB ACT JJ
HA-SVM 0.084 0.000 0.000
HA-J48 0.023 0.000 0.000

TABLE VI
LEFT - OVERALL RESULTS WITH TOTAL NUMBER OF VICTORIES AND

NORMALIZED VALUES FOR SCORE AND TIME. TIME IS INVERSELY
NORMALIZE SO THAT VALUES CLOSER TO 1 MEANS FASTER

CONTROLLERS. RIGHT - VISUAL REPRESENTATION WITH ALL METRICS
NORMALIZED.

wins scores time
HA-SVM 721 0.95 1.00
HA-J48 709 1.00 0.89
YB 654 0.78 0.87
ACTX 453 0.51 0.72
JJ 327 0.43 0.62
GA 262 0.09 0.00
MCTS 258 0.09 0.03
OLMCTS 252 0.06 0.04
SOS 251 0.00 0.05

second place respectively. When not considering the hyper-
agents, YOLOBOT is the best in 21 games, adrienctx in 14
and JinJerry in 6. Standard algorithms performed well in some
levels, but none of them dominated any game.

V. DISCUSSION

The proposed algorithm selection approach uses features to
predict the best algorithm for an unseen game. We selected
features that were available in the framework and exposed to
the controller through the API.

As in many machine learning problems, having good fea-
tures with high information gain plays an important role in the
performance of the classifiers. To better understand our agent,
we used a J48 algorithm to see the decisions that the agent
makes based on the features available. As expected, features
like CanShoot and MoveVertically are present in the selection
but with less importance than we anticipated. Since they have
good information to differentiate types of games (for humans
at least), we thought they would appear in the first or second
level of the tree.

With regard to the controllers, the classifier focus on the
three ”safe” high performance controllers, which suggests high
exploitation. The downside is that other controllers in our
portfolio are not being used. To balance the trade-off and
improve explorations, we increase the tree depth. Although
the new tree shows more different controllers being selected,
neither the accuracy of the model or the performance of the
agent is significantly improved, whereas the complexity of the
tree is.

We believe that is happens because if the model selects
one of the three high performance controllers, it has a good
chance to perform well even if it does not pick the best. On
the other hand, if it wrongly selects a ”risk” low performance
controller, the likelihood of failing in the game is much higher.
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TABLE VII
EACH ROW IS A GAME. IN THE LEFT THREE COLUMNS, THE BEST AGENT
IS ASSIGNED WITH A CHECK MARK IF IT HAS BEEN SELECTED BY ONE OF

THE HYPER-AGENTS, OR WITH A X OTHERWISE. IN THE RIGHT TWO
COLUMNS, THE CHECK MARK INDICATES THAT HYPER-AGENT SELECTED

THE BEST LOW-AGENT FOR THE GAME.

Games YB ACT JJ HA-SVM HA-J48
aliens (G1)
boulderdash (G2)
butterflies (G3)
chase (G4) X
frogs (G5)
missilecommand (G6) X
portals (G7)
sokoban (G8) X
survivezombies (G9) X
zelda (G10) X
camelrace (G11)
digdug (G12)
firestorms (G13)
infection (G14)
firecaster (G15) X
overload (G16)
pacman (G17)
seaquest (G18)
whackamole (G19) X
eggomania (G20)
bait (G21)
boloadventures (G22) X
boulderchase (G23) X
brainman (G24)
catapults (G25) X
chipschallenge (G26)
escape (G27)
jaws (G28)
labyrinth (G29)
lemmings (G30)
modality (G31)
painter (G32)
plants (G33)
plaqueattack (G34)
realportals (G35) X
realsokoban (G36)
roguelike (G37)
solarfox (G38)
surround (G39) X
thecitadel (G40)
zenpuzzle (G41)
Total 21 14 6 28 25

This trade-off is important to improve the performance our
agent because the main advantage of algorithm selection is to
use of the strengths of different algorithms in the portfolio.
To achieve this, we need to improve the performance of the
classifier to select the low performance controllers with higher
accuracy.

By extracting and selecting better features, it is likely
that the performance of the classifiers could be increased
by improving the classification accuracy of the model. In
particular, it might be possible to define features based on
the first few time frames of game play, including observations
on the behavior of moving sprites, spawning sprites etc. It
could also be possible to define features that rely on longer
observations of the game, and which change during gameplay,

making it possible to dynamically switch between controllers.
The construction of features that are not dependent on the API
of the GVGAI software will also increase the generality of the
method. Another important is step is to incorporate a feature
selector system to automatically extract different features and
train the model more dynamically.

Another important step for this project is to increase the
number of games used. While we use cross-validation and
statistical significance testing to validate the superior perfor-
mance of the hyper-agents over its portfolio, having more
games would help us to improve the strategy and understand
the generality of our approach. That would also make it easier
to compare our method with other standard-of-art methods
in algorithm selection that uses larger datasets. One possible
solution for this, is to generate games to train and test on.
Initial attempts to generate games in the GVGAI framework
are promising, and it is at least possible to automatically
generate variations of existing ones [48].

VI. CONCLUSIONS

This paper has presented an algorithm selection approach
to general video game playing in the GVGAI framework.
Based on the observation that performance in this domain
is non-transitive, a hyper-agent based on several well-playing
controllers was constructed. A number of features available to
the controllers were extracted and classification models were
trained to predict the best controller on each game. These mod-
els were used in the hyper-agent to select the best controller
to play unknown games. Testing the hyper-agent on unseen
games showed that it significantly outperformed the winners
of the 2014 and 2015 competitions. These encouraging results
suggest that the use of hyper-heuristics and algorithm selection
have an important role in general video game playing and
related tasks and there are many possibilities for improvement.

For future work, we intent to develop the feature selection
step, improve the size of the dataset potentially generating
more games automatically and we want to continue exploring
the application of hyper-heuristics in general video game
playing. We believe that methods with online learning can
perform well in this type of problem due to the many changes
that happen during game play. We also want to investigate
the use of heuristic generation in this the domain to not only
select, but also create high performance algorithms.
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Abstract—As part of their design, card games often include
information that is hidden from opponents and represents a
strategic advantage if discovered. A player that can discover
this information will be able to alter their strategy based on
the nature of that information, and therefore become a more
competent opponent. In this paper, we employ association rule-
mining techniques for predicting item multisets, and show them
to be effective in predicting the content of Netrunner decks. We
then apply different modifications based on heuristic knowledge
of the Netrunner game, and show the effectiveness of techniques
which consider this knowledge during rule generation and
prediction.

I. INTRODUCTION

A variety of games often include incomplete or hidden
information as a form of challenge to the players, indeed
most such games would be far more trivial if such an element
was excluded. Card games in which players bring decks of
their own construction to play are now relatively common
place, and are represented both in physical card gaming (e.g.
Magic: The Gathering1), and in digital gaming (e.g. Blizzard
Entertainment’s Hearthstone2). In such games, knowledge of
the content of an opponent’s deck represents a potentially
powerful strategic knowledge which can be exploited to
significant advantage. This is true of competition outside of
the game domain also, as being able to adequately predict the
strategy of a potential competitor will likely give significant
advantage.

In this paper we consider a deck of cards to be a multiset
consisting of a known number of cards, each of which
has a type identifier. We then use a variety of rule-mining
techniques applied with heuristic knowledge to attempt to
predict the content of the deck after observing a specific
number of cards chosen at random. It is important to note
also that our game of choice is sufficiently complex, such
that constructing a deck in the manner a human might is
substantially more difficult than prediction using any method
we have attempted here. Human players generally construct
decks by identifying a central idea for the deck, then fitting
cards into the deck that either support that concept or appeal
to the player in some other way. While our techniques here
produce similar results, there is no clear identification of

1http://magic.wizards.com/
2http://us.battle.net/hearthstone/en/

concept, and all cards are connected, not selected for any
other appeal.

This research could also be applied outside the realm of
games, as this problem represents a highly complex, partially
observable system with specific rules which govern the
system construction. Optimising association rule mining to
these complex requirements is clearly of interest as a general
advancement of research in this area. The techniques here
could easily be converted for use in other fields which have
similar complex requirements on sets or multisets, simply
by applying heuristic knowledge to data mining and rule
generation processes as performed here.

The remainder of this paper is organised as follows. In
section 2, we present a summary of related works on Rule
Association Mining and other relevant techniques. Section
3 discusses the Android: Netrunner game which was the
main focus for this work. In section 4, we discuss our
experimental methods, the methods we used to generate
association rules, and also the algorithms which we used to
make deck predictions. In section 5, we present our results,
and section 6 contains our conclusions and some notes on
potential future work.

II. RELATED WORK

The prediction of an opponent deck is effectively a form of
opponent modelling [1], [2], [3], except with the important
distinction that we are modelling strategic decisions which
took place before the game started. As the opponent can’t
change their pre-game behaviour due to game experience,
we do not need to create a full opponent model, only an
estimation of actions which have already been performed.
There has been little work in this specific area before, with
the exception of a single application of machine learning to
the game of Hearthstone [4], which achieved a very high
prediction rate on a limited card set.

A. Association Rule Mining

Association Rule Mining is the determination of correla-
tions between a set of items [5]. It is also known as Market-
Basket Analysis, due to the common usage of determining
which products a shopper may purchase based on what
is already in their shopping basket. A typical rule-mining
algorithm functions by generating rules that describe which
items are likely to be included in a partially observed set,
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given the items in the observable part of the set. Itemsets are
drawn from the data such that each itemset describes a cor-
relation between items. Association rule mining is employed
in many application areas, including intrusion detection [6],
web usage mining [7] and bioinformatics [8].

A commonly used algorithm in association rule mining is
Apriori [9]. Apriori first generates all 1-itemsets that appear
in the data at least a number of times equal to a predetermined
support value, then passes this generation onward to create a
second generation of 2-itemsets. This process continues until
an empty generation is found (that is a generation with no
candidates that appear at least support times in the data.)
Each generation member then creates a single association rule
which describe the correlation recognised by that member.

There are many variations on the Apriori technique to
generate rules [10]. Most notable of these are a technique
which attempts to identify the n-most interesting itemsets
for rule generation rather than using a minimum support
value [11], [12]. Some techniques also use functional lan-
guages rather than support constraints [13], and others use
lattice and graphing techniques [14].

III. ANDROID: NETRUNNER

Android: Netrunner is a two-player strategy card game
published by Fantasy Flight Games3, which includes ele-
ments of bluffing and deception. Netrunner is similar to other
popular card games such as Magic:The Gathering, and is
described as an LCG (Living Card Game [15]).

Due to the nature of the game, the content of an opponent’s
deck is critical strategy information, and a player who is able
to accurately model their opponent’s deck is at a substantial
advantage. There are currently more than 600 cards released
for Netrunner, so accurately modelling a deck is a significant
challenge. The combination of the wide number of choices,
plus the complex and specific rules for which cards may
be included in decks makes Netrunner deck construction a
highly intricate process.

During a standard match of Netrunner, opponents do not
have access to the content of their opponents deck. Access to
such information would provide a substantial advantage to a
player, as they would both be able to predict their opponent’s
likely strategy, and also determine which strategies they are
poorly defended against.

Netrunner has a well documented rules structure for deck
building4. Each deck has a single identity card, which pro-
vides a Side, Faction and a certain amount of Influence.
Decks may only include cards associated with their side, but
may spend influence to include cards from other Factions.

Every Netrunner deck has exactly one Identity card which
defines some rules for that deck, most notably a Side, an
amount of influence and a Faction. There are exactly 2 sides
(named Runner and Corp), and each card in Netrunner is
associated with one side and cannot be included in decks
associated with the other side. Identities which are from the

3http://www.fantasyflightgames.com
4https://images-cdn.fantasyflightgames.com/filer public/2e/66/

2e66279a-0b5c-4d12-80b1-754289b5ff0c/adn01 rules eng lo-res.pdf

corp side must also include a specific number of agenda
points, which are provided corp cards (the specifics of agenda
points are not relevant to this work, other than to recognise
that there is a required number of agenda points for some
decks to include, which presents an additional restriction
upon decks.) All non-identity cards also have a Faction and
a Influence Cost, the latter of which describes the amount of
influence which must be paid to include the card in a deck
which contains an identity of a different faction.

In this paper, we consider a deck for Netrunner to be a
multiset, where no item can appear in a set more than three
times. Each set also includes exactly one identity, which is
always visible to us (as this is a condition of beginning a
game of Netrunner), and also defines a portion of the multiset
rules.

IV. EXPERIMENTATION METHODS

A. Netrunner Deck Data

Experimentation data consisted of 6000 community made
decklists posted on a popular Netrunner community website 5

that allows users to collect and compare decklists. Some fil-
tered based on popularity was performed. Prediction accuracy
results are determined by direct comparison of the predicted
deck and the original deck and returning a percentage of the
cards that match.

Algorithm 1 GetPredictedDeck(...) for a1

1: function GETPREDICTEDDECK(Dobs, R, C, n)
2:
3: ##Initialise all cards with rule support
4: InitCardRuleCounts(Dobs, C, R)
5:
6: ##Sort cards desc by rule support
7: sort(C, rulecount, 0)
8:
9: ##Set predicted deck to include observed deck

10: Dpred ← Dobs

11:
12: ##For each card
13: for all c ∈ C do
14:
15: ##Take the required number of cards
16: k = min{n− |Dpred|, c.MaxCount}
17:
18: ##Add them to the predicted deck, if possible
19: Dpred.AppendMultiple(c,k)

B. Apriori Rule Generation

Rules were mined from data using the Apriori method
detailed in Agrawal & Srikant [9], with modifications as
detailed in sections below. This process generates a large
number of rules, which describe the relationship between
items in the analysed set. These rules are made up of one
or more antecedent items, and one consequent item. The

5http://netrunnerdb.com
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antecedent items is a multiset of items which must be found
in any observed set in order for the rule to become active.
The consequent item is the item which results from rule
activation, and thus the item which will be added to the
predicted set. Our rules take the form {A,B,B,C,D} → E,
where A,B,B,C,D is the full set of antecedents, and E is
the consequent.

Each rule also has a support [16] value, which
states how many occurrences of the complete set of
antecedents and the consequent appear in the training
data, and is useful to describe the magnitude of the ef-
fect of the rule. Support is calculated by the formula
support(X → Y ) = σ(X ∪ Y )/N [17], where (X → Y )
represents a rule, and N represents the total size of the data
set. Each rule also has a confidence value, which measures
the reliability of the rule. Confidence is calculated by the
formula confidence(X → Y ) = σ(X ∪ Y )/σ(X).

The primary piece of evidence used to model an oppo-
nent’s deck will be the identity card, as it is always visible,
and also provides the constraints for deck construction in
the form of faction, side and influence. As other cards
are revealed through play, these can be added to the deck
with complete confidence. It is usual to have observed a
small number of opponent cards during the first turn of
play (we estimate 1-4 is usual), and as such we vary the
number of observed cards we randomly select to determine
the effectiveness of our technique upon different sized sets
of cards.

After rules were generated from the data, the set of 6000
decklists were tested using 30 fold cross-validation, with
each individual prediction being made based upon a set of
randomly selected cards from the decks. As these cards could
potentially be duplicates, for each test a minimum of two
unique cards are observed.

C. Apriori Prediction

1) Standard Apriori Prediction (a1): The standard Apriori
method of prediction is shown in algorithm 1, where Dobs

represents the observed known cards, n represents the size
of the observed deck, Dpred represents the predicted deck, R
represents the set of all generated rules, and C represents the
set of all Netrunner cards. In the first step of the algorithm we
set the rule counts of each card to 0, then we run through all
rules and determine if they are active for the set of cards
we have observed (Dobs). We then set Dpred to contain
Dobs, as our prediction will always include the cards we
have observed, and this makes further operations easier. We
sort all cards by their rulecount attribute, and then move
through them in decending order of c.rulecount until we
find sufficient cards to fill the remainder of Dpred.

2) Modifying for duplicate cards (a2): A notable error
performed by a1 is number of duplicates which appear in
the predicted decklists. As Netrunner decks can include up
to three copies of each card6, we attempt a technique that

6A few cards have specific rules which break this allow more copies or
restrict the number of duplicates, but the vast majority may only appear in
sets of 1-3

allows us to predict the number of copies of each item in the
predicted multiset. Without this modification, the a1 simply
adds the maximum number of each item until it cannot add
more, resulting in three copies of each card in the predicted
deck.

Algorithm 2 GetPredictedDeck(...) for a2

1: function GETPREDICTEDDECK(Dobs, R, C, n)
2:
3: ##Initialise all cards with rule support
4: InitCardRuleCounts(Dobs, C, R)
5:
6: ##Sort cards desc by rule support
7: sort(C, rulecount, 0)
8:
9: ##Set predicted deck to include observed deck

10: Dpred ← Dobs

11:
12: ##For each card
13: for all c ∈ C do
14:
15: ##Take the required number of cards
16: k = min{n− |Dpred|, c.Cardinality}
17:
18: ##Add them to the predicted deck, if possible
19: Dpred.AppendMultiple(c,k)

In order to modify this behaviour, we make a separate
calculation using the rule metadata to determine the number
of duplicates included in the original data. We then use
this information to include copies in the prediction. This
algorithm is very similar to algorithm 1 except that after a
card is selected, the rule metadata is averaged to determine
the number of duplicates to be included.

Therefore each run of GetPrediction a2(Dobs) adds 1-
3 cards to Dobs, and bans the included card from further
selection. This technique may appear arbitrary, but in the
case of duplication in a specific decklist, the nature of the
individual card is far more relevant than any patterns between
the card and other cards in that deck. For example, some
cards are so strong and usable in any deck that they almost
always appear in sets of 3, whereas others frequently appear
alone due to the narrow field of use or difficulty to fit into a
deck.

3) Prioritising by Influence (a3): A review of the all data
used here shows that 84% of decks in our dataset used all of
their influence, 92% used all except 1 point, and 95% used
all but 2. Considering that our data likely contains a large
number of casual decks, which likely accounts for those not
using all of the influence, this is indicative of how important
the concern of influence during deck construction.

In order to prioritise influence spends, we change the
method of deck prediction so that we first attempt to make
predictions which would spend all available influence (both
influence and non-influence cards still undergo the duplicate
procedure mentioned in section IV-C2 above.) This new
method is not shown in algorithm, as the only change is
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a sorting C so that all of the rules with a resultant card
that will cost influence appear first, and this is restated later
in algorithm 4. Notation is as before, however in the set C
is sorted not only by rulecount, but also by a boolean that
represents whether including any given card in Dpred would
cost influence. This means that the first predictions made by
a3 will cost influence, and then when all the influence is
spent, only cards that do not cost influence will be added.

4) Using influence during Rule Generation (a4): Here, we
separate item sequences that were generated from influence
spend and non-influence spend. This allows us to separate
the item sets into two groups, one which represents cards
which players have spent influence on, and which represents
card sequences that were used “in-faction”. We can then
generate specific rules for influence and non-influence spend.
In the case that we had insufficient data, the prediction
reverted to using all generated rules. This method is shown
in algorithm 3. Notation is as before, however in addition
Rinf represents rules originally generated from influence
sets, and Rnoinf represents rules which are generated from
non-influence sets only. This algorithm is very similar to
algorithm 2 except that GetPrediction a4 uses only rules
generated from influence selections when selecting an card
that costs influence, and only rules generated from non-
influence selections when selecting a card that doesn’t cost
influence.

5) Rule Generation including duplicate cards (a5): We
also attempted to remove the calculation for duplicate cards
by allowing the rules to be constructed from duplicate items,
and thus we should be able to predict those duplicates with
more relevancy to the observed deck, rather than the general
attributes of the cards. This algorithm is identical to algorithm
a4, except that duplicates are calculated based on the number
of copies of each card seen in the generated rules rather than
our cardinality data. When a rule is determined to be active,
instead of checking rule metadata to determine the number of
cards to add to the predicted deck, we instead determine the
total number of the consequent item that already exist within
the predicted deck, and if the required number specified by
the rule already exist, we take no action. If the required
number is not yet in the deck, we add a single consequent
item. For example, if the rule {A,B,C} → B becomes
active, we check to see if 2 or more B are included in the
predicted deck. If so, we add nothing. If not, we add a single
B.

6) Prioritising by rulesize (a6): This modification at-
tempts to give priority to rules which contain more items, as
these rules will be less rarely active due to their specificity.
However, when these rules are active for an observed card
set, they will likely tell us more about the content of the deck
than smaller rules. This algorithm is identical to a4, except
that the rules are sorted by descending rule size, and then a4

is performed using the set of rules which are the largest size,
then descending through the rules until we have completed
the deck.

7) Making confident predictions (a7): This modification is
identical to a6, however when we predict a card, we add it to

Algorithm 3 GetPredictedDeck(...) for a4

1: function GETPREDICTEDDECK(Dobs, Rinf , Rnoinf , C,
n)

2:
3: ##Initialise all cards with rule support (inf)
4: InitCardRuleCounts(Dobs, C, Rinf )
5:
6: ##Sort cards desc by rule support
7: sort(C, rulecount, 0)
8:
9: ##Set predicted deck to include observed deck

10: Dpred ← Dobs

11:
12: ##Spend influence first
13: for all c ∈ C do
14:
15: ##Take the required number of cards
16: k = min{b(maxinf − inf(Dpred))/c.infc, c.Cardinality}

17:
18: ##Add them to the predicted deck, if possible
19: Dpred.AppendMultiple(c,k)
20:
21: ##Initialise all cards with rule support (no inf)
22: InitCardRuleCounts(Dobs, C, Rnoinf )
23:
24: ##Then fill the deck with non-influence cards
25: for all c ∈ C do
26:
27: ##Take the required number of cards
28: k = min{n− |Dpred|, c.Cardinality}
29:
30: ##Add them to the predicted deck, if possible
31: Dpred.AppendMultiple(c,k)

the observed card set and check all rules again. So any card
we predict to appear in the deck, we assume we are correct
for the purposes of further predictions. This final version is
shown in algorithm 4.

V. RESULTS

All results for predictions are shown in figure 3. Use of
the mentioned techniques to generate deck predictions is
generally successful, completing decks with an accuracy of
up to 59% from viewing only 5 cards (roughly 8-10% of
the actual deck). However there are some general trends
which can be observed. Firstly, as each card (or set of
cards) are added to the deck sequentially, we don’t take into
account new patterns which may emerge between originally
observed cards and cards more recently added. This means
that all predictions are based on the original set of observed
cards, whereas we would likely have a different effect on
prediction if we considered predicted cards to be part of the
observed set when making further predictions. We suggest
that some of the difference in prediction may be a tendency to
form into familiar deck archetypes, as predicted cards would
likely support larger patterns already recognised as frequently
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Algorithm 4 GetPredictedDeck(...) for a7

1: function GETPREDICTEDDECK(Dobs, Rinf , Rnoinf , C, n)
2: Dpred ← Dobs

3: for all r ∈ Rinf do
4:
5: ##Initialise all cards with inf rule support
6: InitCardRuleCounts(Dpred, C, Rinf )
7:
8: ##Sort cards desc by rule support
9: sort(C, rulecount, 0)

10:
11: ##Spend influence first
12: for all c ∈ C do
13:
14: ##Take the required number of cards
15: k = min{b(maxinf − inf(Dpred))/c.infc, c.Cardinality}

16:
17: ##Add them to the predicted deck, if possible
18: Dpred.AppendMultiple(c,k)
19: for all r ∈ Rnoinf do
20:
21: ##Initialise all cards with non-inf rule support
22: InitCardRuleCounts(Dpred, C, Rnoninf )
23:
24: ##Sort cards desc by rule support
25: sort(C, rulecount, 0)
26:
27: ##Fill out deck with non-influence
28: for all c ∈ C do
29:
30: ##Take the required number of cards
31: k = min{n− |Dpred|, c.Cardinality}
32:
33: ##Add them to the predicted deck, if possible
34: Dpred.AppendMultiple(c,k)
35: return Dpred

played decks. This is somewhat consistent with human deck
construction however, as players often use existing archetypes
to construct decks.

In order to provide a control for experimentation, random
selection was tested (a0). Generated decks were still required
to observe deck construction rules, but other than that cards
were selected randomly from the set of available cards. All
predictions using a0 had an accuracy in the range 0% - 6%,
and due to this low accuracy, results are not shown below.

We also attempted to test prediction across a range of
different numbers of observed cards. In each of these cases,
the identity card was always observed, then an additional
number of cards were added. This means in the case of the
number of observed cards being zero, only the identity card
was observed. In all previous experiments the size of the set
has been five, which represents what a player might expect
from two complete turns of play. We tested prediction with
sets of up to ten viewed cards. We also tested prediction
with a set of zero observed cards, which represents the game

before play has begun.

A. Default Apriori (a1)

Default Apriori allows for predictions of up to 48% accu-
racy, and while this is somewhat effective, it can be improved
upon significantly by the later algorithms which incorporate
heuristic knowledge. Different values of minimum support
were used to determine the optimum value, which lies close
to 15. All of these tests were run on a dataset of size 200
(30-fold cross-validation on a total set of size 6000), so larger
values of minimum support will likely cause smaller detail
of the dataset to be lost during rule generation. Examination
of the decks generated with a1 also reveals that almost every
card is included in triplets, further speaking of the neces-
sity of a modification to address the number of duplicates
included.

B. Apriori with duplicates (a2)

The modification to consider inclusion of duplicates in the
predicted deck results in a significant increase in accuracy.
The most significant value of minimum support now appears
between 10-15, both options resulting in a prediction accu-
racy of 53%, an increase in accuracy of 5%. This increase
in accuracy is certainly related to more accurate predictions
on sets of duplicate cards, as due to the nature of the game,
certain cards are more often played in sets of 2 or 3, and
certain cards are almost always played without duplicates.
This modification largely makes the effect that there are no
longer automatic inclusions of cards in groups of 3, however
it can still be further improved with respect to heuristic data.

C. Apriori with Influence Priority (a3)

While prioritising the inclusion of cards which cost influ-
ence has a positive effect, the effect is marginal, increasing
prediction accuracy by less than ∼2% at the optimal value
of minimum support 10. It is surprising that the effect is so
marginal, but upon examining further it is apparent that most
(92%) of decks predicted with a1 and a2 already include
the maximum permitted influence for those decks, so the
modification is perhaps not as important to prediction as
originally proposed.

Examinations of the individual card selections shows that
the influence spends are somewhat inappropriate however,
and are somewhat to blame for the inaccuracies of this
prediction algorithm.

D. Apriori with Influence Filtering (a4)

There are several interesting effects in these results. Firstly,
the highest accuracy has risen to 57%, an increase of ∼4%.
Secondly, the optimal value of minimum support has changed
to a higher value of 20.

A review of the cards selected by influence spends reveals
that they are much more appropriate to the acknowledged
deck archetypes, presumably due to the specific use of rules
generated entirely from influence spend patterns.

We also start to observe some occasional single-card influ-
ence inclusions which are well established in the appropriate
archetypes.
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E. Rule Generation including duplicate cards (a5)

We can see from the results for a5 that attempting to
determine the number of duplicate cards in a deck from
generated rules appears to be less effective than using our
data on the normal set count of that card. This is believable,
as the number of duplicate cards included is likely to be
much more dependent on the nature of the card than on
the nature of the deck itself. As our information relates to
patterns between cards, we don’t necessarily have a good
understanding of the nature of the card itself.

It is worth noting however that for some values of mini-
mum support, a5 is approximately as effective as a3 and a2,
meaning that it is still an effective technique, and alternative
methods to predict duplicate cards in the deck could be
investigated.

F. Prioritising by rulesize (a6)

Giving priority to larger rules has also had a positive effect
on prediction accuracy. We can see this effect particularly
when minimum support is 20. We attribute this effect to
larger rules being more rarely satisfied unless they are
highly informative about the configuration of decks. As such,
activated large rules should be given priority over activated
smaller rules.

G. Making confident predictions (a7)

By adding all predictions to our observed set, we are
assuming that all our predictions are correct, and biasing
future predictions by this information. This has a positive
effect on prediction accuracy at higher values of minimum
support, however it has almost no effect at values of 15 and
below. This could be explained by some subtly of rules that
are activated with a support of 15 or less, however in this
case we would expect the prediction accuracy to be positively
affected also, and yet we see that this is not the case.

The extension of our observed set also has another less
obvious effect on prediction, which is that it allows activation
of rules with larger item sequences, as more items appear
in the observed set. This means as Dobs expands, we may
observe decks activating larger rules, and effectively falling
into archetypes.

H. Varied Size Observation Set

The results for predictions made with varied observation
sets are shown in figure 1. We can see that the overall change
in deck prediction accuracy across the total range of tested
values is approximately 20%, which while a large change,
might be less than we expect from such a change in source
data. This illustrates the importance of the identity card which
is always viewed, it speaks deeply of the construction of
the deck, mostly because the identity card is always active
during play, and a substantial portion of the cards included
will have some synergy with that identity. This also speaks of
the nature of deck construction in Netrunner, which largely
consists of modifications to existing archetypes, likely due to
smaller synergies between groups of cards. It is also worth
noting that at almost all values of observed set size and

minimum support, our algorithms which incorporate heuristic
information perform significantly better than default apriori.

We see an understandable increase in prediction accuracy
as we increase the size of the observed set, as there are
both fewer cards to predict, and also more information is
available on the set content. Rules with a higher number of
antecedents are also activated, which likely provides more
accurate information on the set content.

Fig. 1. Varied Size Observation Set

We can also observe that a few of our own techniques
(a3&a4) perform very poorly when the observed set is very
small or empty. As a3 and a4 both focus on influence
inclusions, this is likely due to a lack of corroborating
information from other observed cards to distinguish correct
influence selections. As such, the initial influence selections
are almost unguided, and as these cards are selected from a
much larger set of available cards than regular selections, the
picks are more likely to be incorrect without guidance.

There is also an interesting plateau in prediction accuracy
around set size 3-6 with algorithm a5. This is likely due to the
estimation for duplicate cards struggling on smaller set size.
As the cards in the observed section of the deck are selected
randomly during each test, it is possible that duplicate cards
are selected, and as such less information is exposed in
certain cases. This might cause a decrease in accuracy when
only a small number of unique cards are observed. This
calculation is not included in any other algorithm, as it was
not effective in increasing accuracy overall, possibly due to
this complication.

The results across all experiments grouped by algorithm
are shown in figure 2. We can more clearly see a general
rise in prediction accuracy here, with the exception of the
a5 algorithm for reasons mentioned above. This is to be
expected, as each algorithm following a1 includes specific
heuristic improvements which are targeted to improve effi-
ciency in this specific domain.

Algorithm a5 shows that our introduction of rule-based
cardinality estimations have been unsuccessful in improving
prediction efficiency, although this is something we would
definitely want to address in future. The current cardinality
estimations are unlikely to predict decks with 100% accuracy,
for example it will always fail to predict decks that include
a unusually small number of a card almost always seen in
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sets of 3.

Fig. 2. Cumulative results by Algorithm

VI. CONCLUSIONS & FURTHER WORK

It can be seen that our modifications to the Apriori
technique provide a significant improvement to prediction
of decks in Netrunner, showing a maximum improvement
of ∼13% between the default apriori algorithm (a1) and our
optimal modified algorithm (a7).

There are several other opportunities for future work
which could be explored. For example, the technique used to
separate rules in a4 could also be applied to identity cards,
using only rules generated for each identity to select either
the entire deck, or the influence-spend portion of the deck.
However this would require a large amount of data, as certain
identities are unpopular and may appear only rarely within
our current data set, so there would be fewer useful rules
generated for these identities. It may also be worth looking
at generation by Faction, which might yield more interesting
results. Also, as our observed cards were randomly selected,
they may not adequately represent the real order cards are
observed during a game (as it is more common to play certain
cards earlier than others.) Biasing generation of the observed
set of card may provide a more realistic scenario.

Our attempts to adequately predict the number of duplicate
cards within a deck have been some what effective, but
there is still work to be done here, as our best prediction is
based on our heuristic knowledge of the specific card, rather
than knowledge of the card in context. Successfully adding
contextual heuristic knowledge into this process will surely
lead to more accurate prediction.

We can also look to applying these techniques to other
domains, specifically the games mentioned in section 1.
Magic the Gathering has a much larger set of active cards,
and less stringent deck construction rules, so while this
would represent a more challenging target, there is also
a much larger amount of data available due to the larger
player community and history of the game. Hearthstone likely
represents a point of medium complexity, as the card pool is
between the other two games mentioned here (approximately
450), and the deck construction rules are more restrictive than
Magic, and thus provide more guidance.

A further avenue of research which could be pursue is
that of pattern matching within the decks, in order to draw
out common patterns which occur within multiple decks, and
then using that information to further bias the prediction.
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Fig. 3. Results of algorithm runs with varying minimum support values
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Abstract—Stories have become an important element of
games, since they can increase their immersion level by giving
the players the context and the motivation to play. However,
despite the interactive nature of games, their stories usually do
not develop considering every decision and/or action the players
are capable of, because depending on the game size, it would take
too much effort to author alternative routes for all of them. To
make these alternatives viable, an interesting solution would be to
procedurally generate them, which could be achieved by using the
story generation approaches already developed by many works of
the storytelling field. Some of these approaches are based on the
simulation of virtual worlds, in which the stories are generated
by making the characters that inhabit the worlds act trying to
reach their goals. The resulting actions and the world’s reactions
compose the final story. Since the actions are the building blocks
of the stories, the characters’ acting capabilities are determinant
features of the generation potential of simulations. For instance, it
is only possible to generate stories with deception if the characters
are capable of deceiving each other. To allow the generation
of stories where the characters are capable of manipulation,
cooperation and other social behaviors by actively using what the
others will do based on what they know and see, we propose a
recursive planning approach that deals with the uncertainty of the
others’ knowledge and with a purposely error-prone perception
simulation. To test our proposal we developed a story generation
system and designed an adaptation of Little Red Riding Hood
world as test scenario. With our approach, the system was capable
of generating coherent story variations with deceptive actions.

I. INTRODUCTION

Presenting different story developments to a game player,
as a consequence of each of his/her decisions and actions
throughout the game has the potential of increasing the im-
mersion level, because it generates the sensation that his/her
actions matter. However, this task is usually impractical given
the amount of authoring work it would require. To achieve
that while still avoiding considerable human effort, a solution
would be to automatically generate these developments. There
are already many works that deal with the problem of story
generation in the field of automated storytelling [1]–[3]. One
of the main concerns of story generation is related to the
level of freedom that should be given to the characters. Some
works propose generation methods guided by restrictions that
should be obeyed by the resulting stories, such as predefined
middle and ending situations. Others propose the simulation of
a virtual world without restrictions, where the story emerges
as the characters that inhabit such a world act trying to reach
their goals. These two approaches are called deliberative and
simulation-based, respectively [4].

The first approach guarantees stories with reasonable qual-
ity, because they will follow the restrictions given by an author.
However, this is achieved at the cost of variability, since stories
that are not in accordance with the restrictions will not be
created, and possibly at the cost of coherence on the characters’
behavior, since they may be forced to act against their goals.
On the other hand, the simulation approach allows more varied
stories, where characters are not forced to execute specific
actions. This last characteristic may be an interesting advantage
in the scope of games, since the players usually control one of
the characters, which means that they also would not be forced
to choose their actions. However this lack of restrictions may
jeopardize quality, given the little control of the development.

We believe that to increase the quality of stories generated
by simulation, the characters still need a series of features of
the human behavior that were not entirely explored by previous
works. These features could make characters more believable,
and act towards situations otherwise unreachable. One behavior
that deserves more attention is the social behavior, i.e., to act
considering the actions of the others. This behavior is essential
to generate stories where a character helps, deceives or simply
avoids the others. Since these are common human behaviors,
they are present in a number of game stories. Just to name a
few, in some horror games, e.g. Clock Tower1 and Outlast2,
the protagonist has to hide continuously to avoid being killed
by a stalking antagonist. In the games of the Hitman series3,
the protagonist is allowed to change his clothes to pretend to
be part of the staff of restricted areas and have access to them.

To generate stories in which characters make mistakes and
consider the others’ mistakes, in previous works we developed
a perception simulation that updates the characters’ knowledge
using a process that allows coherent errors regarding attributes
and identities [5], and a recursive knowledge structure that
represents uncertainty and the incorrect information the oth-
ers [6] may have. In this work, we propose an enhancement for
story generation by simulation, that uses a recursive Partially
Observable Markov Decision Process (POMDP) [7] approach
to simulate the characters’ reasoning mechanism, along with
a perception simulation, to allow the characters to plan their
actions considering the others’ mistakes. We aim at generating
stories where each character may actively hide items, pretend
to be another character and execute other social behaviors that
require knowledge about the others’ perceptions.

1Clock Tower originally by Human Entertainment
2Outlast by Red Barrels: http://www.redbarrelsgames.com/
3Hitman series by IO Interactive: https://www.ioi.dk/
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The remainder of this paper is divided as follows: Section II
presents related works that focus on making characters plan
considering the others. Section III summarizes the world
representation and story generation cycle. Section IV presents
the proposed planning method. Section V details our test case
scenario based on the Little Red Riding Hood, and discusses
the generated stories. Finally, Section VI concludes this paper
presenting opportunities of future work.

II. RELATED WORKS

Actions planned considering the others as autonomous
and goal-oriented entities were called “social actions” by
Castelfranchi [8]. Later, Chang and Soo [9] defined “social
planning” as an extension of the conventional planning that
includes social actions. They developed a story generation pro-
cess where the characters’ knowledge is structured to include
the knowledge of the others in order to represent what one
character knows about what the others know. The characters
are capable of social planning using a forward planning method
with actions that directly affect the others’ goals, and rules that
describe what the others do when they adopt predefined goals.

This knowledge structure that includes the knowledge of
the others recursively is derived from a psychology theory
called theory of mind [10], which tries to explain how hu-
mans are capable of understanding and predicting the others’
behaviors.

Pearce et al. [11] also developed a generation process
capable of social planning, but with a backward chaining
method. In their approach, actions may be designed with
effects that add goals to the others and information about the
world to their knowledge. A plan is made adding actions of
the planning character based on his goals and knowledge, and
adding actions of the others based on the goals and knowledge
that the planning character believes they have.

Thespian [12] is another system in which the characters
are capable of social planning. The characters’ knowledge is
structured to deal with uncertainty, i.e., they are aware that
their knowledge is not necessarily correct. To plan considering
uncertainty and the actions of the others, the reasoning process
is made through a recursive POMDP. During the planning
process, to define what another character will do, a recursive
call to another planning process is made using the knowledge
that the reasoning character believes that the other has. Then,
the results of this recursive call are added to the main process
as the other’s possible actions.

Alternatively to the planning approach, in which the social
behavior emerge by making characters include the others’
actions, the Comme Il Faut system [13] uses actions described
directly with social relationships as preconditions and effects
called social exchanges. With them, a rule based reasoning
process decides which social exchange each character must
execute to reach the social conditions they want to achieve.

Our approach to simulate social behaviors is similar to
Thespian’s proposal, using a recursive POMDP. However,
while Thespian’s focus is on simulating emotions and norma-
tive social behaviors (social rules such as greet someone back
or respond to a given question), ours is on allowing different
kinds of coherent mistakes and making the characters actively
plan how to cause and/or use the others’ mistakes as necessary.

III. STORY GENERATION

This section summarizes the architecture used as basis
for our simulation, previously proposed in [6], and the story
generation process. It is important to make clear that in that
work, we presented a previous structure and some changes for
it. In this work we are already using the final structure.

A. World Structure

A world W is defined as < M,E,O,C >, where

• M = {l1, l2, . . . , ll} is a set of locations,

• E = {e1, e2, . . . , ee} is a set of events,

• O = {o1, o2, . . . , oo} is a set of objects,

• C = {c1, c2, . . . , cc} is a set of characters.

A location lK is defined as: < Name, ID,N >, where

• Name is a string value,

• ID is a tuple < IDoriginal, IDlocal > (details further
in this section), where IDoriginal, IDlocal ∈ Z,

• N = {l1, l2, . . . , lln} is a set of neighbor locations.

An object oK is defined as: < Name, ID,AT >, where

• AT = {at1, at2, . . . , atat} is a set of attributes.

A character cK is defined as: < Name, ID,AT , Ac, B,K >,
where

• Ac = {a1, a2, . . . , aa} is the character’s set of actions,

• B = {b1, b2, . . . , bb} is a set of goal inference rules,
which we call behaviors,

• K = {< w0, P0, G0 >, . . . , < wn, Pn, Gn >} is the
character’s knowledge base, where
◦ wi is a world description,
◦ Pi is a probability that represents how much

the character believes in wi,
◦ Gi is the set of goals that the character

adopted in the context of wi.

Actions, behaviors and events follow the Planning Domain
Definition Language (PDDL) action pattern [14], which is
described with sets of parameters, preconditions and effects.
However, our behavior description has goal definitions instead
of effects, has a set of abandon conditions and also a reward
value. Behaviors are used to define how the character manages
his goals: whenever the preconditions of a behavior become
true, the character adopts the corresponding goal. Whenever
the abandon conditions of a behavior that has an adopted goal
become true, the adopted goal is abandoned. The actions are
used to describe changes that the character knows how to
execute. The events are used to describe changes that are not
controlled by the characters, like the world’s physics or the
addition of a specific information to a character’s knowledge.
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This structure was developed with a recursive representa-
tion of knowledge, following the theory of mind mentioned in
the previous section. Each world has a set of characters, and
each character has a set of worlds to represent his knowledge.
The characters present in a knowledge world may also have
a knowledge, and so on recursively. These recursive steps of
knowledge are known as theory of mind levels [15].

Another feature of the knowledge representation adopted
here is the support for uncertainty. One of the main problems
of planning actions considering the others is the need to guess
what they are thinking. Most of this information is usually
incorrect or incomplete. For this reason, the knowledge is
represented as multiple worlds [16], each one representing
a configuration that the character believes as true, with a
probability value that represents the confidence that he has in
it. Since different conditions may trigger different behaviors,
each knowledge world has its own set of adopted goals.

B. Mistakes

Given that the main world and the worlds represented
inside each characters’ knowledge are independent, the rep-
resentation of incorrect information assumed by a character
regarding attributes and the existence of objects and characters
is straightforward. If inside a character’s knowledge world, one
element has an attribute value different from the corresponding
element’s attribute inside the main world, it can be inferred
that the character made a mistake regarding that attribute. If a
character’s knowledge does not have an element that exists in
the real world, it means that he does not know that element.

Besides these mistakes, the perception simulation is also
able of allowing mistakes about identities, e.g., it allows
characters to see an element A and not be sure if they are
seeing element A or B. Then, whenever they try to execute an
action using B as parameter, they must consider that they may
be executing this action with A or B, while the system must
actually execute the action with element A. Also, characters
must be aware of the possible identification mistakes the others
may do. To enable these mistakes, there must be some way of
translating elements between different worlds.

The ID tuple described above (< IDoriginal, IDlocal >)
is used for it. Every element has an IDlocal that is unique
inside a world, but is shared among the worlds that are in
the knowledge base of one character, and an IDoriginal that
identifies elements between worlds that are in different levels.
During the story generation, whenever a character perceives
one element that he did not see before, he creates a new
instance in each of his knowledge worlds to represent the
new element. These new instances will receive the same new
IDlocal, and will receive as IDoriginal the IDlocal of the orig-
inal world’s element. In short, the IDlocal is used to identify an
element inside one world and to identify which elements, from
different knowledge worlds, were created based on the same
perception. The IDoriginal identifies which element originated
the perception.

Formally, the function T : El,W,W → El (El being
the set of elements: characters, objects and locations) that
translates the element p from the context of world w to the
context of world w′ is described as follows:

T (p, w,w′) =



p′, El(p′, w′) ∧ (IDL(p) = IDO(p
′)),

if owner(w′) ∈ C(w)
p′, El(p′, w′) ∧ (IDO(p) = IDL(p

′)),
if owner(w) ∈ C(w′)
p′, El(p′, w′) ∧ (IDL(p) = IDL(p

′)),
if owner(w) = owner(w′)

where El(p, w) is a function that returns true if p is an
element of w and returns false otherwise, IDL(p) returns
the IDlocal of p, IDO returns the IDoriginal of p, owner(w)
is the character who has w as knowledge world and C(w) is
the set of characters of w.

Figure 1 presents an example of how such identification
works inspired on Little Red Riding Hood story after Little
Red sees the Wolf disguised as Grandma. The first diagram
shows the original world, its characters, the knowledge of the
Wolf, and the knowledge he has about Little Red’s knowledge.
Notice that in the real world, Grandma, Wolf and Little Red
have 0, 1 and 2 as IDlocal, respectively. Inside the Wolf’s
knowledge, each character has the corresponding values as
IDoriginal, which means that the Wolf correctly identified
them. Inside what he believes to be Little Red’s knowledge,
Grandma’s IDoriginal is the same as the IDlocal of the Wolf
in the superior level, which means that he believes Little Red
saw him and identified as Grandma.

The second diagram represents Little Red’s knowledge,
which is composed of two worlds (1 and 2). In world 1 the
Wolf has the same IDlocal that Grandma has in world 2. This
means that she saw someone and does not know if she saw the
Wolf or Grandma. Considering that both have 1 as IDoriginal,
which is the IDlocal of the Wolf in the real world, actually,
she saw the Wolf.

Since there is no level above the real world, the characters
of the real world have an invalid value (−1) as IDoriginal.

Fig. 1. Example of knowledge representations with identification mistakes.

Technically, IDs translate actions’ parameters between
worlds. The IDlocal translates parameters between knowledge
worlds: if Little Red decides to shoot the Wolf, she must
consider that she may be shooting at Grandma. The IDoriginal

translates parameters between worlds of different levels: if
Little Red shoots at “Grandma” using the context of world
2, in the real world, the Wolf will be shot.
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C. Story Generation Procedure

The story generation is made in a turn based fashion fol-
lowing the cycle presented in Fig. 2. In every turn, the system
updates the current character’s knowledge with the perception
method and then updates his goals using the behavior rules.
In the next step, the character selects an action to execute
calling the planning process if necessary (it may also use the
results of previous planning). The action obtained (A’ in the
example) is translated from the character’s point of view (POV)
to the world’s POV (action A), and then is executed. Finally,
the process uses the events that became executable. This is
repeated until no characters are able to create a plan that fulfills
their goals or there are no more goals to be fulfilled.

Fig. 2. Story generation cycle.

IV. RECURSIVE PLANNING WITH PERCEPTION

POMDP is a framework developed to solve sequential
decision problems with partial observability and stochastic
actions. The framework is composed of a set of states, a
set of actions, a transition function, a set of evidences, an
observation function and a reward function. Instead of dealing
with single states, methods that solve POMDPs use probability
distributions over states to represent the uncertainty, which are
called belief states. The solution of a POMDP is a policy,
which is a function that returns the action that must be executed
in each belief state to reach the situations with highest rewards.

In simulation based methods, each character has his own
knowledge and executes his own reasoning process to decide
which action to execute. Since their knowledge is incomplete,
in order to allow them to act considering uncertainty, we
decided to use POMDPs as the reasoning process. Below we
discuss the adaptations made from what is commonly used and
then present the planning method.

A. POMDP Adaptations

The configurations that a character’s knowledge world may
assume is the set of states in the POMDP representation. In the
same direction, the knowledge worlds he has along with their
probabilities compose the initial belief state. The actions the
planning character knows how to execute and the actions that
he knows the other characters know are the POMPD actions.
Despite the framework being capable of handling stochastic
actions, for now we decided to use only deterministic actions.
With only deterministic actions the transition function, which
defines the probability of reaching a state s′ after executing an
action a in state s, is P : S,A, S → (0, 1), where S is the set
of states and A is the set of actions.

Regarding the observation function and the evidences, the
perception simulation process could be used as substitute.
However, given how our perception simulation works, it would

lead to a combinatorial explosion of information. Using the
perception simulation as the observation function, a planning
character would consider that any combination of known object
and character could appear at any known location. For this
reason, we decided not to use the POMDP’s observation
functionality. It is important to notice that the planning process
still uses the perception simulation to allow one character to
know what the others will see in the following turns, using
what he already knows about the locations where the other
characters are. What we are not using is a function of the
POMPD framework that would allow the planning character
to try to guess what he would perceive in his current location
that is different from what he already knows that is there.
Despite not using the observation function, we still decided to
use POMDP instead of the simpler Markov Decision Process
(MDP), because the belief states are necessary to deal with the
characters’ knowledge uncertainty.

Regarding the reward function, the reward of a state
depends only on its own characteristics: if the state fulfills
one or more goals, it has the corresponding rewards. However,
each state is a knowledge world, which, as explained, has its
own goals. Thus the reward of a state is calculated based on
its own goals. Considering these aspects, the utility function
U of a belief state b, when the next acting character is c is:

U(b) = max
a∈Ac(b)

{F (c, a, b)×
∑
s∈S

(b(s)×(R(s)+U(ba)))} (1)

ba(s
′) = α

∑
s∈S

(P (s′, a, s)× b(s)) (2)

where Ac(b) is the set of executable actions of character c in
belief state b, F (c, a, b) is the probability of character c execute
action a in belief state b (this probability is detailed in the next
subsection), S is the set of states, R(s) gives the reward of state
s, b(s) is the probability of state s in belief state b, ba is the
belief state reached after executing action a in belief state b and
α is a normalizing constant. These functions are adaptations
of the functions presented by Ramirez and Geffner [17]. We
derived these functions by removing the observation factor (as
mentioned, we decided not to use the observation functionality)
and adding the actions’ probabilities of each possible actor.

Notice that the behavior rules are analysed to generate
new goals before the planning process (as presented in Fig. 2)
and not during it. This is done to restrain the characters from
executing actions that would generate new goals just to receive
the rewards associated to these goals. For instance, suppose the
characters have a “stamina” attribute that is decreased when
they move and is recovered when they rest, and that they have a
behavior rule that gives them the goal to recover their stamina
if it reaches zero. If new goals were added during the planning
process, it would eventually return a policy that includes the
execution of “move” (just to make the stamina reach zero and
trigger the behavior rule) followed by the execution of “rest”
(to recover the stamina and reach a state with higher reward).
However, walking continuously solely to get tired and rest
hardly can be considered rational.
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Although no behavior rules are evaluated during planning,
some of the goals’ conditions must be described with param-
eters that may change according to the world’s configuration
when a character must plan for the others. In this kind of
problem, a character is facing an environment that changes
not only as a result of his actions. Therefore, the reasons
that justify the adoption of some goals may change based on
the actions of the others, and as discussed in the previous
paragraph, it is not possible to abandon and re-adopt them
during planning. For instance, if a character has a behavior that
gives him the goal to be at the same place as another character,
and the goal has fixed parameters, he will try to reach the place
where the other character was initially, even knowing that he
may have moved to a different location. As solution, it must be
possible to describe the location that must be reached with a
variable that is restricted by the condition of being the location
where the other is. Thus, we adapted the goals’ description and
evaluation to allow conditional parameters.

B. Planning Algorithm

We decided to use a bounded lookahead method, which
iterates only over the list of belief states reachable from the
initial one, given that the exploration of the entire space of
belief states is prohibitive for the domain size of reasonable
story worlds. To consider the actions of the others, each belief
state keeps the information about which character must act
next, and in each iteration this information is updated to
the next acting character (from now on we will refer to the
acting character as “actor”) that the planning character knows,
following the same order of the story generation process.
Alg. 1 presents the main procedure.

The process starts using the planning character’s knowledge
as initial belief state (line 1) and setting the first actor (line
2), which is the planning character. Then, it proceeds entering
into the main loop. In the main loop, it computes the actions
that may be executed in the current belief state by the current
actor (line 9) with their probabilities (as we explain later
in this section, these probabilities represent how much the
planning character believes that the corresponding actions will
be executed). For each action it creates a new belief state
(line 11), projecting all the knowledge worlds (or states in
the context of POMDP) of the current belief state (line 13).
With the new state completely created, the process: defines
its probability with the probability of the action used for the
projection (line 15); calculates its utility (line 16) and defines
the next actor (line 17). Finally, the new belief state is added
to the list of belief states to be expanded in a later iteration.

The function that defines which actions may be executed in
a given belief state by an actor (line 9) is the one that executes
the recursive step. Alg. 2 details how this function works. If the
current actor is the planning character, the function generates
all the executable actions considering the different worlds the
character has as knowledge (line 4). Since different worlds
have different configurations, some actions may be executable
in one world and may not be executable in another. When these
actions are used in Alg. 1 to project the knowledge worlds of
the current belief state to the new belief state, if an action is
not executable in a given world, the world is projected as the
planning character attempted to execute the action, but did not
succeed. In this situation, the planning character will know that

Require: One character and the lookahead bound (maxLevel).
Ensure: A policy.
1: BeliefState initial = getWorlds(character.knowledge);
2: initial.setActor(character.self );
3: ListOfBeliefStates list;
4: list.insert(initial);
5: while list is not empty do
6: BeliefState current = list.getNextBeliefState();
7: list.removeNextBeliefState();
8: if current.level > maxLevel then break;
9: ActionsAndProbabilities < actions, probabilities > =

getNextActions(current, maxLevel);
10: for all action, probability in actions, probabilities do
11: BeliefState newState;
12: for all kWorld in current do
13: newWorld = kworld.executeAction(contextAction);
14: newState.insert(newWorld, current.Probability(kWorld));
15: newState.setProbabiility(probability);
16: newState.calculateUtility();
17: newState.setNextActor();
18: if newState.actor is the planning character then
19: increase newState.level;
20: list.insertWithoutRepeat(newState);
21: return (getSolution(list));

Algorithm 1. Planning algorithm.

all the others will learn that some of the action’s preconditions
are actually false (for more details, please refer to [5]). Finally,
the actions are added to the final list of executable actions,
all with a probability of 100%. This value can be assured,
because these actions only depend on the planning character
(if he reaches the current state during the story generation, he
can be sure that he will be able to execute one of them).

Require: The current state (current), with the current actor (actor) and the
lookahead bound (maxLevel).

Ensure: The set of actions that can be executed by the actor in the current
state with their probabilities.

1: ActionsAndProbabilities < actions, probabilities >;
2: if actor is the planning character then
3: for all kWorld in current do
4: newActions = kWorld.getActions(actor);
5: addNewActions(< actions, probabilities >, newActions,

kWorld.probability);
6: else if actor is not the planning character then
7: for all kWorld in current do
8: translActor = translate actor to kWorld;
9: kWorld.updateKnowledge(translActor);

10: newActions= translActor.plan(maxLevel − current.level);
11: transActions = translate newActions to kWorld;
12: addNewActions(< actions, probabilities >, transActions,

kWorld.probability);
13: return (< actions, probabilities >);

Algorithm 2. Returns the executable actions in a given belief state.

If the current actor is not the planning character, the
function iterates over the knowledge worlds, translating the
actor to their POV (line 8) and updating his knowledge (line 9).
This translation procedure is necessary, because as explained
in section III, the same character may be interpreted differently
in different knowledge worlds. Then the function obtains the
actions that the actor will execute by making a recursive call
to the planning procedure (line 10). As can be noticed, this
recursive call decreases the lookahead bound by the current
belief state level. Although each character, when planning his
own actions, always use the max lookahead bound as limit
(which means that the recursive step would need to do the same
to generate the proper expected policy) we decided to use this
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simplification to decrease the cost of the recursive phase. In the
following turns of the story generation, the planning character
continues using the policy he obtained increasing one step of
it and, to avoid incoherent expectations, it also increases one
step of the policies of the other characters.

Finally, the obtained actions are translated to the context
of the knowledge world (line 11) and added to the final list of
actions (line 12). The probability of each action is the sum of
the probabilities of the worlds that generated them, as detailed
in the following equation:

F (c, a, b) =
∑
s∈S

b(s)× PA(a, c, s)} (3)

where PA(a, c, s) returns 1 if a is one of the actions that the
planning character believes that actor c will execute in state
s, and returns 0 otherwise. In short, the planning character
considers that an action is as likely to be executed as the
knowledge worlds that suggested it.

The condition that controls the recursive feature is also
included in the planning process, but we did not detail it
in the presented algorithms for the sake of simplicity. The
“setNextActor” function in line 15 of Alg. 1 is responsible for
the task. Whenever the planning process reaches a recursion
level where the planning character does not have knowledge
about the knowledge of the others, the function will only set
the next actor as the current planning character. Thus, the
function presented in Alg. 2 will not make any recursive calls.

The resulting structure (exemplified in Figure 3) is a tree
in which the nodes represent the belief states (where the root
node is the initial and the leafs are the final belief states), and
the edges represent the actions. This structure resembles the
minimax tree, but unlike the minimax algorithm, the actions of
the other characters are obtained recursively and all the actions
have probabilities to represent the confidence that the planning
character has that the action will be executed.

Figure 3. Example of the initial steps of the structure generated by the
recursive bounded lookahead with three characters. The nodes are belief states,
represented with different forms to define the different actors’ turns, and the
edges represent the actions, which are annotated with their probabilities. For
the sake of simplicity, we removed the probabilities of the planning character’s
actions. As explained, they all have a probability value of 100%.

V. SCENARIO EXAMPLE

We decided to use the Little Red Riding Hood story world,
based on the Grimm’s variation [18], as test scenario, given its
famous deception scene based on a perception mistake. This

world was recreated to verify if the system would be able to
create coherent variations with as less predefined scripts as
possible. In this section we summarize the world description
and then discuss the resulting stories.

A. Little Red Riding Hood World

In our version of the fairy tale we used four characters:
Little Red, a wolf, a hunter and Grandma; two objects: the
basket of sweets and a dress; and a map composed with Little
Red’s house, Grandma’s house and some locations between
them to represent the forest. The method used for authoring
was the cycle of generation, implementation and simulation
described by Swartjes [2].

The characters were created with 16 attributes, the most
relevant ones being stamina, evil and defenceless. Stamina is a
numeric attribute spent when some actions are executed and is
recovered after resting. Evil is a boolean attribute that indicates
natural disposition and defenceless is a boolean attribute that
indicates if the character can defend himself. All the characters
know the actions for moving, getting near another character,
moving away from another character and resting. Move is an
action that changes the location of the actor, but that cannot
be used when he is near another character. The Wolf also
knows wear and eat. The first changes his appearance using an
object that he must have. The second puts the action’s target
inside the acting character’s stomach, and also makes the actor
appear to be more menacing. As precondition to eat another
character, the actor must be evil and must be near the target
character. Finally, the hunter knows the action kill that kills a
target character by cutting his stomach.

In the initial state of the world, the protagonist is at her
house, has medium level of stamina and the goal of delivering
the basket to Grandma. She starts knowing only her house,
the basket of sweets and Grandma. Her behavior rules are: (1)
at the same place as an evil character, or near an unknown
person, she receives the goal to be anywhere else and (2) in
case she knows anyone not evil, she receives the goal to be at
the same place as him. The Wolf begins in a forest next to the
protagonist’s house, with a high stamina, without any initial
goals, knowing the entire forest and the hunter. However he
does not know where the hunter is. His behaviors are: (1) eat
anyone that is defenceless, and (2) talk to anyone that he did
not meet before, which has a lower reward. Grandma starts at
her house, with low stamina, without initial goals and with the
same behaviors as the protagonist. She only knows her house
and Little Red. The hunter starts in one of the forest locations,
with medium stamina, without initial goals and one behavior:
kill anyone that is evil. He also knows only part of the forest.
The basket starts at Little Red’s house, and the dress starts at
Grandma’s house. All the characters were set with two levels
of theory of mind, which means that a character’s knowledge
reaches what the others know, but not what the others know
about what he knows. The bounded lookahead limit was set
to three steps.

We did not include communication actions that make one
character pass any information it has to another character,
because of the resulting computational complexity. Then, to
recreate the scene where Little Red and the Wolf talk, we
included a talk action to the knowledge of the Wolf and an
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Figure 4. Story variations scheme. Dotted lines represent different developments and blue rectangles represent social actions.

event that inserts into the Wolf’s knowledge the character
Grandma, after he talks with Little Red. Also we added an
event that makes the protagonist know that her grandmother
was eaten if she recognizes the Wolf with the disguise.

B. Generated Stories

We executed the story generation process 25 times and
obtained 23 different stories. Most of them only differ from
each other regarding the paths that the characters used to
traverse the forest, but there were also differences in keypoints.
By grouping the stories according to these points, we found
four main variations. Figure 4 presents a schematic view of
them, where the blue rectangles represent the social actions.

At the beginning of the simulation, Little Red goes to the
forest where she necessarily encounters the Wolf, because his
starting location is next to her house. At this point, she does
not decide to flee, because she does not know that the wolf is
evil, while the wolf does not try to eat her, because he does
not believe that he will be able to catch her. So he decides
to talk to her, which triggers the event that makes him aware
of Grandma. Now that he knows her, he adopts the goal of
eating her. Knowing the entire forest, the wolf goes straight to
Grandma’s house, while Little Red has to explore the forest.
Even so, sometimes she is able to reach the house at the same
time as the wolf, sometimes even before. Reaching the house
before Little Red, the wolf eats Grandma and decides to wear
the dress to deceive the protagonist. Grandma is not able to
flee from the wolf, because she does not have enough stamina.

In the scenarios where Little Red reaches Grandma’s house
after the wolf disguises himself, sometimes she recognizes
him, sometimes she does not. When she does not recognize
him, she approaches him to deliver the basket of sweets and
ends up being eaten. When she does recognize, the event
that makes she know that Grandma was eaten is triggered.
Also, she decides that the wolf is evil by perceiving his new
menacing appearance, which makes she adopt the goal of being
somewhere else (the goal that makes her want to flee). If she
encountered the hunter while walking through the forest, she
also adopts the goal of being at the same place as him. Either
way, she goes out of Grandma’s house and the wolf starts
trying to reach her, but instead of following her steps, he goes
to a place that he believes that she will go. This time he decides
to eat her, because he knows that she already spent some of
her stamina while traversing the forest.

In some stories Little Red was able to reach the hunter’s
location, in others she was not. When the hunter’s location
was not reached, in some scenarios the wolf was able to eat

Little Red, and in others she was able to escape. When she was
able to reach the location, the hunter himself not necessarily
was able to recognize the wolf. When he recognized the wolf,
he killed the antagonist, Grandma went out of his stomach
and Little Red delivered the basket of sweets. When he did
not recognize the wolf, the wolf decided to talk to him, Little
Red ended up going to her house and the wolf went back to
the forest. In that scenario with the three characters, Little Red
usually had no more stamina, but the antagonist decided to talk
to the hunter instead of trying to eat her, because the hunter
would see the action and consequently kill him. Afterwards,
when the wolf decided to go back to the forest instead of
resuming the pursuit, we believed at first that he decided not
to follow her because he did not know where she was, but
analysing his policy, we verified that he believed that the hunter
would eventually follow and kill him, so he decided to flee.

Regarding the situations where Little Red reaches
Grandma’s house before the wolf, she delivers the basket and
afterwards, the wolf eats Grandma in front of her. Then she
decides to flee, because she identifies him as evil by seeing him
eating Grandma, and the story progresses as already described
in the scenarios where she recognizes the wolf using the dress.

C. Discussion

Despite using deceptive behaviors, all these variations
can be generated using predefined scripts. However it would
be necessary to specify a different script for each possible
development, which also requires previous knowledge about
all these developments and some of them were not expected
for us. For instance, we expected the wolf to follow Little Red
using the same path, as he did in our previous work. Instead,
he went to a different location and waited for Little Red to go
there. There was even a variation where he accidentally went
to the place where the hunter was. In this variation Little Red
went to her house, because she did not meet the hunter before,
the hunter killed the wolf and Grandma went out of the wolf’s
stomach. Regarding the disguise action, the wolf is able to plan
it, because he knows that when Little Red sees him wearing
the dress, she may believe that he is her grandmother and may
approach him to deliver the basket of sweets. Then, he would
be able to eat her without much effort.

Regarding the authorial effort, the simulation of more
reasoning capabilities requires more data during the creation
of worlds. For a character to reason about what the others will
do, it is necessary for him to know what the others know. This
extra knowledge must be predefined or added using some of
the system’s mechanisms. As presented in Section II, some
previous works deal with this problem making the actions
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add goals and/or specific information to a target character’s
knowledge. So if a character executes these actions he will
know that the target will adopt the goal and/or know the
specific information. We used the same approach in this work,
which increases the authorial effort. On the other hand, as
already mentioned, with more reasoning capabilities the system
requires less predefined scripts to simulate some behaviors. In
previous works, we had to adapt the wolf’s knowledge to make
him avoid eating Little Red at the beginning, while using the
recursive planning it was not necessary, because he realized
by himself that he would not be able to catch her.

Another disadvantage to authorial effort of automatically
dealing with the theory of mind is making the generation
process even less predictable, which means that more authoring
cycles would be necessary until the author is satisfied with the
result. However, we believe that the loss of control is necessary
if the main objective is to create unexpected developments.

Unfortunately, our recursive approach increased the run-
time. It required 57 minutes on average to generate one story,
while in our previous work, without the recursive planning,
it required 20 minutes on average. The parameter that most
influences the performance is not the number of characters,
but the complexity of their knowledge. Approximately 93% of
the generation time was used in the wolf’s turns, because he is
the character that has more information inside his knowledge
worlds and also deals with more uncertainties. Since the
performance is based on this knowledge complexity, it is
difficult to define exactly how the system would perform in the
generation of different kinds of stories. Story characters may
become more knowledgeable or may become more ignorant.
If a character becomes more knowledgeable, he may have less
uncertainties, but may have more correct information to think
about, while if he becomes more ignorant, he may have less
correct information to use, but may have more uncertainties.

Given this limitation, this approach hardly could be used in
real time. However, it still could be used by authors as support
to help develop a number of different predefined stories that
would cover the most important player decisions, and even
suggest unexpected, but promising developments.

VI. CONCLUSION

To increase the potential of simulation-based story gen-
eration systems, we developed a recursive planning approach
that works with a previously developed perception simulation
process. This combination is necessary to generate scenarios
where the characters rely on the others’ imperfect knowledge
to reach their own goals. The emergence of deceitful behavior
was demonstrated using a recreation of Little Red Riding Hood
world, with which the system was also able to create coherent
and unexpected developments.

However, we still need to increase the performance. A
promising idea is to avoid using the recursive step in consec-
utive iterations when what the others know about the world
does not change. Also, there are many capabilities that need
to be improved. For instance, we had to use an event to make
Little Red know that Grandma was eaten by the wolf. If she
were capable of abductive reasoning, she could have guessed
this information by herself, which would make the generation
more independent and decrease the authorial effort.

It is also necessary to verify the system generation potential
and quality using a number of different narrative worlds. We
intend to create new worlds (not based on famous stories),
allow users to create their own characters to see how they
would perform and receive their feedback on the generated
stories using a questionnaire with focus on the sense of social
behavior and quality.
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Abstract—Basic attack and defense actions in games are often
extended by more powerful actions, including the ability to
temporarily incapacitate an enemy through sleep or stun, the
ability to restore health through healing, and others. Use of
these abilities can have a dramatic impact on combat outcome,
and so is typically strongly limited. This implies a non-trivial
decision process, and for an AI to effectively use these actions
it must consider the potential benefit, opportunity cost, and the
complexity of choosing an appropriate target. In this work we
develop a formal model to explore optimized use of sleep and heal
in small-scale combat scenarios. We consider different heuristics
that can guide the use of such actions; experimental work based
on Pokémon combats shows that significant improvements are
possible over the basic, greedy strategies commonly employed by
AI agents. Our work allows for better performance by companion
and enemy AIs, and also gives guidance to game designers
looking to incorporate advanced combat actions without overly
unbalancing combat.

INTRODUCTION

Multi-agent combat in Role Playing Games (RPGs) is com-
monly supplemented by powerful abilities, such as sleep or
heal, which allow a team to improve their combat chances by
(temporarily) disabling an opponent, or by saving an ally from
potential death. Unbounded, these abilities can easily trivialize
combat and so most games also impose heavy constraints on
their use, making the choice of if, when, and on whom to
use such an ability a non-trivial part of the game complexity,
and one of the skills players must learn and optimize through
multiple battles and repeated gameplay. Non-player characters
(NPCs) on both the player side and enemy side, however,
can also wield these abilities, and while hand-scripted or
randomized approaches are commonly used for their speed and
simplicity, avoiding the need for expensive search in action
selection, the resulting choices do not always meet player
expectation of intelligent companions or opponents.

In this work we develop a formal cost-benefit model to
represent the impact of sleep and heal in small-scale game
combats. We use this analysis to develop simple and efficient
heuristics for selecting whether to use sleep or heal instead of
attack actions, considering sleep and heal separately as well as
in combination. In each case we validate our heuristics through
detailed experimental analysis of abstract combat scenarios
based on Pokémon. Measurements on different performance
factors, including win-rate, remaining team health, and total
damage dealt show significant improvements over other, com-

mon heuristics, including Pokémon’s scripted design approach.
Specific contributions of our work include:
• We perform a formal analysis of sleep and heal actions,

developing a cost-benefit model that we then use to define
an optimizing heuristic for action selection and targeting.
As far as we know ours is the first work focused on sleep
and heal in combat games.

• Our design is backed by significant experimental work
based on Pokémon combat and character attributes, show-
ing that our heuristics are manifestly better than common,
basic approaches.

• A unified cost-benefit model for both sleep and heal
allows us to combine them into a single heuristic, which
we evaluate in larger scale situations.

RELATED WORK

Team combats in RPGs are essentially (small-scale) attrition
games, where one team must fully eliminate another. These
are already known to be computationally complex, even with
just basic attack and defense. Furtak and Buro, for instance,
present proofs on the complexity of two-player attrition games
showing that the problem is computationally hard for most
game cases, and deciding the existence of deterministic win-
ning strategies for basic attrition games is PSPACE-hard and
in EXPTIME [1]. Ontañón et al. provide a survey of exist-
ing works on solving AI problems in the commercial game
StarCraft—a much larger scale example of an attrition game
compared to the ones we consider [2]. They discuss topics
such as current tactics, strategies, and state-of-art AI agents
for StarCraft, shedding light on challenges in general attrition
games. In smaller contexts, Tremblay et al. proposed a greedy
heuristic for enemy targeting based on enemy threat, a value
positively related to enemy attack strength, and negatively to
health [3]. The theoretical justification for that heuristic was
validated in realistic, FPS-inspired combat scenarios, but still
only allows for attack as a combat action.

Combat AIs based on searching through a decision or state
space trade runtime performance for improved behaviour that
can better adapt to dynamic contexts. Brute-force (DFS or
BFS) search does not scale well of course, but can be improved
through use of alpha-beta or one of its variants. Work on Fast
Alpha-Beta Search, for instance, shows that a search approach
can perform better than many scripted strategies in RTS games,
and can meet real-time constraints for small scenarios [5].
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Even when limited to just attack (or move) scenarios, however,
search approaches are necessarily non-exhaustive, truncating
search depth to meet timing requirements, and so dependent on
good heuristics for state evaluation. Stanescu et al. considered
the use of Lanchester models, a military approach to estimat-
ing combat losses suitable for large army interactions [6]. They
use this to improve accuracy of state estimation, significantly
improving a search-based StarCraft bot.

More efficient search can also be performed using heuris-
tic search algorithms, such as in Monte Carlo Tree Search
(MCTS), a search algorithm that relies on random sam-
pling [7]. Bruce Abramson first experimented with the idea
in turn-based two-player games including Tic-tac-toe and
Chess [8]. The MCTS algorithm has since been extended
to solve AI problems in more genres of modern computer
games including real-time games such as Total War: Rome
II [9], card games such as Magic: The Gathering [10], etc.
MCTS can be complicated to implement in combat games,
as state estimates are based on simulating playout, and thus
can be highly approximate. Uriarte and Ontañón proposed a
combat model for 2-person attrition games, aiming to define,
and learn, an accurate forward model for state transitions in
MCTS search [11], which can then be applied to StarCraft. A
paper by Browne et al. summarizes recent work on the MCTS
algorithm itself [12].

Game research has also explored use of the Rapidly ex-
ploring Random Tree (RRT) algorithm for rapid, search-based
analysis. RRT was first introduced by LaValle in 1998 to
solve path-finding problems [13]. Bruce then adapted it to the
sampling-based planning algorithm for discrete space prob-
lems in his thesis in 2004 [14], and it has since found use in
several game AI systems, including ones aimed at platformers
[15], [16], and stealth games [17]. RRT has advantages in
flexibility, but practical use in combat analysis has not yet
been shown sufficiently effective or efficient [18].

COMBAT MODEL

Our approach relies on a basic, formal model of combat. We
also consider multiple forms of evaluation, as combat success
is not strictly boolean in practice. Below we motivate and
describe our design for both aspects, followed by a detailed
description of the combat parametrization.

Model

Although sleep and heal are common, near ubiquitous
features of RPG combat, there exists enormous variation in
how these skills may be incorporated into combat. The ability
to use a sleep action, for example, may be unique to one
character, or based on character type or acquired abilities, and
thus available to multiple agents. The effect itself may apply
to only a single, targeted enemy, or a range of enemies based
on area or proximity, with the potential to affect agents on the
same side too, as friendly fire. It can have different durations
and durative properties, especially in terms of whether sleeping
characters can or cannot be woken by attacks, and various
casting costs as well, invoked as part of a set of actions

from which selection can be done without replacement, or
based on character resources, such as mana or an inventory
of objects (such as scrolls). Healing has similar complexity in
parametrization. In order to make progress in formal modeling,
we thus commit to a single, simple formulation, which while
perhaps not fully general, allows for concrete results, and can
be extended to variant designs.

Abstractly, we assume a turn-based, 2-team attrition game,
with agents on one side termed players, and the other side
enemies. Each agent has a (static) attack value, a maximum
health, and set of possible actions, which minimally includes
attack (which defaults to targeting the enemy with highest
threat [3]), and may include heal and/or sleep, with use of the
latter two constrained by a resource cost and initial supply,
and for which we will consider multiple targeting heuristics.
Each agent also has a state, either healthy, dead, or sleeping.
In the latter case, a turn-counter keeps track of the remaining
sleep duration, and we disallow sleep actions on a sleeping
agent, as the ability to stack sleeps mainly mimics a sleep
of longer duration. We do not model occlusion or geometry,
and assume deterministic results from actions; this eliminates
the probabilistic element, which affects the decision process
of course, but does not change the underlying basis for the
decision.

Evaluation

The success of team combat of the sort found in RPG and
action games can be measured in different ways. Abstract
attrition games usually focus on “last person standing” as a
binary measure of success, but in real games, and in comparing
effectiveness of different combat choices, this is not always
sufficient. Remaining health is an important criterion as well,
as health restoration is not always instantaneous or free, and
so impacts subsequent combats. Human players may also be
strongly invested in (or entirely embodied by) one character in
their team, and thus the survival and health of a primary agent
may be paramount. Symmetrically, it is not always possible for
player teams to fully eliminate the enemy team. For example,
in “boss fights” of World of Warcraft the enemy leader may
not be supposed to be killed. In these situations the goal is to
do as much damage as possible before players die or within
some time period.

We thus consider three forms of success in evaluating
combat scenarios, measured over multiple simulations of the
same situation:
• WIN: the ratio of combat wins for the player team,

expressed as a percentage.
• HEALTH: the average sum of player team health, adding

up the remaining health of each surviving player team
member after each combat terminates. Note that dead
characters will have 0 health.

• DAMAGE: the average sum of damage done to enemies,
adding up the difference between starting and remaining
health of each enemy team member after each combat
terminates. This is primarily aimed at evaluating simula-
tions where enemies are unbeatable.
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Combat Context and Parametrization

Our model is sufficient to approximate many games. We
base our specific combat implementation and scale our attack,
health and other attributes based on values from the Pokémon
game, a well known RPG consisting of turn-based, team-based
(1–3 agents/side, although we consider larger combats as well)
combat between different classes of creatures—“pokémons”
(pocket monsters). The game includes a total of 721 different
pokémons (as of 2015) [19], giving us a large set of varied
agents for simulation. Note that we do not model all attributes
of pokémons, as defense, speed, and the special attack/defense
values complicate damage calculations, without changing the
overall process. We do, however, include Power Points (PP), a
resource which limits the number of each kind of action that
can be performed, with sleep and heal much more heavily
constrained than attack (which is rarely exhausted).

We also use Pokémon to define our baseline AI in terms of
enemy action selection. This is a scripted AI, and the exact
action selection process is not officially released by Nintendo,
but the main decision criteria are reasonably well understood
by player communities [20]. An enemy thus
• has an initial 70% probability of targeting a random

player with a sleep or paralysis action, or
• uses a healing move (if available) on the ally with lowest

health if it is below 25% of the maximum, or
• attacks the player with lowest health.

SLEEP

The inclusion of sleep as a combat action requires an AI
implement two major decision tasks, first to decide which
action to take (sleep or attack), and second to find the best
target for the action. We assume here that a slept character is
incapacitated for a fixed number of rounds > 1, symbolically
represented as SLEEP DURATION, that only one character in
the player team can cast sleep, and the number of sleep casts
is limited (we use a limit of 10, the same as in Pokémon).

Below we first analyze sleep to determine a solid basis for
computing both benefit and lost opportunity cost, and then use
this to offer an improved heuristic strategy for making the two
main combat decisions mentioned above. We then undertake
experiments to examine and compare our design in real combat
scenarios inspired by the Pokémon games.

Cost and Benefit

Fundamentally, use of a sleep represents a cost-benefit trade-
off. The primary benefit is of course the fact that an enemy
is unable to attack, and so reduces the damage suffered by
the player team (we do not consider any increase in the
vulnerability of the slept enemy, a common trope which also
constitutes a benefit). However, as casting sleep replaces an
attack, it also represents a lost opportunity cost, reducing the
rate at which damage is dealt to enemies, and thus increasing
the overall duration of combat, and potentially the amount
of damage received. We now formalize the cost and benefit,
focusing on cost in terms of reduced damage dealt, and benefit
in terms of reduced damage received.
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Fig. 1. Time vs. damage inflicted by player team (top), and taken by the
player team (bottom).

Figure 1 illustrates the basic trade-offs. In the top graph we
show 3 player team members, c1, c2, c3 battling 3 enemies,
e1, e2, e3, plotting total damage dealt by the player team over
time (round number). In the absence of sleep, each player does
a fixed amount of damage to enemies, the curve flattening out
once no viable enemies remain (in this we assume the enemies
targeted by c2 and c3 die in rounds 2 and 3 respectively, the
former event freeing c2 to join in attacking e3 on round 3,
and leaving only c1 fighting the remaining enemy). If player
c1 casts sleep on round 2, they do no actual damage on that
round, resulting in a bend in their damage curve (marked by an
arrow downward), shown as the difference between the solid
line (no sleep used) and the dashed line (after sleep is used).
This damage reduction is then compensated by player c2, who
must perform an additional attack in round 4 in order to help
kill the last enemy.

The bottom graph in Figure 1 shows the benefit in terms
of damage suffered by the player team. Whether sleep is used
or not, enemy e2 is killed in round 2 and enemy e3 is killed
in round 3. Without sleep enemy e1 is actively attacking and
inflicting damage until round 3 (solid line); slept in round
2, however, this part of damage done to the player team is
eliminated (dashed line).

We can see from this example that the direct cost of using
sleep is the damage loss by the casting player ck foregoing an
attack move (as well as the cost of using a sleep resource).
Under our assumption that sleep casting requires one round,
this is simply the caster’s attack value, ck.a (and if sleep re-
quires multiple rounds to cast this increases linearly, although
we do not consider that here). The potential for overkill, and
targeting choices, however, mean that this is actually an upper

2016 IEEE Conference on Computational Intelligence and Games (CIG’16) 120



bound, as the full attack power of the caster may not have
been necessary in combat. Nevertheless, we use ck.a as a cost
factor, and instead incorporate imprecision entirely into the
benefit factor, as it has a larger impact.

Abstractly, benefit to the player team of using sleep is
also simple, merely the product of the slept enemy’s attack
and SLEEP DURATION. Depending on when sleep is cast
and targeting choices, however, the slept enemy may die
prematurely, during sleep, and thus it is again more correctly
an upper bound on benefit, with the exact amount unknown at
casting time, also dependent on targeting choices and overkill.
As a lower bound, though, we know an enemy cannot be killed
faster than if all players join in attacking that one enemy,
giving a minimal survival time of a slept enemy of

rmin = 1 +
⌈max(0, eslept.h−

∑
i6=k

ci.a)∑
i

ci.a

⌉
, (1)

where ci ranges over players, and eslept.h is the health of the
slept enemy. Note that this assumes the sleep caster is unable
to join in attack on the round sleep is cast. A lower bound
on benefit is then the product of the minimum of rmin and
SLEEP DURATION with the attack value of eslept.

Decisions

A decision to attack or cast sleep depends on a (likely) pos-
itive cost/benefit trade-off. We have several cases to consider,
giving us the following decision flow.

1) If eslept.a ∗ SLEEP DURATION < ck.a then the largest
possible benefit is lower than the cost, giving us a
negative trade-off.

2) If rmin = 1 then eslept has low health, and it may
be possible for the player team to eliminate eslept in
one round. Sleep may still be effective, depending on
targeting choices, but it has reduced value, and other
options should be considered.

3) When rmin ≥ SLEEP DURATION sleep is maximally
effective, and thus well worth using.

4) If rmin < SLEEP DURATION, but eslept.a > ck.a, then
we know that rmin∗eslept.a > ck.a, and thus the trade-off
is positive.

5) Finally, with eslept.a ≤ ck.a the benefit lies within the
range [eslept.a ∗ rmin, eslept.a ∗ SLEEP DURATION]. The
trade-off here is ambiguous. However, as we require
multi-round attention from the player team in order to
eliminate eslept, use of sleep can still be worthwhile.

If all enemies are in case 1 or 2, then sleep has no or quite
limited value. A reasonable basis for choosing to use sleep is
thus only when when an enemy can be found to fall in case 3,
4, or 5. We refer to this action choice heuristic as smart sleep.

Use of smart sleep must also, in general, select from
multiple sleep candidates. Benefit is maximized by selecting
an enemy with high attack, but the lower bound is improved by
choosing enemies with high health, as they are not easily killed
otherwise. Note that this is different from attack targeting

heuristics, where low health and high attack has been shown
preferable [3]. We will experiment with the actual targeting
choices below.

Experiments

Experimental analysis allows us to evaluate the performance
of smart sleep in practice, and to observe the impact of
different targeting choices. For a more realistic game context,
we use values from Pokémon (attack, health, and action sets),
applying a typical player team of relatively average strength
to a wide range of enemy teams, of varying sizes. The latter
are controlled by an approximation of the Pokémon AI, as
described earlier.

The player team consists of 3 pokémons (“Lapras” (#131),
“Chandelure” (#609), “Garevoir” (#282)), selected to give us
a team that includes agents with and without sleep capabilities
(in these experiments healing is disallowed for both teams).
Enemy team members are selected randomly from the entire
Pokémon database, but balanced against the players by en-
suring that a team’s average attack and health do not vary
more than ±20% from the player team. SLEEP DURATION
is set to 3 as the default in Pokémon. Player team size is fixed
at 3, but a range of enemy team sizes between 3 and 6 is
considered in order to simulate games of different difficulty,
with the upper end of that range representing a game that is
extremely challenging.

We considered 12 scenarios, independently varying 3 sleep
strategies and 4 targeting heuristics:

Sleep Strategy Targeting Heuristic

Smart sleep Highest health
Random sleep Lowest health
No sleep Highest attack

Lowest attack

No sleep only uses attack actions, and is a baseline that
will show whether sleeping is useful at all, while random
sleep chooses a sleep action 50% of the time (as long as
a healthy target exists), and is intended to see whether the
sleep heuristic is important. We simulate each combination
and each enemy team size 1000 times. In each run, the choices
of enemies are randomized (from Index 001 to Index 721 in
the database [19]) to create a specific team size, which is then
fixed for all strategy tests within that run to reduce noise in
comparing strategies. We evaluate the results in terms of WIN,
and averaged HEALTH scores.

Figure 2 shows the HEALTH results for all combinations
(note that the y-axis scale changes for clearer visualization
of differences among heuristics within each specific chart). In
the 3-enemy scenario, we can see that smart sleep performs
roughly the same as random sleep, and both better than no
sleep. Players always move first in our combats, and so with
equal team sizes, as long as some sleep is cast individual
enemies tend to be killed very quickly, often in the first
round. Even if the effect on health is similar, however, random
sleep is less efficient than smart sleep in achieving this result:
Figure 3 plots the average number of times sleep is used per
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Fig. 2. Total remaining health of players; error bars show ±1 standard
deviation

combat, and here it can be observed that random sleep uses
significantly more sleep casts than smart sleep.
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Fig. 3. Averaged total number of sleep casts per combat by players

As the combat becomes more difficult for players smart
sleep starts to show increasing advantage over random sleep.
With large enemy teams combat lasts longer, exposing cases 4
and 5 in the smart sleep heuristic, and more sleep actions are
used accordingly, as seen in Figure 3. Sleep targeting strategies
also begin to have an impact on the result in these tougher
scenarios. Highest Health and Highest Attack begin to stand
out as superior targeting tactics, confirming our earlier claim
that an enemy with either high health or high attack power
should be a better target to sleep. Our data shows the latter
become preferable at high difficulty levels, although there is
also large variance.

Figure 4 shows the WIN scores for all combinations.
The trend here is similar to the HEALTH evaluation data.
Surprisingly, however, in the 5 and 6 enemy scenarios, we
notice that random sleep has very low chance of winning,
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Fig. 4. Percentage win-rate for the player team

barely better than no sleep, and this despite the fact that its
remaining health score (in winning situations) from Figure 2
does not differ that much from smart sleep. This suggests that
smart sleep is better focused at helping win the combat than at
ensuring maximal health, and also indicates the importance of
not wasting sleep casts, especially when enemies are stronger.

HEAL

Healing actions have an effect similar to sleep in that they
increase combat survival, although they do so by raising ally
health rather than by reducing enemy attacks. We thus follow
a similar analysis as for sleep, using a cost/benefit derivation
to derive a choice heuristic, and then performing experiments
to validate it. As with sleep we use a symbolic value for the
most relevant parameter, using HEAL AMOUNT to represent
the amount of health restored by a heal action. In our case we
set this to 50% of the target’s maximum health, capped to
avoid any overhealing. Again following Pokémon, heal casts
are limited to at most 15 in a single combat.

Cost and Benefit

In our analysis of sleep, the benefit and the cost are
represented in terms of damage decrease, from enemies and
from the sleep caster respectively. For heal, the cost remains
the same—by foregoing an attack action the player team
loses an amount of damage equal to the healer’s attack: ck.a.
Benefit, however, has no direct relation to the damage dealt
by a player. In a trivial sense, the benefit is simply the health
increase provided to the healing target—the HEAL AMOUNT
itself. Intuitively, however, healing is most useful when applied
to a character who would otherwise be killed by the enemy,
and this then relates to the amount of damage done to the
enemies. The recovered portion of health potentially extends
the healed agent’s cH ’s lifetime beyond a given round TB by
a number of rounds, ∆t to TH = TB + ∆t, and the damage
dealt by cH during this extra time is the gain for the player
team, benefit = ∆t ∗ cH .a.
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Calculating TB and TH , and thus ∆t is hard because the
values depend on the amount of attack directed at a given char-
acter, and thus targeting decisions. To ensure that using heal
has advantage over using attack, we again find the minimum
benefit and see if it is greater than the constant cost. Minimum
benefit can be found be considering the smallest ∆t, which
is produced by the smallest possible TH and largest possible
TB . The latter is maximized when few (or even no) enemies
attack, while the former is minimized if all enemies switch
attack to cH immediately after heal is used. For simplicity,
and reflecting the fact that in many real games enemies follow
a scripted attacking routine that does not involve reprioritizing
or changing targets while in combat, we assume attack strength
applied to cH is unchanging, and set it to the sum of attacks
of all living enemies, A =

∑
e∈E

e.a. This gives,

benefit ≈
(⌈cH .h′

A

⌉
−
⌈cH .h

A

⌉)
∗ cH .a (2)

where cH .h and cH .h′ are the healths of cH before and after
healing respectively.

The timing of using heal also matters. Assuming any
character loses health points healing will naturally improve
the HEALTH result, but for WIN there is no point to using
heal when it is unlikely to result in any increased damage
dealt. We thus make another hypothesis that heal is used only
when an ally is in danger—if one of the player team could
potentially be killed within the next round, then saving it has
a good chance of achieving a benefit, assuming healing can
prevent the untimely death, which is guaranteed if health is
raised above A, the sum of enemy attack values. Healing is
thus most useful when cH .h ≤ A ∧ cH .h′ > A.

Decisions

Our decision heuristic directly follows the above reasoning.
If healing is possible, we determine all players for whom
cH .h ≤ A ∧ cH .h′ > A; these are allies of cH (or cH
itself) which could benefit from healing. We then compare
benefit as computed in formula 2 with the static cost ck.a,
filtering the candidate list to ones with a positive trade-off.
This is our basic smart heal heuristic, and we combine this
with a default targeting strategy of choosing a candidate with
maximal benefit-cost difference.

Experiments

Experiments were again conducted using a setup similar
to our sleep experiments. This time, however, we considered
different enemy team sizes, of 2–5 and 8. Sizes 2–5 are meant
to model situations in which the utility of heal ranges from
ineffective to important to survival. For these we measure
performance in terms of HEALTH. Enemy team sizes of 3–5
and 8 are measured with DAMAGE, as the upper bound of
this set is effectively impossible to win, much like some boss
fights. (We do not include enemy teams of 6 and 7 for space
reasons, and as 8 is a better indication of the upper extreme.)
We evaluate all sizes with WIN.

Different healing and targeting approaches are also com-
pared. As well as our smart heal strategy, we consider greedy
heal, healing an ally whose health falls below 50% of maxi-
mum, as a strategy similar to that used in many games. Again
we include random choice, and a baseline of no healing. These
strategies are multiplied by 2 different targeting heuristics,
either choosing the candidate with maximal benefit as defined
above, or simply a random target. This gives us 7 combinations
(no heal does not have a targeting heuristic):

Heal Strategy Targeting Heuristic

Smart heal Smart
Greedy heal Random
Random heal
No heal
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Fig. 5. Total remaining health of players against 2–5 enemies; error bars
show ±1 standard deviation

Figure 5 shows that smart heal does have advantages over
other strategies. An exception is for the size 2 enemy team;
healing here is not required, and smart heal acts like no heal.
The greedy heal and random heal strategies, however, achieve
better HEALTH results, as they heal irrespective of whether it
has a survival impact. As the combat becomes more difficult,
and especially in the 4 and 5 enemy case, we can see not only
that smart heal becomes the best strategy, but also that greedy
heal and random heal start to perform even worse than no heal.
With more enemies, it is possible for many enemies to target
the same player and one heal might not be enough to allow
cH to survive. Evaluating the current combat situation and
each agent’s status becomes more crucial in deciding whether
heal would be helpful, or would merely result in a lost attack
opportunity.

Interestingly, the healing targeting strategy seems to have
relatively little influence on the result. This is possibly caused
by the enemy strategy of trying to focus on the same target
as often implemented in modern games, so that most of the
time we would have only one healing candidate with very low
health. Smart targeting does improve random heal, however,
as the improved candidate filtering partly compensates for the
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random selection.
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Fig. 6. Total damage dealt by players against 3–5 and 8 enemies; error bars
show ±1 standard deviation

DAMAGE results are shown in Figure 6. Against 3 ene-
mies, damage dealt is the same for all strategies, even though
the remaining health is different—all enemies are dying, and
so healing strategy does not affect total damage dealt. In more
difficult combats against 4 and 5 enemies, smart heal shows
advantages similar to the HEALTH evaluation. Notice that in
these cases no heal also tends to do well. By not including
any heal moves, attacks are maximized, and thus so is the
total damage score. This comes, of course, at the cost of
having a much lower remaining health, as seen in Figure 5.
Once combat becomes greatly unbalanced, such as against 8
enemies, all strategies are again equalized. Healing here is no
longer effective, as the large number of enemies can easily
eliminate a player at full health in one round, leaving no
healing candidates at all.

90%

92%

94%

96%

98%

100%

Smart Greedy Random NoHeal

W
IN

vs. 2 enemies
Smart Target Random Target

80%

85%

90%

95%

100%

Smart Greedy Random NoHeal

W
IN

vs. 3 enemies
Smart Target Random Target

0%

20%

40%

60%

80%

100%

Smart Greedy Random NoHeal

W
IN

vs. 4 enemies
Smart Target Random Target

0%

20%

40%

60%

80%

100%

Smart Greedy Random NoHeal

W
IN

vs. 5 enemies
Smart Target Random Target

Fig. 7. Percentage win-rate for players

Finally, WIN results are shown for 2–5 enemies (8 is not
shown as win rate is uniformly 0%) in Figure 7. In this and

combined with the other data we can see that although smart
heal is not necessarily better than greedy heal or random heal
in terms of HEALTH for easier combats, the advantage of
smart heal over other strategies gets larger and larger when
combat becomes more challenging for companions, as long as
winning is feasible, under all types of evaluations.

SLEEP AND HEAL

Having used damage as a cost/benefit factor in both sleep
and heal heuristics, combining our decisions for situations in
which both actions are available is straightforward. For this
we can test each heuristic independently. If candidates for both
sleep and heal exist, then we choose the one with highest net
benefit, breaking ties (arbitrarily) in favour of sleep. Targeting
follows the strategies determined best for each case—highest
attack for sleep, smart targeting for heal, and highest threat
for the default attack action.

Experiments

The combination of sleep and heal can be fairly powerful,
and so we evaluate our combined heuristic in more complex
battle scenarios. We consider two main combat groupings;
one with 3 players and enemy team sizes of 2–8, similar to
sleep and heal experiments, and a second group of 10 players
against 8–18 enemies. In these contexts agents in both teams
are randomly selected, each is allowed all 3 actions (sleep,
heal, attack), and we also remove the restriction on number
of times an action can be used. Although this is now less
representative of Pokémon itself, this gives us a richer and
more balanced combat simulation, with less noise in terms of
which agent can do what.

We evaluate our combined smart strategy along with com-
bined greedy and combined random strategies. The greedy
form is intended to be similar to the default Pokémon AI:
if an ally has health below 25% then heal them, otherwise
attempt to sleep the enemy with highest attack, otherwise
attack. Combined random randomly chooses to sleep, heal,
or attack with equal probability, and acts as a baseline to see
whether any heuristic, even a greedy one, is truly necessary.

Figure 8 shows the WIN evaluation for both groupings
(HEALTH is quite similar, and omitted for space reasons).
In the 3-player grouping all strategies decline in effectiveness
over a span of 3–4 enemy team sizes, but show a clear
separation, with combined greedy and combined smart able
to effectively compete against 1 and 2 larger enemy team
sizes than combined random, respectively. Combined smart’s
performance is quite good here, still succeeding at near a
90% rate against a 5-enemy team. In larger combat scenarios,
however, this advantage is reduced, and while combined smart
and combined greedy both improve over combined random,
the separation is much smaller. Our smart strategies are
based on lower and upper bound computations, and with
greater numbers of enemies these ranges become larger with
significant overlap, making decisions more arbitrary. We are
not able to find best moves as consistently at large scales as we
can in the small scale attrition games we have focused on. It is
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Fig. 8. Percentage win-rate for players with both sleep and heal

possible that less conservative estimation of benefit, perhaps
including historical precedent or using probabilistic notions
could restore the advantage, and is part of future work.

CONCLUSIONS & FUTURE WORK

Targeting problems in attribution games are computationally
difficult. The addition of common but powerful abilities such
as sleep and heal magnify this complexity, and although
at their core they represent a conceptually simple trade-off
between lost attack opportunities and the sleep/heal effects,
the presence of unknown opponent (and companion) action
choices and impact of varied parametrization in the skill use
and effects make good decision-making non-obvious. Our
derivation, heuristic design, and experimental evaluation show
that effective and efficient decisions can be made based on
relatively simple calculations, and can easily achieve better
results than more traditional random, or hard-coded com-
bat choices, for sleep and heal alone or in combination,
without necessarily resorting to more expensive tree-search
approaches. This makes our results usable in both turn-based
and real-time, CPU-constrained contexts.

It may be possible to extend our approach to include other
common combat abilities, such as defensive or offensive aug-
mentation, as they have costs and benefits which can also be
expressed in terms of damage received or dealt. More complex
future work is aimed at incorporating combat geometry, which
would let us consider the use of area-effects, where the target

decision is more continuous, potentially affecting friendly as
well as hostile units.
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Abstract— Decay of population level daily user activity in 

Tribeflame Ltd.’s mobile games is found to be determined by 
elementary differential equations. We describe practical methods 
for investigating laws underlying the decay of daily user activity 
in a given cohort, known as retention in the gaming industry. 
Simple decay patterns are found to accurately describe this 
evolution. In addition to being of academic interest in sharing 
parallels to population growth and decay dynamics, this finding 
has immediate applications in the mobile games industry. 
Utilizing this finding allows using smaller cohorts of users in 
intermittent paid acquisition tests and enables game performance 
forecasting over long timespans. 

I. INTRODUCTION 

A. Principal Metrics in Mobile Games 

Mobile games are becoming increasingly important in 
digital industries both in terms of market share and as a source 
of revenue. Recent development in mobile games has been 
increasing adoption of the Freemium business model. This 
development is not driven merely by developers imitating few 
astonishing success stories; free-to-play (F2P) games offering 
advertisements and paid extra content are now the dominant 
form of new releases in mobile games [1]. This transformation 
has made analytics increasingly central in understanding and 
improving freemium products. For quantifying a mobile game, 
retention has been used as a principal metric in the industry [2]. 
This is explained by freemium product dynamics: the capacity 
to influence the acquisition of free users is limited, but buying 
new users is economically feasible if the users monetize over 
their acquisition price. Since publishers incur virtually no cost 
for users using the product, assuming revenue is proportional to 
product use, developers seek to build products that maximize 
total product use. 

Jargon in the mobile games industry and academia is 
somewhat variable; we use the following convention in order 
to distinguish various retention measurements. For a group of 
users starting the same day we define:  

• i’th day retention R(i) is the percentage of users who 
were playing i calendar days from the day they started. 

• i’th day rolling retention A(i) is the percentage of users 
who are active i calendar days from the day they started, 
where active users play on that day or any day after it. 

• i’th day lifetime retention L(i) is the percentage of 
users who played more than i days in total. 

Note that by definition R(0)=A(0)=L(0)=100%. This 
convention makes speaking of i’th day metric straightforward 
and unifies visualization graphs. The statistics offer summaries 
of activity decay in a group of users starting the same day, 
known as a cohort. Retention quantifies the decay of active 
product use over time, whereas Rolling Retention aims to 
quantify users who have not yet quit since they will eventually 
use the product again. Lifetime Retention summarizes total 
product use as counted by separate days used. Note that 
retention is an unbiased measure, whereas rolling retention and 
lifetime retention are affected by the maximum observable day. 

B. Related Research 

This research can be seen as an extension to our previous 
research [3] which aimed to understand the behavior of a user 
as a stochastic process at the individual level. We now work at 
the population level and attempt to directly model aggregate 
statistics through simple dynamics. Statistical models of 
growth and decay dynamics are popular in many fields and 
have for example been utilized in a similar study of population 
activity [4] in connection to internet memes. 

Most related gaming research has investigated various other 
aggregate statistics of user activity. Classifying users as 
purchasers and predicting purchase count was investigated in 
[1]. A prominent study found that Weibull distribution governs 
total time played [5-6] in hours. Compelling applicability was 
found in over 3000 Steam games, suggesting that common 
psychological mechanics may underlie widely divergent 
games. Session length and session inter-arrival times have also 
been found to be Weibull [7-9] or heavy-tailed distribution 
[10]. The investigations [9-10] seem to be measuring same 
statistic in daily active user population, but are in reality of 
altogether different character; their goal is measuring server 
load at different times as caused by the entire population, 
whereas we seek to quantify goodness of a game by finding 
laws that determine the decay of users starting the same day as 
a function of time. Lifetime considerations are closely related 
to player churn, which has been predicted by general purpose 
machine learning methods based on player features and 
aggregate session statistics [11-14]. Retention as a phrase was 
used previously in a study which aimed to adaptively improve 
session level retention by avoiding game states conductive to 
quitting [16] and in studies formulated as a regression problem 
predicting next 14-day [14-15] or next month [17] presence 
based on player features or identifying elements conductive to 
game design [18]. Measurements of other engagement metrics 
were studied in [19] and they were found to correlate.  
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II. DATA SET 

A. Tribeflame Mobile Games 

We gathered retention data from the following five mobile 
games, which vary from the Benji franchise with tens of 
millions of players to in-development games Dragon Fortress 
and Hipster Maze with user acquisition tests.  These two games 
provide an important benchmark for measuring retention 
within development cycles. 

TABLE I.  MOBILE GAMES USED IN THE STUDY 

Game Description Genre Players 

Benji 
Bananas 

“Exciting and fun physics 
based adventure!” 

Endless 
Runner 

62 000 000 

Benji 
Bananas 
Adventures 

“Everyone's favorite 
swinging monkey returns for 
more action in the jungle.” 

Arcade 
Platformer 

11 000 000 

Mad-Croc 
“Mad Croc is an endless 

runner where you control the 
fierce Mad Croc crocodile!” 

Endless 
Runner 

140 000 

Hipster 
Mazea 

“Help this unique sheep in 
his quest of finding the next 

big thing!” 

Brain 
Puzzle 

3 600 

Dragon 
Fortressa 

“Build your epic fortress and 
make it invincible!” 

Combat 
City 

Builder 
11 000 

a. In Development 

We selected the following start dates for retention data, 
with various technical issues limiting Benji data to a later start 
date than otherwise would have been available. Mad-Croc data 
begins at release and in-development games are dated to recent 
user tests. Collection time restricts data between cohort start 
date and 19.2 for all games except Dragon Fortress: 

TABLE II.  NUMBER OF PLAYERS 

Game Cohort Start Cohort End Cohort Players 

Benji Bananas 2015.09.21 2016.02.19 37558 

Benji Bananas 
Adventures 

2015.09.21 2016.02.19 7886 

Mad-Croc 2015.12.09 2016.02.19 5352 

Hipster Mazea 2015.10.23 2016.02.19 921 

Dragon 
Fortressa 

2015.11.05 2015.12.27 510 

B. Retention Visualization 

Calculating and plotting retention is an everyday activity of 
game analytics. We plot Benji Bananas retention from 
2015.09.21, which happens to be Monday, in Figure 1. to 
illustrate the cohort’s decay. The y-axis is log scaled, which is 
a common practice in visualizing growth rate type plots but has 
not yet been widely adopted in the industry as far as we are 
aware of. This tool is extremely useful for visualizing of tiny 
quantities combined with scientific base-10 notation used in the 
labels. 

Retentions of the cohort are generally decreasing, but the 
log-scaled y-axis makes deviation clear: retention can also 
increase. This periodic pattern is caused by an increased 
weekend activity with contributions by volatility in small 
populations. The definition of rolling retention and lifetime 

retention imply that they are monotonously decreasing from 
one to zero over integers, making it correct to call them 
discrete survival functions. The underlying random variable is 
conceptually ‘Days Active’ and ‘Days Played’ with survival 
measuring the probability of P[‘Days Active’ > T] and 
P[‘Days Played’ > N], respectively. Retention looks like a 
survival function, but by the above discussion does not satisfy 
the mathematical definition and neither measures any clear 
variable of utility. This similarity is due to its relation to rolling 
retention: % Playing = % Playing of Active * % Active where 
% Active is given by rolling retention survival and % Playing 
of Active tends to a constant with oscillations around weekends. 

Fig. 1. Benji Bananas  retention 

There is a complication involved in computing rolling 
retention and lifetime retention, since we can only observe a 
certain number of days up to the current day but their definition 
relies on having knowledge of all future. In practice rolling 
retention and lifetime retention are computed assuming players 
do not play after the maximum observable day. This causes an 
abrupt downward slope in rolling retention we see in Figure 1. 
and a less discernible bias in lifetime retention. A user level 
stochastic model we presented previously [3] was able to take 
this into account by fitting to both inactivity and quitting the 
game simultaneously. In the aggregate case this is difficult to 
mitigate. In this study models were not fit with the biased 
portion in rolling retention tail and this limit is denoted with a 
vertical dashed line. The goal is to demonstrate that same 
dynamics apply across retentions and focus on extrapolating 
retention, which is unbiased by limited observation window. 

Finally, we would like to note an important caveat. For 
mathematical convenience in what follows retention is handled 
as if it was continuous in the sense that our population function 
is defined on the whole positive real line. Retention is then 
defined by its values on positive integers 0,1,2,3,… Only 
rolling retention having an immediate continuous interpretation 
makes sense. Retention and lifetime retention are of binned 
nature; retention at 1.5 days does not imply % of players 
playing midday the second day played and lifetime retention at 
0.25 days does not mean players playing more than 8 hours. 
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III. DIFFERENTIAL EQUATION OF DECAY 

A. Mathematical Formulation 

Assume that population at time T is given by a function 
denoted P(T) with P(0)=1. Then a useful quantity to 
investigate is the positive instantaneous rate of decay at time T 
of the remaining population: 

   (1) 

The decay of the remaining population accumulated up to 
time T is given by integrating the decay rate: 

   (2) 

We see that the accumulated decay of population remaining 
is related to population at time T by a simple relation:  

   (3) 

Considering retentions as a population function P(T) notice 
we implicitly plotted H(T) previously on an inverted y-axis by 
log-scaling the y-axis of P(T) This plot allowed us to observe 
underlying regularity of the function, and visually reproduces 
in Figure 2. on an inverted natural logarithm transformed y-
axis without interpolation between data points. 

Fig. 2. Benji Bananas accumulated decay H(T) 

The usefulness of H(T), or taking the negative logarithm of 
P(T), is explained by how it transforms proportional changes in 
P(T) to linear changes in H(T). For example, suppose that 
population is decreasing at a constant rate q from day N 
onwards. Then P(N+1)=P(N)(1-q) corresponds to a linear 
change in the value of the logarithm H(N+1)= -
log[P(N)]+log[1/(1-q)] which visually presents as a slope with 
a constant angle.  

The concept of slope is mathematically formalized in the 
derivative, H’(T) of H(T), which is the foremost source to look 
for an explanation for regularity of an increasing function H(T). 
However, it is not possible to directly investigate the derivative 
from data by calculations or plots because first of all we do not 
have a continuous function and second the function on discrete 
support is too noisy to render successive proportional changes 
∆P(T)=P(T+1)-P(T) informative.  

B. Decay Rate Investigation 

Our goal is to find a representation of the true function 
through estimating the underlying derivate. This problem is 
approached in stages:  

1. Use methods which provide a smoothed estimate of the 
function H(T) and its derivative H’(T). 

2. Investigate simple functions which are powerful 
enough to express the derivative H’(T). 

3. Fit the corresponding population function exp[-H(T)] 
to retention. 

Fig. 3. Benji Bananas continuous modelling through 4th degree spline 

2016 IEEE Conference on Computational Intelligence and Games (CIG’16) 128



For the first step, we chose a 4th degree smoothing spline 
which is a piecewise polynomial function f. It fits data points 
(xi, yi) by imposing wi weighted tradeoff between accuracy yi - 
f(xi) and smoothness s according to a fitting budget: ∑i wi(yi - 
f(xi))2 ≤ s. For value s=0 the smoothing spline interpolates 
through all data points by defining a knot point at each, and as 
s→∞ it approaches a linear approximation. We defined a value 
for s which filtered out the noise caused by weekday activity 
but caused no bias. The rationale is illustrated in Figure 3.  

Also illustrated in Figure 3., and formalized in the 
fundamental theorem of calculus, is the derivative or ‘slope’ 
H’(T) conversely defining H(T) by a definite integral or ‘area 
under the curve’. We observe highly regular decay of H’(T) as 
a function of time with a seemingly asymptotic constant value 
of decay. While an unsmoothed spline would be sufficient to 
model a function to any degree of accuracy with respect to a 
data set, due to knot points it cannot be used for extrapolation. 

To model retention, we hypothesize that the decay effect is 
universal and that there exist simple algebraic functions in the 
space of H’(T) which are sufficiently simple to be robust yet 
expressive enough to model the decay rate. In our previous 
investigation days played or lifetime retention corresponded to 
a component of the stochastic model and was verified to follow 
discrete Weibull distribution implying a continuous Weibull 
hazard [3]. In the model simple functions implicitly define 
various population decay functions through integration and 
take values on integers. 

C. Decay Observed in Tribeflame’s games 

 We tested the hypothesis of the regularity of decay on 
retention and rolling retention in Tribeflame’s mobile games 
and verified its validity in Figure 4 where the maximum 
observable day is a solid vertical line. We observe the same 
pattern of decreasing decay rate with an asymptotic constant 
rate.  Smoothing spline interpolation suggests that the decay 
rate of active users stabilizes quite rapidly, with near constant 
rate around 30 days and the decay rate of playing users taking 
two to three times longer to reach the constant neighborhood. 

These games exhibit very similar behavior: eventual 
constant decay rate with differences in initial churning speed.  
Hipster Maze has least initial churn and Mad-Croc, which 
utilized aggressive user acquisition, expectedly does worse in 
the very first days. Only possible exception is Dragon Fortress, 
which is still in early development with user test cohort 
consisting of only 510 players. Smoothing spline produced a 
bathtub like curve, which may reflect size of the data set or the 
fact that game does not hold population interest. Less volatile 
estimate of rolling retention verifies consistently higher 
churning rate, suggesting development should be continued. 

Because of its applicability to Tribeflame’s mobile games, 
we decided to call this pattern Tribeflame retention. We 
cautiously suggest that it might be the underlying cause for 
retention in other mobile games as well. Even if this hypothesis 
is disproven, whatever shape the derivative realizes, this 
paradigm provides advantageous views into user cohort churn. 
It is a very interesting scientific question to map the space of 
decay patterns and look for possible foundational simplicity.  Fig. 4. Decay rates in Tribeflame’s games obtained with splines 
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IV. MODELLING THE DECAY RATE 

A. Parametrized Models in the Decay Space 

We now turn to the second part of our hypothesis, which 
states the decay pattern exhibits regularity which is possible to 
parametrize in terms of elementary functions. The decay rate 
H’(x) is then defined as a sum of a decaying component D(x) 
→ 0 and an asymptotic constant rate c ≥ 0:  

   (4) 

The following common functions exhibit similarity to the 
decaying component D(x). The parameter intervals in Table III. 
denote the range where the rate of decay is decreasing, whereas 
their full range of definition is more extensive. They were 
parametrized as to make the population function appear simple, 
but alternatively the constant terms could be parametrized to 
simplify the rate of decay.  

TABLE III.  HYPOTHESES OF COMMON FUNCTIONS FOR D(X) 

P(x) D(x) Parameters 
Related 

Distribution 

   
Weibull 

 
  

Pareto 

  
 

Log-
Logistic 

 

Related distribution denotes a distribution for which P(T) 
defines a survival function [20]. We refer to the population 
function by these names but do not adopt the statistical 
viewpoint because, as explained before, retention is not a 
survival function and we also extend these decay rates with a 
constant. Our previous investigation utilized and developed this 
approach for certain components of individual player behavior 
and we refer reader to it for more information [3]. The survival 
functions and related concepts are used extensively in survival 
analysis with following names [21]:  

• P(T): Survival function. 

• H(T): Cumulative hazard function. 

• H’(T): Hazard function. 

B. Model Fitting Target and Penalty 

In this case, choosing a fitting target and a fitting penalty is 
a precarious problem of considerable business relevance. One 
may for example use retention as a central measure in business 
forecasts [2]. First decision arises in the choice of the fitting 
target: If one predicts 0.5% retention with a true value of 1.0%, 
what is an optimistic mistake of equal magnitude? Both 
answers 1.5% and 2.0% are equally valid from differing 
viewpoints. Penalties imposed relative to retentions’ percentage 

points consider 1.5% the correct answer. However, if one 
penalizes fit relative to the logarithm of retention or H(T) with 
these errors, one considers the answer 2.0% because addition in 
log domain translates to multiplication in ordinary domain. In 
this case an optimistic bias of saying game is twice as good is 
equal to having a pessimistic bias of saying game is half as 
good. 

Another source of judgement arises in relative differences 
and absolute differences. Since retention is a generally 
decreasing curve which reaches very small values very rapidly, 
common methods of penalizing deviation from the target such 
as mean squared error (MSE) may not penalize what is 
intended. For example, predicting 10% 5-day retention with 
true value 11% is equally bad to predicting 0% 90-day 
retention with a true value of 1% which is clearly invalid for 
forecasting retention. Relative difference based methods like 
mean absolute percentage error (MAPE) make it possible to 
quantify deviations from very small quantities. For example, it 
considers 8% prediction contrasted to a true value of 10% in 
initial retention as bad as 0.4% prediction versus 0.5% in tail 
retention, which is more informative prediction from a business 
perspective. We also utilize mean error (ME) and mean 
percentage error (MPE) to measure bias. These errors are 
defined for retention P(T) and model R(T) over days T=1,…,N: 

      (5) 

      (6) 

Additionally, we may be content to let go of accuracy of 
fits in the first week or two which is least likely to fit model 
assumptions and which we have already observed without 
substantial volatility anyway. In practice one often wishes to 
analyze the highly volatile tail retention and predict it in 
advance, with reliable estimates of the accumulated decay 
being empirically available. The modelling procedure could be 
adapted by utilizing a suitable penalized weighting procedure 
with this in mind.  

C. Power of the Resulting Hypothesis Set 

Corresponding to the method the smoothing spline was fit 
with, we use logarithm domain MSE fit to test the capacity of 
the parametrized decays, or the hypothesis set, to model the 
observed decay rate. Since our current goal is to investigate the 
hypothesis set and not the ability to extrapolate rolling 
retention, weights were set to zero in the domain where the 
practical computation of rolling retention caused bias by 
assuming players have quit. This was denoted in figures by a 
dashed vertical line. 

Fitting the models produced Table IV. and Table V of error 
measurements: ME ± MSE relative to the smoothing spline 
interpolation. Smallest MSE is denoted bold. We assumed the 
noise filtered spline to be a sufficient representation of the true 
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function. As can be deduced from these tables, simple rates are 
remarkably expressive of the decay phenomena, especially the 
ones that include a constant term. 

TABLE IV.  H(X)  ME/MSE RELATIVE TO RETENTION SPLINE 

Game Weibull Pareto 
Log-

Logistic 

Weibull 
+c 

Pareto 
+c 

Log-
Logistic 

+c 
Benji 
Bananas 

0.02 
±0.00 

-0.04 
±0.04 

-0.07 
±0.07 

0.02 
±0.00 

0.01 
±0.00 

0.01 
±0.00 

Benji 
Bananas 
Adventures 

0.06 
±0.02 

0.02 
±0.01 

0.01 
±0.01 

0.05 
±0.02 

0.04 
±0.00 

0.04 
±0.00 

Hipster 
Maze 

0.08 
±0.02 

0.05 
±0.01 

0.04 
±0.01 

0.09 
±0.02 

0.08 
±0.01 

0.08 
±0.01 

Mad-Croc 
0.03 

±0.01 
0.00 

±0.01 
0.00 

±0.01 
0.03 

±0.00 
0.03 

±0.00 
0.03 

±0.00 
Dragon 
Fortress 

0.11 
±0.10 

0.12 
±0.05 

0.12 
±0.05 

0.11 
±0.10 

0.11 
±0.05 

0.11 
±0.05 

TABLE V.   H(X) ME/MSE RELATIVE TO ROLLING RETENTION SPLINE 

Game Weibull Pareto 
Log-

Logistic 

Weibull 
+c 

Pareto 
+c 

Log-
Logistic 

+c 
Benji 
Bananas 

-0.06 
±0.01 

-0.18 
±0.10 

-0.19 
±0.10 

-0.02 
±0.00 

0.02 
±0.00 

0.00 
±0.00 

Benji 
Bananas 
Adventures 

-0.03 
±0.00 

-0.12 
±0.05 

-0.11 
±0.04 

-0.03 
±0.00 

0.00 
±0.00 

-0.01 
±0.00 

Hipster 
Maze 

-0.09 
±0.04 

-0.15 
±0.11 

-0.16 
±0.12 

-0.04 
±0.01 

-0.04 
±0.01 

-0.04 
±0.01 

Mad-Croc  
-0.06 
±0.01 

-0.12 
±0.05 

-0.11 
±0.04 

-0.02 
±0.00 

-0.01 
±0.00 

-0.01 
±0.00 

Dragon 
Fortress 

-0.04 
±0.01 

-0.15 
±0.07 

-0.14 
±0.07 

-0.05 
±0.01 

-0.06 
±0.01 

-0.07 
±0.02 

 

To exclude the possibility of a computation mistake, we 
visually verified the fidelity as illustrated for Benji Bananas in 
Figure 5. We added a region of vertical ticks to the spline curve 
because the Pareto and LogLogistic asymptotic decay rates 
completely overlap it. In limited models without the constant 
term it appears Weibull decay approaching zero is capable of 
providing higher tail decay which mimics a small asymptote 
resulting in a closer approximation. 

D. Extrapolation of Retention using the Hypothesis Set 

Since the decay rate is defined using a simple formula over 
the entire real line, it can be extrapolated after initial values 
have been observed. Therefore it should be possible to 
extrapolate retention as well, barring effects caused by noise 
and model deviations. To test actual retention accuracy we 
used the MPE to measure bias and the MAPE to measure 
deviation. 

The decay function was fit with time limited data, such as 
30 days in Table VI., using a simple regularization scheme of 
weighting the MAPE penalty in the limited data by a square 
root of the number of observations to trust the less volatile 
initial estimate more. In this case it is possible for the simpler 
models to outperform their more generic counterparts if they fit 
less noise. True error was calculated as an unweighted 
MPE±MAPE error over the entire data. We highlighted models 
with smallest average MAPE in each game. 

Fig. 5. Benji Bananas model decay rates contrasted to the spline decay rate 
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TABLE VI.  P(X) MPE/MAPE RELATIVE TO EMPIRICAL RETENTION 

Game Weibull Pareto 
Log-

Logistic 

Weibull 
+c 

Pareto 
+c 

Log-
Logistic 

+c 
Benji 
Bananas 

-0.38 
±0.39 

0.88 
±0.90 

1.05 
±1.07 

-0.39 
±0.41 

-0.48 
±0.49 

-0.46 
±0.47 

Benji 
Bananas 
Adventures 

-0.41 
±0.43 

0.50 
±0.53 

0.55 
±0.58 

-0.41 
±0.43 

-0.17 
±0.26 

-0.09 
±0.24 

Hipster 
Maze 

-0.32 
±0.39 

0.59 
±0.65 

0.63 
±0.69 

-0.30 
±0.38 

-0.42 
±0.46 

-0.37 
±0.43 

Mad-Croc  
-0.20 
±0.25 

0.28 
±0.32 

0.28 
±0.32 

-0.20 
±0.25 

0.30 
±0.34 

0.18 
±0.24

Dragon 
Fortress 

-0.11 
±0.41 

-0.09 
±0.39 

-0.08 
±0.38 

-0.27 
±0.51 

-0.10 
±0.39 

-0.08 
±0.38

E. Visualizations 

To visualize extrapolation accuracy as a function of days, 
we plotted the MPE and MAPE estimates in Benji Bananas 
Adventures and obtained Figure 6. LogLogistic and Pareto 
with a constant reach the smallest MAPE error in 3-4 weeks, 
equivalent to having entire 151 days of data. Estimates appear 
generally unbiased as well, but variance in estimates suggests 
that practical methods call for a more regularization: 

While we reasoned that 25% MAPE is small for practical 
purposes and may be caused entirely by noise, it is useful to 
confirm this intuition by visualizing the asymptotic least error 
state for the models. Figure 7. verifies this by plotting the log 
y-axis retention graph with models fit using full data set. 
Models with asymptotic rates seem to describe data as closely 
as possible. 

These simple experiments demonstrate what we suspected 
based on the mathematical formula: the dynamic observed in 
the decay rate is possible to utilize in actual predictive models 
to achieve future forecasts of considerable reach. More 
sophisticated fitting methods, including improved noise and 
outlier tolerance, should be investigated in the future.  

Finally, we present simple but limited tests which are 
nevertheless popular in many fields [22]. These methods are 
not applicable to models with the asymptotic constant rate c > 
0 because algebraic manipulations fail to simplify the 
corresponding formulas. 

Fig. 6. MPE/MAPE of extrapolated retention for different models and limits. 

Fig. 7. Different models fit to all available data. 

F. Linearity Tests 

For the model corresponding to the Weibull distribution, 
we can take a logarithm of the accumulated decay H(x)=(x/β)α 

and obtain [21]: 

   (7) 

This implies that H(x) = -log(P(x)) plotted on a logarithmic 
x- and y-axis is linear if this law describes the data, and we can 
even read off the coefficients from the axis. This result is 
known as a Weibull plot.  

For the Pareto decay rate that we used to rigorously define 
a decay curve, we are not aware of such plots. However, one 
may adopt a simpler Pareto law with P(x) = (x0/x)α  [23] which 
is defined in the domain [x0,∞) with x0 > 0. This is a small 
concession in practical applications. We then have [24]:  

     (8) 

This implies retention plotted on a logarithmic x- and y-
axis or accumulated decay plotted on a logarithmic x-axis is 
linear under assumption of this law. 

For the LogLogistic model one can use the decay function 
P(x)=1/(1+(x/β)α) to derive the following linearity test that 
evaluates ‘odds ratio’ (1-P(x))/P(x) on a logarithmic x- and y-
axis [21]:  

    (9) 

For models with a nonzero asymptotic rate, one may utilize 
a concept from statistics known as a Q-Q Plot [25] and apply it 
to retention in Figure 8. First the decay function corresponding 
to the model is fit and then it is used in the place of a ‘survival 
function’ in the Q-Q Plot compared with ‘empirical survival’ 
or retention. If the law applies, the scatter plot should align 
without bias within the neighborhood of the diagonal y=x.  
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Fig. 8. Different asymptotic models combined in a Q-Q Plot.  

G.  Conclusion and Future Work  

We demonstrated that in Tribeflame’s mobile games the 
decay rate of daily user activity in a given cohort, or 
Tribeflame retention, is described by differential equations of 
striking simplicity. These 2-parameter differential equations 
which describe the decay rate can be used to derive population 
decay functions which correspond to widely used distributions. 
In contrast, 3-parameter modifications which add a constant 
term result in an asymptotic decay rate and appear to fit the 
data perfectly. General methods of fitting the decay rate, such 
as smoothing splines, enable distribution free investigation of 
the dynamics underlying user activity. 

This finding enables the industry construct practical 
predictive models of considerable accuracy and forecasting 
ability. We cautiously suggest that these decay rates may be 
universal and invite other researches to use tools outlined in 
this paper to verify or disprove the applicability of this law to 
other mobile games and investigate other possible decay rates. 
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Abstract—Player believability is often defined as the ability of
a game playing character to convince an observer that it is being
controlled by a human. The agent’s behavior is often assumed
to be the main contributor to the character’s believability. In
this paper we reframe this core assumption and instead focus
on the impact of the game environment and aspects of game
design (such as level design) on the believability of the game
character. To investigate the relationship between game content
and believability we crowdsource rank-based annotations from
subjects that view playthrough videos of various AI and human
controlled agents in platformer levels of dissimilar characteristics.
For this initial study we use a variant of the well-known Super
Mario Bros game. We build support vector machine models of
reported believability based on gameplay and level features which
are extracted from the videos. The highest performing model
predicts perceived player believability of a character with an
accuracy of 73.31%, on average, and implies a direct relationship
between level features and player believability.

I. INTRODUCTION

Player believability is a highly subjective notion commonly
viewed as the ability of a game playing character to convince
observers that it is being controlled by a human player [1]–[4].
The problem of creating human-like1 agents and measuring
believability in agents is among the most challenging and pop-
ular research areas in the field of game artificial intelligence
(AI) [5], [6]. While research in believable game bots has seen
recent advances in games such as Unreal Tournament [7] and
Super Mario Bros [8], generic methods for creating such bots
are far from being available.

It is commonly assumed that believable game characters
make games more immersive and entertaining for players [9]
and that believability is solely dependent on the algorithm
controlling the character’s behavior. The evident relationship
between believability and character control has driven the ma-
jority of studies in the area of game AI [5], [6]. However, the
extent to which believable behavior in an algorithm-controlled
game agent comes about from the controller has recently been
questioned [1]. Inspired by speculations in [1] we instead focus
on the degree to which believability is a product of the agent’s
(player’s) environment. We thus introduce a game content-
centered view on player believability instead of the traditional
controller-centered perspective.

Taking a crowdsourcing approach to model perceived be-
lievability of player characters in a platformer game variant of

1For the purposes of this study human-likeness and believability are two
terms used interchangeably.

the well-known Super Mario Bros, we asked over 350 subjects
to annotate believability in playthrough videos of the game.
In these videos four different players (two AI-controlled and
two humans) play dissimilar level configurations of the game.
The extracted gameplay characteristics and level features, on
one hand, and the obtained annotations of believability, on
the other hand, were used as the input and output, respec-
tively, to construct a believability model. The model was built
using rank support vector machines (RankSVMs) [10] as the
crowdsourced annotations have an ordinal (rank-based) format
[11]. A correlation analysis revealed that the average width
of gaps in the level has a linear relationship with reported
believability. Further, the best SVM model reaches 73.31%
accuracy, on average, and maps level and gameplay features
to believability, revealing non-linear relationships between
the enemy placement and number of gaps in the level and
believability.

This paper is novel in that it introduces an approach for
modeling player believability using machine learned repre-
sentations of crowdsourced annotations of believability. Most
importantly, it offers the first empirical assessment of the
extent to which level design influences the believability of play
and sheds light into the association between game content and
player believability.

II. RELATED WORK

In this section we outline studies which are relevant to
this paper including work in believability and its assessment,
studies in player modeling as well as earlier work on the
impact of content on believability.

A. Believability, Believable Agents and their Assessment

The notion of believability is highly subjective and cannot
be objectively defined trivially. However, in virtual worlds
it is generally understood as a form of suspension of the
observer’s disbelief or the ability of a fictional or virtual world
or character to give the illusion of life [1], [12]. With respect
to game agents or characters there are two main dimensions
of believability in literature: character believability (i.e., the
character itself is perceived to be real through its behaviour,
emotive expression or graphical appearance) [1] and player be-
lievability (i.e., by exhibiting human-like gameplay behaviour,
the character gives the impression that it is being controlled by
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a human player) [1]–[4]. This paper focuses on the assessment
and modeling of player believability in platformer games.

Arguably, gameplay believability increases player engage-
ment since it makes the game interaction more realistic [9].
There is also evidence suggesting that human players tend
to prefer playing with or against other human players rather
than AI agents due to the unpredictability in human gameplay
behavior [1], [9]. Moreover, non-believable behavior such
as repetitiveness and predictability (e.g., constantly falling
into a gap in a platformer game or getting stuck in areas
where human players could easily get through) seems to make
games less challenging, thus deterring players [3]. ‘God-like’
behavior (e.g., going through an entire level without taking any
damage) may also be considered non-believable [1]. Therefore,
believability — as objectively as one can define it — likely lies
somewhere in the middle of a gameplay spectrum, where the
lower end includes poor, predictable behavior and the upper
end includes optimal, god-like behavior; both of which are
naturally perceived as non-believable.

Attempts at measuring the believability of playing behaviour
include a criteria-based approach [2], [3] where believability
is based on how many predefined criteria a playing character
is observed to meet. However, a more common approach to
measuring believability is through subjective assessment [1],
[5], [13]–[17] where, similarly to the traditional Turing Test
[18], human subjects are asked to observe a character in a
game and indicate whether they believe it is being controlled
by a human or by a computer. In this paper we follow
the subjective assessment approach and we crowdsource rank
annotations of believability given to video recorded player
characters of a Super Mario Bros variant.

B. Player Modeling

Player modeling has been defined as the study of com-
putational models of players in games which includes the
detection, modeling, prediction and expression of human
player characteristics which are manifested through cognitive,
affective and behavioral patterns [19]. Player believability can
be viewed as a core component of playing behavior and player
experience [1]. One could thus assess and model believability
using an approach similar to how other components of player
experience have been modeled [20]–[22]. There are two main
approaches to modeling players and aspects of the playing
experience: the model-based (top-down) and the model-free
(bottom-up) approach [19], [23]. In this study we adopt a
bottom-up approach for modeling player believability and we
derive the computational model from data. The input of the
model contains gameplay and game content data [19] of play-
ers playing through varied levels of a platformer game whereas
the output contains ordinal annotations of believability. To the
best of our knowledge, this is the first crowdsourcing-based
study for modeling believability in games.

C. Game Content and Believability

Game content is progressively increasing in demand and
volume and, thus, becoming more expensive and time-

consuming to create manually [24]. Procedural Content Gen-
eration (PCG), the “algorithmic creation of game content
with limited or indirect user input” [25], is a natural and
direct response to this challenge. Experience-driven PCG is
a framework which views game content as the building block
of player experience and involves the procedural generation
of content based on a model of player experience [23]. The
framework first consists of constructing a model of player
experience which takes information about game content and
the player and outputs some approximation for the current
player experience state. The quality of the generated content
is evaluated based on the model and a representation for
the content is established. New content is then generated by
searching for content that optimizes the player’s experience
with respect to the player experience model [23]. This core
PCG approach has been applied in several studies to generate
content for various player experience states including engage-
ment, frustration, and challenge [20]–[22].

While game content and experience have an apparent direct
relationship, no study has ever attempted to quantify the
impact of game content on game playing believability; instead,
studies in player believability focus on developing the agent’s
controller [5]. That said, interactions with game content in
BioShock Infinite (Irrational Games, 2013) were used to en-
hance character believability of the player’s NPC companion,
Elizabeth [26]. Game mechanics have also been designed to
hide non-believable characteristics of a simple algorithm in
[27]. However, extending the argument that believable virtual
agents must act according to the context they are situated
within [28], we argue that the modification of the environment
that characters act (play) within is of utmost importance for
the observer’s suspension of disbelief. Inspired by the core
suggestions of [1] this study attempts, for the first time, to
investigate the relationship between game level architecture
and game playing believability and construct models of player
believability based on level design features, gameplay charac-
teristics and crowdsourced annotations of believability.

III. TESTBED GAME

Our testbed game is a variant of Infinite Mario Bros (a
platformer game [29] and a popular benchmark in player
modeling and content generation studies [20]–[22], [30]–[34])
as modified for the 2011 Mario AI Competition with sprites
from an open-source platformer game called SuperTux.

The game therefore consists of a player character called
Tux; a number of platforms (separated by gaps) which Tux can
run on and jump between; coin collectibles for Tux to collect;
and enemies which Tux must avoid or kill (by stomping on
them — thus turning them into shells — or by kicking a shell
to hit them). The main goal of the player in the game is to
get Tux through levels containing these elements. The player
is given three ‘lives’, or attempts, to complete the level. Each
time Tux gets killed by falling into a gap or touching an enemy
(or shell), one life is lost. If no lives are left, the game is over.
Collecting coins increases the player’s score. A screenshot of
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Fig. 1. Screenshot of the testbed game used in this study.

the game displaying some of the above-mentioned elements is
provided in Fig. 1.

IV. FEATURE EXTRACTION AND DATA COLLECTION

This section outlines the features extracted from levels and
gameplay behaviour and also presents the crowdsourcing pro-
cess through which believability annotations were collected.

A. Level design features

Following the approach of [21], [22], levels of the test-bed
game were represented using the following four features: the
number of gaps in the level (G), the average width of the
gaps (Gw), the number of enemies (E), and the placement
of enemies (Ep). For a particular game level, each parameter
could be in one of two states: high or low. For G, the low state
was set to 2 gaps and the high state was set to 10 gaps, while
for Gw, the low state was set to 3 blocks and the high state was
set to 8 blocks. Further, the low value of E was chosen to be 5
enemies while the high value for this feature was chosen to be
15. The Ep feature is represented by three values which define
the probabilities of an enemy being placed near a gap, near a
box, and on a flat surface. For the low state of Ep, the value of
these three probabilities was chosen to be 10%, 10% and 80%,
respectively, whereas those for the high state were chosen to
be 80%, 10% and 10%. The choice of these features and their
corresponding values which were set empirically was inspired
by earlier studies in Super Mario level generation [20]–[22],
[30], [31], [34]. Given the two states for each of the four level
features, the resulting number of all their combinations, and
thereby possible levels, is 16. The 16 levels were generated
following the approach presented in [21].

B. Gameplay features

The following list of fourteen player metrics used for this
study is based on earlier feature extraction attempts for level
generation in Super Mario Bros [21], [22]: completion time
(tC), duration of last life (tLL), percentage of time spent
running right (tR), percentage of time spent running left (tL),
percentage of time spent running (tRun), number of times
the ‘run’ button was pressed (PRun), number of jumps (J),
number of aimless jumps (Ja), number of coins collected (C),
number of enemy shells kicked (S), number of deaths by

Fig. 2. Screenshot of the 4-AFC part of the online questionnaire.

falling into a gap (Dg), number of deaths by an enemy (De),
number of enemies killed (K), number of enemies killed by
kicking a shell (Ks).

C. Crowdsourced believability annotations

We recorded video clips of four players (two human players
and two AI agents) playing through each of the sixteen
generated levels. The two humans play the game differently
with one clearly performing better than the other. The first AI
agent is based on the A* pathfinding algorithm of Baumgarten
[35] which won the Mario AI competition in 2009. The
second AI agent is a hard-coded rule-based agent inspired
by the REALM agent [36] which won the Turing Track of
the Mario AI championship in 2010. Collectively, the four
players purposely demonstrate varied behavior across all levels
played and are therefore assumed to exhibit different levels of
believability. The resulting 64 videos of all 16 levels played
by all 4 players were stored for the believability annotation
experiment described herein.

Human annotators were asked to view a number of game-
play videos which were randomly selected from the 64 videos
without replacement. To establish the ground truth of a highly
subjective notion such as believability we followed the rank-
based approach for reliable annotation as proposed in [11]. The
rank-based approach requires that annotators are provided with
instances of the investigated variable in pairs (or more) and are
asked to rank those instances according to a particular notion.
For eliminating any short-term memory biases we chose to
present the 64 videos in pairs, amounting to 2016 unique
combinations in total. For each pair viewed, the observer was
requested to provide a pairwise preference for believability
using the 4-alternative forced choice (4-AFC) protocol [20]–
[22]. That is, the subject was asked to specify which of the
games in the two videos they believed was more likely to
have been played by a human. Subjects could pick one of
four possible responses; the game in video A, the game in
video B, both or neither (see Fig. 2). The two videos in the
pair were presented in a random order next to each other so
that any primacy or recency effects are eliminated.

Prior to proceeding with video annotation the subjects were
required to fill in a brief demographics questionnaire. The
questions asked were: age; gender; how often do you play
games (possible answers: never; few times a month; few times
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a week; few hours a day; many hours a day); how would
you rate your skill level in playing video games (possible
answers: novice; average; good; excellent); have you ever
played platformer games (possible answers: never; a few times,
I am a novice player; many times, I am a good player; I am
an expert player); have you ever played Super Mario Bros
(possible answers: never; a few times, I am a novice player;
many times, I am a good player; I am an expert player).

The crowdsourcing experiment was advertised widely and
run for a whole month during which a total of 1, 605 ran-
domly selected video pairs were ranked by approximately 391
subjects. This amounts to 79.6% of all possible combinations
of pairs (i.e., 2016). Subjects reported clearly about their
preference (i.e., they selected one of the two videos) in 984 out
of the 1, 605 available video pairs; this is the clear preference
dataset used for the analysis in the remaining of this paper.

V. STATISTICAL ANALYSIS

As a first phase of our analysis, this section presents various
descriptive statistics we derived from the obtained data. This
includes a brief analysis on the demographical data of the
subjects, an analysis of the quality of the believability pref-
erences and a correlation analysis between the game features
considered and the reported believability annotations.

A. Demographical Data

A high-level descriptive statistical analysis on the demo-
graphical data of the respondents reveals that the subjects
(average age is 36.9 years) are relatively balanced in terms of
gender (females: 197; males: 168). However, the distribution
of demographical data is slightly biased in terms of gaming
skills (e.g., only 15 out of 365 subjects play many hours a day),
gaming experience (e.g., only 30 subjects identify themselves
as expert gamers), and previous exposure to platformer games
(e.g., only 15 subjects identify themselves as expert platformer
gamers) and Super Mario Bros (e.g., only 13 subjects identify
themselves as expert Super Mario Bros gamers).

B. Believability Preferences

Assessing the validity of annotations of highly subjective
notions such as believability is a challenging task. For instance,
a believability preference for one of two videos depicting
different AI players (instead of annotating these videos with
the neither label) is not objectively invalid since AI players
of the game may have the capacity of being perceived as
believable. The analysis presented here is not intended to
test the validity of the reported believability preferences but,
rather, to provide an insight into the nature of these annotations
following the evaluation approach presented in [1]. Figure 3
offers a first visualization of the crowdsourced believability
preferences with respect to the four characters (the two AIs
and the two human players) and three types of subjects: all
subjects, expert subjects who consider themselves a good or
an expert Super Mario Bros player, and novice subjects who
either have never played Super Mario Bros before or they
consider themselves novice Super Mario Bros players. For

Fig. 3. Percentage of believability annotations across the different player
characters and annotator sets. A* and RB (rule-based) are the two AI players;
H1 and H2 are the two human players. “Expert”, “Novice” and “All” indicate
the expert, novice and all subjects, respectively.

each of the four players and the three annotator types we depict
the percentage of the four possible responses.

What is apparent from Fig. 3 is that expert players, com-
pared to novice players, are capable of better distinguishing
the two AIs from the two human players. Further, it is clear
that the preferences obtained generally match with the true
nature of the players being assessed. In particular, the human
players were correctly identified as humans by the majority
of subjects. The RB player was able to convince a great
number of subjects (especially the novices) that it was likely
to be human in most of the video combinations that it was
featured. On the other hand, the A* player, which was much
more optimal in its actions, was not perceived as believable
(especially by the experts). This observation reinforces the
findings of Togelius et al. [1] in that there seems to be
some lower and upper boundaries for the relation between the
playing skill of the players and their believability. To some
extent, this may serve as an indication that the quality of the
results obtained in this study are at least on par in terms of
validity with those obtained in [1].

Although through crowdsourcing we risked obtaining noisy
or incorrect data (e.g., preference pairs provided by subjects
who made their choices arbitrarily or who did not understand
the questionnaire task), these results show that there is a
certain degree of agreement between the responses of the
majority of subjects, implying that there might indeed be some
common reference point (or ground truth) with regards to
human perception of player believability. This finding further
reinforces the assumption that aspects of believability can
be approximated and there are certain factors that affect
believability which are common to many.

C. Correlation analysis

In this section we examine the relationship between each
of the game features and the reported believability preferences
through a correlation analysis. The rank correlation coefficient
between each of the eighteen gameplay and level features and
the crowdsourced preference pairs was calculated using the test
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statistic c(z) = 1/N
∑N

i=1 zi, where N is the total number of
clear preference pairs (i.e., where one of the video clips in
the pair is preferred over the other) and zi = 1 if the value
of the examined feature in the preferred video of the pair is
greater than that of the other video (i.e., there is a match)
and zi = −1 otherwise (i.e., the feature value is lower in
the preferred video and, thus, there is a mismatch). Statistical
significance was calculated via a one-tailed binomial test.

The correlation coefficients of all 18 features are provided
in Table I across the three different subject datasets: all
subjects (984 clear preferences), expert subjects (206 clear
preferences), and novice subjects (774 clear preferences). It
can clearly be observed that — independently of subject class
— 7 out of the 18 features are found to be highly and positively
correlated (p < 0.01) with reported preferences. These include
one level feature, and six gameplay features. When all subjects
are considered, findings suggest that believability is perceived
higher in levels where gaps are wider (Gw), and when players
spend more time running left (tL), are killed more often by
enemies (De), kill more enemies by kicking shells (Ks), kick
more shells (S), press the ‘run’ button more often (PRUN )
and take longer to die in their last life (tLL). Indeed, running
left and making use of shells are considered human playing
characteristics and the results are in line with the findings
in [1]. An interesting observation is that the above gameplay
features have also been found to be associated with reported
player fun in Super Mario Bros [21].

The difference between the expert and novice subjects
is only limited to the degree of effect as some substantial
differences are observed in the c(z) values. Further, it seems
that for the expert annotators, as opposed to novice annotators,
the number of times the ‘run’ button was pressed and the
duration of the player’s last life were not factors that contribute
to a character’s believability. On the other hand, the average
gap width was not an indicator of believability for the novice
annotators.

From these correlations, it is clear that there exist some lin-
ear relationships between aspects of level design and perceived
player believability. In particular, it seems that the wider the
gaps are in a level, the more the behaviour of the players
is showcased; as a result, this level feature seems to be a
good predictor of player believability across all four players
— particularly for the expert annotators. Interestingly enough,
the gap width has already been found to be a good predictor
of player challenge, predictability, anxiety and boredom in an
earlier study in the Super Mario Bros game [21]. That said, an
additional, preliminary correlation analysis was also conducted
to measure the effect of the features on believability for each
of the four players separately. While no effects were found
for the rule-based agent, Gw and Dg are positively and highly
correlated (p < 0.05) with perceived believability in both the
A* agent and one of the human players (H1). Further, Ks

seems to be a good predictor for the believability of both
human players while PRUN , tL and De are highly correlated
with the perceived believability of H1.

The correlation analysis presented above limits our findings

TABLE I
RANK CORRELATIONS c(z) BETWEEN ALL EXAMINED FEATURES AND
REPORTED BELIEVABILITY PREFERENCES. VALUES IN BOLD INDICATE

SIGNIFICANCE (p < 0.01).

Feature All Expert Novice
Gw 0.1291 0.2821 0.0846
G 0.0825 0.0891 0.0840
Ep −0.0503 0.0874 −0.0867
E 0.0303 0.1778 −0.0050
tL 0.2483 0.3548 0.2170
De 0.2134 0.3121 0.1900
Ks 0.2911 0.4805 0.2342
S 0.3043 0.3898 0.2744
PRUN 0.1082 0.0632 0.1179
tLL 0.0966 0.0891 0.0964
J 0.0700 0.0792 0.0652
Ja 0.0636 0.0707 0.0593
C −0.0698 −0.1097 −0.0617
tR 0.0526 0.0051 0.0658
Dg 0.0593 0.1389 0.0373
K −0.0309 −0.0726 −0.0232
tC −0.0260 −0.1179 −0.0041
tRUN −0.0010 0.0647 −0.0213

to linear relationships between individual features and anno-
tated believability. However, the effect that features have on
believability is clearly dependent on the player (represented by
gameplay features). This means that there are relationships in
between the features themselves (both level and gameplay fea-
tures) which may affect how well they can predict believability.
Therefore, in the next section, we investigate the creation of
nonlinear mappings between combinations of features and
reported believability via preference learning.

VI. PREFERENCE LEARNING FOR MODELING
BELIEVABILITY

Preference learning is the task of learning global rank-
ings. Assuming that there is an underlying global order that
characterizes the provided rank annotations, the data can be
machine learned via preference learning and a global ranking
of believability can be derived [37]. This section provides a
brief description of the preference learning methodology fol-
lowed to construct models of player believability: in particular
we discuss the feature selection method and the preference
learning algorithm adopted. For all experiments reported in
this paper we used the Preference Learning Toolbox (PLT)
[38]. PLT is an open-source software package which integrates
various data normalization, feature selection and machine
learning algorithms for the task of learning from preferences.

A. Feature Selection

To select the most meaningful features that maximize the
predictive capacity of our computational model of believability
we used the Sequential Backward Selection (SBS) algorithm
for all experiments presented in this paper. The SBS algorithm
starts by feeding the preference learning algorithm with all
available features and obtaining a performance value; perfor-
mance is measured through cross-validation accuracy in this
paper. At each iteration, SBS removes from the feature set
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the feature which, upon its removal, improves the model’s
performance (accuracy) the most. This process continues until
the feature set contains a single feature or until a certain
accuracy threshold is reached.

B. RankSVM

This study’s core aim is to infer a computational map-
ping between level and gameplay features (input) and the
believability preferences (output). While the PLT offers a
number of preference learning algorithms to choose from, we
choose the RankSVM [10] algorithm for its comparatively
low computational effort and well-evidenced performance.
RankSVM is the preference learning variant of Support Vector
Machines (SVMs) introduced by Joachims [10]. SVMs are
models which map training instances to data points in a
typically high-dimensional space and attempt to divide the data
points into two categories via a hyperplane. The algorithm tries
to find the dimension (or hyperplane) which best separates the
training instances. Once the model is built, unseen instances
are mapped to the space represented by the model and an
output is produced based on which half of the space they are
mapped to [39]. The mapping of training instances to data
points in space is performed using a kernel function. In this
study, we use the radial basis function (RBF) kernel as it
yields superior performance to linear or polynomial kernels
compared via trial experiments.

VII. BELIEVABILITY MODEL CONSTRUCTION

In this section, we describe the core preference learning
experiments carried out in order to investigate both the impact
of the annotators’ experience with respect to Super Mario
Bros and the impact of level content on the accuracy of a
believability model. In all experiments reported in this section,
features are min-max normalized to [0, 1] and RankSVM
(see Section VI-B) uses the RBF kernel with the default γ
parameter value of 1. Finally, three-fold cross validation is
used as the performance measure of all derived models.

A. The Impact of Super Mario Bros Experience

As mentioned earlier in Section IV-C, prior to the video
annotation process, subjects were asked if they had ever played
Super Mario Bros (i.e., the game that the testbed game is
largely based on) before and could respond with one of
four different levels of experience. We assume that a level
of experience with a particular game may have an impact
on a person’s perception of believability in that game. That
assumption is, in part, validated in the correlation analysis of
Section V-C. Thus, in this first round of experiments, we vary
the data used for training based on reported experience with
Super Mario Bros and investigate their impact on the accuracy
of the computational model of perceived believability. For
that purpose, as in Section V-C, the full dataset (984 clear
preferences) was split into two subsets: the novice (774 clear
preferences) and the expert (206 clear preferences) annotators.
We run SBS for each of the three sets and depict progression
of the average 3-fold cross-validation accuracy in Fig. 4.

Fig. 4. Impact of Super Mario Bros Experience: 3-fold cross-validation
accuracy as features are removed over iterations from the feature set using
SBS for all, expert and novice subjects. The x-axis represents the iteration of
the SBS process — or the number of removed features. Level features are
not considered by SBS in this experiment. The random baseline represents
the average accuracy of 10 random multi-layer perceptrons. Error bars depict
standard error values.

It is important to note that in this set of experiments, the
level features are not considered during the SBS process (i.e.,
they are purposely forced in the input of the SVM). The
purpose of doing so is to allow the model sufficient capacity to
capture aspects of reported believability through the content of
the level. Furthermore, the performance of such a model can
be used as a baseline against any model that does not put an
emphasis on content features. In the next section all considered
features (gameplay and content) are treated equally, thereby
testing the degree to which level features are important for
modeling gameplay believability.

The results illustrated in Fig. 4 reveal that the believability
annotations provided by subjects who considered themselves
to be ‘good’ or ‘expert’ players of Super Mario Bros (‘Expert’)
managed to yield significantly higher accuracies compared to
the other two datasets (all data and data annotations from
novice Super Mario Bros players) and also achieve the highest
accuracy improvement over the iterations of SBS. The highest
accuracy of a model built solely on expert annotations is
that of 71.36% with a corresponding feature set containing
all four level features (since they were forced in this set of
experiments) and ten gameplay features: tC (completion time),
tLL (duration of last life), PRUN (number of times the run
button was pressed), S (number of kicked shells), J (number
of jumps) and Ja (aimless jumps). The novice annotators did
not seem to yield any significant improvement over the full set
of preferences from all annotators. The best accuracy obtained
when training RankSVMs on the full dataset is only 58.43%.

B. The Impact of Level Features

In the second round of experiments we chose to treat all
features equally and consider them all during the SBS process
so as to examine which would be picked as appropriate for
capturing reported believability. Given the successful results
of the expert subset of annotators in Section VII-A, in this
round of experiments we focus on the expert subset and
we compare the accuracy obtained between models that are
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Fig. 5. Impact of level features: 3-fold cross-validation accuracy as features
are removed over iterations from the feature set using SBS for the expert
annotators. The x-axis represents the iteration of the SBS process — or
the number of removed features. Level features are either considered —
SBS (All features) — or not — SBS (Gameplay) — by SBS. The random
baseline represents the average accuracy of 10 random multi-layer perceptrons.
‘Gameplay’, ‘Gameplay (Best 4)’, and ‘Level’ represent, respectively, the
accuracy of SVMs featuring all gameplay, the best 4 gameplay, and all level
features. Error bars depict standard error values.

trained when we consider and when we do not consider level
features during the feature selection process. The progression
of the average model accuracy for the two approaches for
the expert annotators is shown in Fig. 5. In addition to
the random baseline, the figure contains three more baseline
performances: the average 3-fold cross-validation accuracy of
an SVM containing solely the gameplay features, another one
containing the best four gameplay features, and finally, one
containing only the four game level features.

As shown in Fig. 5, the model featuring all (14) gameplay
features clearly outperformed the model featuring all (4) level
features. The latter is unlikely to be disadvantaged due to
the lower number of features since the model featuring the
best 4 gameplay features also outperforms it. Nevertheless, the
selected features for the best performing model (73.31% ac-
curacy — an improvement over the highest accuracy obtained
in Section VII-A) still contains the level features G (number
of gaps), Gw (average gap width), and Ep (enemy placement)
in addition to 9 gameplay features: tC , J , PRun, tRun, tR,
Ks, S, Ja and De. Although Gw was the only level feature
found to be correlated with annotated believability, RankSVMs
were able to capture non-linear relationships between more
level features (i.e., G and Ep) and gameplay features, and
reported believability. Even though the model performance
improvement is not large, it is however clear that the best
predictors of player believability consist of a combination
of gameplay and level features, as also speculated in [1].
Further, it should be noted that the accuracy of 73.31% is
considered very satisfactory given the highly subjective notion
of believability.

VIII. DISCUSSION

The core findings of this paper suggest that there is a strong
and direct relationship between level design and the perceived
believability of a character within a level. This validates,
to an extent, the hypothesis that level design influences the

perception of believability (at least in the platformer genre).
Nevertheless, a number of limitations of this study are very
likely to have hindered even more promising findings from
emerging. First, the performance of all four players may have
impacted the believability preferences as some subjects might
have based their reasoning on the players’ ability to complete
levels. More varied and expressive agents would have equipped
us with a much wider range of behaviors in the spectrum of
believability. Second, the level and gameplay features chosen
for this study are a subset of all possible game features that
could be encapsulated. We can only envisage that a larger
set of features can potentially reveal more information about
the relationship we are studying; however, the small level
feature set allowed us to both study the relationship and make
the crowdsourcing experiment feasible to run (by preventing
a combinatorial explosion of the total number of required
videos). Third, while RankSVM is a reliable algorithm for
learning preferences, other algorithms including backpropaga-
tion and neuroevolutionary preference learning must be tested
on the data available. Finally, this study is only based on data
derived from one particular game; experiments for testing the
generality of the methods and the results on other platformer
games and other game genres is a future goal of this work.

Despite current limitations, the initial findings of this study
suggest that it is possible to optimize player believability
merely by modifying the game level architecture, without
necessarily adjusting the character behavior per se. Moreover,
these findings hint towards the possible use of other forms of
game content, beyond levels, to optimize player believability.
Finally, other domains such as those of embodied conversa-
tional agents and robotics could also benefit from the outcomes
of this work by putting an emphasis on modifying the envi-
ronment within which agents act rather than focusing solely
on their controllers to optimize their believable behaviour.

IX. CONCLUSIONS

In this study, we have introduced a data-driven modeling
approach for constructing a mapping between gameplay, level
design and believability. To crowdsource that mapping, we
recorded a number of videos showing the gameplay of two
human and two AI-controlled players — varying in playing
style — playing through platformer levels of dissimilar design.
Through the use of an online questionnaire, more than 350
annotators provided pairwise preferences of perceived believ-
ability for the characters appearing in the videos.

A first statistical analysis of the data revealed that the an-
notators’ experience with the game impacts their preferences;
further, the average gap width of a level and a number of
gameplay features were found to be highly correlated to per-
ceived believability. Then, the 1, 605 believability preferences,
on one hand, and the gameplay and level features of each
video, on the other, defined the output and input, respectively,
of a preference learning process via RankSVMs that con-
structed the desired mapping. Through several experiments,
we examined the impact of annotators’ experience with Super
Mario Bros, and the features considered by the model, on the
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model’s accuracy. The best accuracy of 73.31% was obtained
when both level and gameplay features were considered by the
model and the feature selection mechanism. The core findings
of this study reveal both a linear and a non-linear relationship
between level design and player believability that needs to be
further explored in other game genres and domains.
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Abstract—Major commercial (AAA) games increasingly transit
to a semi-persistent or persistent format in order to extend the
value of the game to the player, and to add new sources of revenue
beyond basic retail sales. Given this shift in the design of AAA
titles, game analytics needs to address new types of problems,
notably the problem of forecasting future player behavior. This
is because player retention is a key factor in driving revenue in
semi-persistent titles, for example via downloadable content. This
paper introduces a model for predicting retention of players in
AAA games and provides a tensor-based spatio-temporal model
for analyzing player trajectories in 3D games. We show how
knowledge as to trajectories can help with predicting player
retention. Furthermore, we describe two new algorithms for three
way DEDICOM including a fast gradient method and a semi-
nonnegative constrained method. These approaches are validated
against a detailed behavioral data set from the AAA open-world
game Just Cause 2.

I. INTRODUCTION

Aspects of player behavior that are of importance from
the point of view game development companies vary. With
respect to company sizes, business models, types and formats
of games, hardware platforms, and game design, there are dif-
ferent analytical methods. An important aspect is the business
model, notably whether Free-to-Play (F2P) or retail-based,
which in the former case leads to an interest in predicting the
behavior of the players. As of this writing, there is a general
lack of predictive models in games being released based on
a retail business model. This makes sense given the non-
persistent nature of most retail games. However, the situation
is changing as the game industry has realized that there are
revenue streams available from semi-persistent or persistent
games that can be tapped into to increase overall revenue.
Therefore, more and more games are released to facilitate
longer periods of play, and the lifetime of games is extended.

Changes in how retail based games can be designed to
extend the relationship with the player are particularly notice-
able among for game productions involving large production
and marketing costs, typically referred to as “AAA games”.
Here we specifically focus on non-persistent AAA games
for which there is now an increasing interest in extending
the player-game interaction period by enabling online play
via introducing downloadable contents (DLCs) or episodic
play, allowing player-generated mods, or similar mechanics.
From the point of view of game design, this requires new
forms of analytical support including the prediction of player
behavior, retention, churn, monetization, or social interactions.

Prediction is however a virtually unexplored topic in AAA
games with a few noticeable exceptions [1]. The test case
we consider here is the action-adventure game Just Cause
2 (JC2). JC2 is an Open-World Game (OWG) with large
degrees of freedom in player navigation, in world interaction,
and narration. While AAA games vary too much in their
design to generalize across, it should be noted that spatio-
temporal navigation and -tactics are important in many of these
games. Spatio-temporal freedom is a characteristic of OWGs
but these dimensions are important in any digital game, and
have also formed a focus in research in game analytics [2].
Space and time are essentially the dimensions through which
user experience occurs, and integrating these in behavioral
analysis thus enables the study of gameplay as it is experienced
by the player.

A. Contribution

To the best of our knowledge, the work presented here is the
first attempt to build a combined retention prediction model for
AAA games using an ensemble approach and tensor models
for player-wise representation learning and yielding actionable
results (up to 81% accuracy) even for the high degrees of
player freedom in the OWG format. Secondly, we show that
the spatio-temporal dimensions of player behavior can inform
the prediction of retention in OWG games, possibly because
these are also the dimensions of the player experience and
thus a potential proxy of this experience. This result contrasts
work in F2P mobile games where spatio-temporal informa-
tion has not been utilized but retention/churn prediction has
been highly successful [1], [3]. Thirdly, we introduce tensor
DEDICOM (T-DEDICOM) into the domain of behavioral
analytics and present new algorithms for finding its factors
efficiently. That is, we develop a tensor-based spatio-temporal
model based on the DEDICOM technique that has previously
been successfully applied to mine player based spatio-temporal
and migration patterns in games [4], [5]. With T-DEDICOM
it now becomes possible to account for the movement of
many players in one sitting by allowing the spatio-temporal
representation to be learned for each player while retaining
global information for interpretation.

B. Related work

The idea of studying player behavior to inform game design
and development dates back to the earliest digital games but
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TABLE I: Dataset description
Feature Type Descriptor(s)

Telemetry

Number of sessions
Total playtime

Total absence time
Number of days

Number of actions
Progress

Parachutes used
Vehicles used

Enemies killed
Weapons used

Explosives used
Number of deaths
Causes of deaths
Difficulty level

Heavy-drop item count
Blackmarket item count

Meta
Language

Platform-played

Temporal
Time between daily first and last session

Inter-day time distribution
Inter-session time distribution

Composite
Correlation coefficients on time

Intercept and standard error on time
Mean and deviation on Time

has significantly advanced with the emergence of MMOGs
in the 1990s, due to the need to monitor and respond to a
persistent customer base. With the rise of social networking
platforms (such as Facebook) and mobile devices and the intro-
duction of the freemium business model, behavioral analytics
has now become an integral part of game development [2],
[6].

Since an exhaustive coverage of work on game analytics is
beyond the scope of this paper, we will focus our discussion
on two research directions:

1) Behavioral prediction in games has generally targeted
either future player (customer) behavior or sought to inform
a variety of situations related to Game AI. Regarding the
former the focus has been on persistent games, either F2P
mobile/online games [1], [7] or MMOGs [8]. Methods range
from pattern recognition and historical analysis over fore-
casting using simple regression methods to standard machine
learning techniques such as decision trees [1], [6], support
vector machines [7], and Hidden Markov Models (HMMs)
[3]. Hadiji et al. [1] and Runge et al. [3] investigated churn
prediction in F2P games using a binary classification approach
and benchmarked several methods to predict churn. Sifa et
al. [6], Xie et al. [7] and others targeted the problem of
predicting purchase structures in games and Thawonmas et
al. [8] analyzed player revisitation in a MMOG using login
frequencies as the principal proxy. Weber et al. [9] used
regression modeling to evaluate retention in Madden NFL 11.

2) Spatio-temporal analysis of player behavior has revealed
temporal features to play an important role in every predictive
game analytics [2]. Operating with both spatial and temporal
dimensions, however, is comparatively rare in game analytics
but has a strong tradition in Game AI where, for instance,
agent behavior models require both dimensions to function.
Bauckhage et al. [4] adopted DEDICOM to cluster players
of Quake: Arena and develop waypoint graphs for behavior-
based partitioning. This work in particular forms the basis for
the spatio-temporal considerations in the work presented here.

C. Just Cause 2: Gameplay

Just Cause 2 is an open-world (or sandbox) game char-
acterized by a 3D environment covering over 1000 square
kilometers of virtual real estate depicting the fictional island
nation of Panau and substantial degrees of freedom in terms
of spatio-temporal behavior, actions, and narrative progression.
The game was published by Square Enix in 2010 and retains an
active player base, selling over 6 million units. Similar to other
open-world titles, the environment of JC2 is highly varied.
Players assume the role of an agent working for an outfit
called the Agency. Their goal is to cause disruption leading to
the downfall of the resident dictator’s reign. This disruption is
caused by weakening the power base of the dictator and by
taking control of the 9 administrative units of Panau. Players
thus have to travel and fight their way across Panau and the
game encourages them to traverse the map through missions
and exploration, which can be done using a wide variety
of vehicles (cars, trucks, boats, planes, helicopters, . . . ). The
game also features a grappling hook which allows players to
pull themselves quickly towards stationary or moving objects
and can be used in combination with a parachute to rapidly
move around.

II. DATA SET AND PRE-PROCESSING

The data set we used in this study has been extracted from
Square Enix metrics suite containing records of randomly
sampled 5331 players with 7 months coverage and 10,794,666
recorded timestamped actions with their locations. We used
a sample of 3572 of the players that have played at least
three days to account for the dependencies between the daily
behavior. Our objective is a retention prediction case [1] in
which we observe the behavioral activities of each player
within a 14 days period and determine if they play the
game after the following 7 days. In the following we define
important behavioral features based on [1], [6], [10] to provide
a baseline feature set for retention prediction and explain the
main data structure that allows us to model player movements
given spatio-temporal actions of players.

A. Extracting Behavioral Telemetry Features

To capture aspects of player behavior, we extract game
specific and game independent features that also apply to
games of similar genre or setting and therefore group them into
four categories: Telemetry, Meta, Temporal, and Composite.

In the category called Telemetry [6], we have a set of ag-
gregated features quantifying players’ basic game play aspects
(such as number of sessions or total playtime) and game-play
related features (such as progress and number of weapons
used), whereas the category Meta groups information about
the language of the player and the platform on which they
play the game. Previous studies [1], [6] showed the importance
of temporal features for purchase and churn and we group
particular time related features quantifying player’s appearance
under the Temporal category. These include information about
the inter-session and -day time distribution as well as the
distribution of the daily time interval between the earliest
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(a) death-map of all players (b) less active player (c) active player (d) highly active player

Fig. 1: Spatial activities of players across the islands of Panau. (a) illustrates death-map of all players and (b, c, d) show the
movements of three players between the automatically detected waypoints. Best seen in color.

and the latest session. Finally, we consider the daily and
session-wise evolution of features in categories Telemetry and
Temporal by defining the category Composite that contains
features about the mean, deviation, standard error, correlation,
correlation coefficient, and the intercept of the values on time.
An overview of the extracted behavioral features and their
categories are given in Tbl. I.

B. Waypoint Learning with Neural Networks

Player trajectories in JC2 can be described as locally dense
but spatially more scattered than the ones we analyzed in [4]
due to the increased size and complexity of the game world
and game mechanics, see Fig. 1. It is important to note that
the use of land-, sea-, and air-vehicles as well as the game
specific use of grappling hook as a means of transportation
provide nearly unlimited freedom for navigation.

In order to dynamically learn sectors visited by players, we
build a waypoint transition graph from all observed players
trajectories. Waypoint transition graphs provide an informative
way to organize spatio-temporal information. They allow for
partitioning game maps into coherent parts and can also
account for temporal aspects such as transitions between parts
[4], [11]. First, we find prototypical waypoints capturing the
topology of the data points at hand and assign them to be
the vertices of a waypoint transition graph. Formally, given
a player’s position xt ∈ R3 at time t and player trajectories
X = {x1,x2, . . . ,xq} that contain q ∈ N observations, we
determine n ∈ N waypoints W = {w1,w2, . . . ,wn} where
wi ⊂ R3 and n � q. Due to the complexity of the world in
JC2, we used the Neural Gas Algorithm [11], [12] for learning
the map topology. In our experiments, we found the Neural
Gas to converge faster and to provide more robust data for
predicting player behavior than k-means clustering. Second
of all, once topology-capturing waypoints are obtained, a
waypoint transition graph G = (V,E) with vertices V = W
and edges E ⊆ V × V is constructed for each player by
considering movements between waypoints. Namely, for each
time-asymmetric pair of subsequent locations (xt,xt+1), we
find their closest waypoints wi and wj respectively assign a
directed edge between the i-th and j-th node of the graph.

Figures 1b, 1c and 1d illustrate waypoints learned from the
movements of all observed players and movements between
waypoints for particular players. In the next section we study
a tensor factorization model to partition asymmetric similarity
matrices while preserving the directional information.

III. DEDICOM MODELS

Decomposition into directional components (DEDICOM) is
a family of matrix and tensor decomposition methods origi-
nally introduced to analyze asymmetric social ties between
people [13]. DEDICOM models deal with asymmetric simi-
larity matrices and decompose them into low rank counterparts
involving a loading matrix and a family of affinity matrices
[4], [5], [13], [14]. DEDICOM has successfully been used in
variety of context including social network analysis [15], natu-
ral language processing [16], entity resolution [14], population
based player churn analysis [5], and spatio-temporal analysis
of player trajectories [4]. Following the analogy introduced
in [4], we particularly aim to build a player-based spatio-
temporal feature learning framework to compress high level in
game interactions to low dimensional representations that also
preserves directional information of movements. To do so, we
study two- and three-way DEDICOM models and propose an
easy-to-implement, novel, and hybrid algorithm that applies
projected gradient descent to find DEDICOM factors faster
than previous methods. For consistency we start with the two-
way DEDICOM model that deals with a single similarity
matrix and continue with three-way DEDICOM that allows
to decompose multiple similarity matrices.

Formally given a matrix S ∈ Rn×n containing asymmetric
relations between n entities and k ∈ N where k � n,
DEDICOM aims to find the following factorization

S ≈ ARAT (1)

where A ∈ Rn×k and R ∈ Rk×k. The resulting loading
matrix A denotes the hidden structures in S and the affinity
matrix R encodes the asymmetric relations between those
structures. Finding a DEDICOM partitioning can be cast as
a matrix norm minimization problem with the following loss
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function that depends on A and R

E(A,R) =
∥∥∥S −ARAT

∥∥∥2. (2)

Typically, alternating least squares algorithms are used that
minimize (2) by fixing one of the factor matrices and solving
for the other. Various constrained and unconstrained versions
have been studied to increase interpretability and speeding up
computations [4], [5], [17]. Examples as to these include semi
non-negativity constrained DEDICOM [5] which forces R to
be non-negative to interpret the relations as proportions and
Decomposition Into Simple Models (DESICOM) [17] which
constrains matrix A to be sparse. For more details about the
above models and implementation details, we refer the readers
to [4], [5], [15].

The models discussed so far are able handle two di-
mensional asymmetric similarity data. Given a whole set of
asymmetric similarity matrices, we can generalize the above
methods to find patterns here as well [13], [14]. Formally,
we group a set of m ∈ N asymmetric similarity matrices
(a.k.a slices) {S1,S2, ...,Sm} in a three dimensional array
(or a third order tensor) S ∈ Rn×n×m where sijr defines the
directional relation between i-th and j-th entity in the r-th
slice. Three dimensional generalizations of DEDICOM have
been studied from two points of view to reveal the underlying
directional patterns. The first in [13], [15] represents the
global relationships between all of the slices by encoding them
in an asymmetric affinity matrix and each slice’s affinity is
doubly scaled by a particular diagonal matrix. The second in
[14] represents the affinity matrix of each slice individually
allowing for a more relaxed representation with fewer factors
to optimize over. In the context of individual player trajectory
analysis, the later approach has the advantage of learning a
player specific representations. Namely given a tensor S , a
relaxed Tensor-DEDICOM partitioning is defined as

Sr ≈ ARrA
T ∀ r ∈ [1, 2, . . . ,m] (3)

where A ∈ Rn×k is the loading matrix and Rr ∈ Rk×k is an
affinity matrix which is the r-th slice of R ∈ Rk×k×m.

Similar to the procedure for its two-way counterpart, finding
a three way DEDICOM partitioning can be cast as a norm
minimization problem for the loading matrix A and tensor of
affinities R as

E′(A,R1,R2, ...,Rm) =

m∑
r=1

∥∥∥Sr −ARrA
T
∥∥∥2. (4)

Following an alternating least square scheme we can minimize
(4) for A and each slice of R independently by keeping the
rest of the factors fixed. It is important to note that the loss
function defined in (4) is convex in any arbitrary slice of R
but not in A. This leads us to consider approximate solutions
for A which can be approached in numerous ways. For this
purpose, we generalize the algorithms derived for two way
DEDICOM [4], [5], [15] and propose two novel algorithms to
find optimal DEDICOM factors and to generalize the notion
of semi non-negativity for interpretability of the factors. Both

S A
R AT≈

Fig. 2: Illustration of relaxed Three Way DEDICOM. Asym-
metrical relationships in S ∈ Rn×n×m are decomposed into a
combination of a latent factor matrix A ∈ Rn×k and a collec-
tion of asymmetric mode transition matrices R ∈ Rk×k×m.

algorithms can be easily implemented by extending the python
scripts in [4].

A. Approximate Alternating Least Squares Algorithm

Our first algorithm is based on approximating the solution
of a matrix equation formed by stacking the data matrices
{S1,S2, ...,Sm} and their transposes {ST

1 ,S
T
2 , ...,S

T
m} to-

gether as T = [S1 ST
1 · · ·Sm ST

m]. Considering the DEDI-
COM approximation of the each block of T we have

T = A
[
R1 RT

1 · · ·Rm RT
m

][
I2m ⊗AT

]
, (5)

where I2m is the 2m×2m identity matrix and ⊗ denotes the
Kronecker product. The approximation comes into play if we
solve for A by holding AT fixed [4], [14], [15]. Namely, if
we define the right hand side of A in (5) as

B = [R1 RT
1 · · ·Rm RT

m][I2m ⊗AT ] (6)

and assume AT being fixed, the problem of finding optimal
A becomes a matrix regression problem with a close form
solution given by

A = TB† = TBT
(
BBT

)−1
. (7)

Therefore, substituting (6) in (7), we obtain the following ALS
update for A:

A←
( m∑
r=1

SrART
r +ST

rARr

)( m∑
r=1

Cr +Dr

)−1
, (8)

where Cr = RrA
TART

r and Dr = RT
rA

TARr. Next, since
minimization (4) for a fixed A is a matrix regression problem
[5], [15] the update for each slice Rr of R is defined as

Rr ← A†RrA
T† ∀r ∈ [1, 2, . . . ,m]. (9)

It is important to note that, when working with large matrices,
to avoid numerical instabilities during the implementation and
work with smaller matrices, optimization for Rr can be carried
out by projecting X onto a basis of A using QR decomposition
of A [14], [15].

B. Projected Gradient Descent for Constrained DEDICOM

We next derive an algorithm that is based on the generaliza-
tion of the projected gradient descent algorithm (called Hybrid
Orthogonal [HO] DEDICOM) introduced in [5] to find optimal
DEDICOM factors. Unlike the approximate ALS algorithm,
by introducing an orthogonality constraint, our method uses
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Algorithm 1 Three-way HO-DEDICOM

Randomly initialize A and R

while Stopping condition is not satisfied do

//Compute the gradient
∂E′

∂A ← −2
m∑
r=1

(
ST
r ARr + SrART

r

)
//Update A in the gradient’s opposite direction

A← A− ηA ∂E′

∂A

//Project At+1 by means of QR-Decomposition

A,U ← QR
(
A
)

//Update slices of R in ALS manner

for r ∈ [1, 2, ...,m] do

Rr ← ATSr A

end for

end while

each occurrence of A when minimizing (4) and this results
in a computationally more efficient method that avoids matrix
inversions in the updates of A and R. Starting with the update
for A, we can write (4) in terms of traces as

E′(A,R1,R2, ...,Rm) =
m∑
r=1

tr
[
ST
r Sr

]
−2 tr

[
ST
r ARrA

T
]
+ tr

[
ART

r A
TARrA

T
]
. (10)

Due to the orthogonality constraint imposed on A, i.e.
ATA = Ik, and the invariance under cyclic permutation of
the traces, the gradient matrix of E′ boils down to

∂E′

∂A
= −2

m∑
r=1

∂

∂A
tr
[
ST
r ARrA

T
]

(11)

which results in

∂E′

∂A
= −2

m∑
r=1

(
ST
r ARr + SART

r

)
. (12)

Referring to (9), owing to the convexity with respect to R
and the orthogonality of A each slice of R can be updated
globally [5] as

Rr ← ATSr A ∀r ∈ [1, 2, ...,m]. (13)

Algorithm 1 summarizes the steps for DEDICOM with pro-
jected gradient descent. In experiments with the same random
initial conditions and stopping criteria, we found that HO-
DEDICOM converged faster than the Approximate ALS algo-
rithm (3.26% average speedup) but retains almost the same
reconstruction error rate (HO-DEDICOM performs 0.25%
better on average in terms of the fitting error). Figure 3 shows
runtime and reconstruction error comparisons between HO-
DEDICOM and Approximate ALS for asymmetric similarity
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Fig. 3: Evaluation of our proposed algorithm with respect to
computation time and reconstruction error from 3126 asym-
metric similarity matrices extracted from the waypoint graphs
with 200 nodes. While our algorithm yields the same accuracy,
it is faster.

matrices extracted from waypoint graphs with 200 nodes
covering movement information of 3126 players.

Due to the structure of the DEDICOM approximation,
constraining the affinity matrices to be non-negative helps us
to interpret both the loadings in A and R better [5]. This
becomes especially useful when we are dealing with data sets
with only non-negative values for which the resulting affinity
matrices will be equivalent to their compressed versions. When
non-negative affinities are required, we transform the update
of slices of R to a non-negative least square problem as done
in [5]. That is, at each ALS step, instead of finding the optimal
affinities as done in (13), we find optimal non-negative slices
of R by solving for

E′′(Rr) =
∥∥∥vec(Sr)−

(
A⊗A

)
vec(Rr))

∥∥∥2 (14)

such that rijr ≥ 0 ∀ r ∈ [1, 2, ...,m] ∧ i, j ∈ [1, 2, ..., k]. With
this latest derivation we conclude the theoretical background
about DEDICOM and turn our attention to another tensor
factorization model that only deals with symmetric similarity
matrices.

IV. INDSCAL

To compare our DEDICOM based feature learning frame-
work and emphasize the importance of finding asymmetric
affinity matrices for behavior prediction, we briefly study a
tensor based multidimensional scaling model called Individ-
ual Differences Scaling (INDSCAL) [18]. The model was
proposed in [18] as a special (symmetric) case of Canon-
ical Decomposition in which tensors are decomposed into
combinations of rank-1 tensors. Formally, given a tensor L
containing m n × n similarity matrices in the same domain,
INDSCAL partitions each slice as

Lr ≈ GUrG
T ∀ r ∈ [1, 2, . . . ,m] (15)

where G ∈ Rn×k is the basis matrix representing importance
of the ties of each entity and Ur ∈ Rk×k is the diagonal
salience matrix, which is the rth slice of U ∈ Rk×k×m,
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Fig. 4: Color coded bubble diagram of the loadings denoting
the sectors that are automatically captured by DEDICOM anal-
ysis of the movements of 3126 players. The most important
sectors align with the central points in the game play, i.e. the
strongholds.

to weight the sum of the rank-1 matrices resulting from
the outer product of the columns of the basis matrix. It is
important to note that, INDSCAL is a constrained version of
the relaxed DEDICOM introduced in (3) to decompose only
symmetric similarity matrices. Similar to relaxed DEDICOM,
fitting INDSCAL can be cast as a norm minimization problem

E′′′(G,U1,U2, ...,Um) =
m∑
r=1

∥∥∥Lr −GUrG
T
∥∥∥2. (16)

A common way to find INDSCAL decompositions is to treat
the matrix G on the left- and right-hand side in (16) as separate
matrices (as we considered for approximating DEDICOM’s
solution above) and to optimize them independently and at the
end these two are expected to be equal. Instead of considering
an indirect solution, a direct fitting algorithm for INDSCAL
is proposed in [19].

Ten Berge et al. [19] find optimal INDSCAL factors by
writing (16) in terms of lth column of G and lth diagonal
elements of slices of U. This can be written as the lth column
of G as

E′′′(gl, u1l, ..., uml) =
m∑
r=1

∥∥∥Lrl − glurlg
T
l

∥∥∥2. (17)

where Lrl = Lr −
k∑

i6=l

giurig
T
i . Considering an ALS update

for unit length constrained gl, if we write (17) in terms of
traces and separate the terms that only relate to gl, minimizing
(17) keeping the saliences fixed amounts to maximize

E′′′(gl) =
m∑
r=1

gl(urlLrl)g
T
l = gl(

m∑
r=1

urlLrl)g
T
l . (18)

Note that the latest derivation in (18) shows that finding a
particular optimal basis vectors for INDSCAL boils down to
finding solution for quadratic form which is the eigen-vector

corresponding to the largest eigen-value of (
m∑
r=1

urlLrl) as
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Fig. 5: Normalized gini index values for feature importance ex-
tracted from an ensemble of Random Forests that are trained to
predict retention. The results indicate that maximum progress
reached so far, time dependencies and spati-temporal activities
in particular areas of the game map are crucial indicators of
future game-play.

the solution. Updating the corresponding saliences of the unit
length gl is defined as url ← glLrlg

T
l ∀ r ∈ [1, 2, . . . ,m].

Repeating these steps for all of the basis vectors and their
corresponding saliences for l = [1, 2, ..., k] will yield the
optimal INDSCAL factors. For more details about INDSCAL
and algorithms for finding its appropriate factors we refer the
reader to [18], [19].

V. RESULTS

Here we describe the empirical results obtained using the
above representation learning framework. First, details of how
the framework is used to extract features are presented and
then we discuss a case study showing the behavior of DEDI-
COM for comparative player analysis and feature evaluation.
Finally, we report cross validation performance comparisons
of the different algorithms.

A. Settings

We consider four cases: a) prediction with purely behavioral
features as in [1], [3], [6], b) with purely behavioral features
and saliences learned by fitting INDSCAL to the symmetrized
similarities between the waypoints and c) + d) constrained
and unconstrained affinities obtained by fitting DEDICOM
to the asymmetric similarities between the waypoints. As
the main aim of the proposed framework is to be used
in an agile development cycle, we rely on previous player
experiences and build every model by only using a training
set and evaluate the predictive power of our models using
an independent validation set. It is important to note that,
when obtaining the saliences Utest and the affinities R test

of the test players we use the basis matrices Gtrain and
Atrain that we obtain by respectively fitting INDSCAL and
DEDICOM on the similarity matrices of the players in the
training set. We measure the performance of the prediction by
observing the accuracy of predicting the returners and the non
returners (denoted by Recall and Acc− resp.), the Precision
of predicting the returner and the geometric and the harmonic
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TABLE II: Retention prediction results with cross validation
Algo. Representation Acc− Recall Precision G-Mean F-Score

KNN

Pure 0.68 0.61 0.65 0.65 0.63
Pure & HO 0.72 0.62 0.70 0.67 0.66

Pure & SNN-HO 0.76 0.67 0.75 0.71 0.72
Pure & INDSCAL 0.69 0.63 0.67 0.66 0.65

RF
Pure 0.69 0.64 0.72 0.66 0.68

Pure & HO 0.70 0.67 0.72 0.68 0.70
Pure & SNN-HO 0.79 0.69 0.75 0.74 0.73
Pure & INDSCAL 0.75 0.61 0.77 0.67 0.67

GBC
Pure 0.70 0.62 0.68 0.67 0.66

Pure & HO 0.73 0.68 0.72 0.71 0.71
Pure & SNN-HO 0.72 0.68 0.72 0.70 0.70

Pure & INDSCAL 0.72 0.66 0.70 0.69 0.68

ADA
Pure 0.70 0.65 0.72 0.68 0.69

Pure & HO 0.72 0.67 0.70 0.69 0.70
Pure & SNN-HO 0.78 0.69 0.75 0.72 0.73
Pure & INDSCAL 0.70 0.66 0.71 0.68 0.69

Voting
Pure 0.70 0.67 0.70 0.68 0.68

Pure & HO 0.72 0.69 0.70 0.71 0.71
Pure & SNN-HO 0.75 0.71 0.72 0.73 0.72
Pure & INDSCAL 0.70 0.67 0.70 0.69 0.69

Ensemble
Pure 0.69 0.71 0.69 0.70 0.70

Pure & HO 0.71 0.75 0.70 0.74 0.73
Pure & SNN-HO 0.75 0.81 0.75 0.78 0.77
Pure & INDSCAL 0.72 0.69 0.73 0.71 0.71

mean of Recall and Precision (denoted by G-Mean and F-
Score respectively ), see [6] for more details about the use of
the composite classification measures for classification tasks
for games.

B. Dissecting Our Framework

As an example of how our framework learns and represents
spatio-temporal information, we set aside one eighth of our
JC2 player data for testing and use the remainder for training.
We extract waypoints and create a waypoint graph containing
information about the asymmetric movements between way-
points which we denote as S train. For ease of interpretation
and visualization of the results, we fit SNN DEDICOM on
S train with k = 5 to obtain the global loading matrix Atrain

and the tensor of player affinities in R train. The loadings in
Atrain represent how much particular waypoints contribute to
latent movements of all of the analyzed players. We present the
loadings as a color coded bubble diagram in Fig. 4 where each
color represents a particular latent role which at the end forms
a sector in the map and the size of each point represents how
much it contributes to the sector. Analyzing the loadings on
the map we notice that highest loadings correspond to some of
the faction strongholds in JC2. Stronghold take-over missions
are the endpoints in relation to taking control of a district
of Panau, and form some of the most complex and time-
consuming missions in the game. It is therefore reasonable
to expect JC2 players to spend substantial time around these
sites.

To see how the affinities in R train are structured, we chose
the most extreme affinities that are furthest away from each
other using k-maxoid clustering [20]. Fig. 6 displays the
resulting extreme players in terms of their affinities and shows
how diverse the movement behaviors can be. The player in
Fig. 6a was active in most of the parts of the map whereas
the player in Fig. 6b was active mostly in the green sector.
Moreover, activities of the player in Fig. 6c are centered
around the blue sector whereas the players in Figures 6d,
6e and 6f focused on the lower left part of the map. As a

final step, we trained an ensemble of only Random Forests
(RF) [21] (a more extensive analysis with more algorithms is
provided below) with the pure behavioral data and the spatio-
temporal representations learned with SNN-DEDICOM with
k = 5 where we obtained G-mean and F-score values of 0.77
and 0.76 respectively for the players in the test set. Similar
to the analysis in [6], we use the embedded feature ranking
capability of Random Forests to investigate how much spatio-
temporal features contribute to retention prediction. We present
the 20 features with the highest importance values in Fig. 5 and
observe that the most important indicator of player retention
is the maximum progress reached within the observation time
window and, similar to the F2P mobile and social games [1],
inter-session time plays an important role for determining if
the player will remain in the game or not. Other important
indicators of retention are the latent movements in the cyan
and magenta sector as well as the ones from blue to cyan
(note again the relationship with stronghold missions). It is
important to note that the magenta and the cyan sectors form
an important milestone in the game as they are in a desert
area where the player has to move much and they also contain
missions that appear much later than missions in the red and
the green sectors. Going down in the list, we see that temporal
telemetry features appear to be important as well.

C. Comparative Retention Prediction

Having seen that spatio-temporal features play an important
role when it comes to predicting retention, we next analyze
what happens if we do not incorporate them into the pre-
diction process and how affinities and the saliences obtained
from HO-DEDICOM and INSCAL perform against SNN-
HO DEDICOM. We again partition our data into train and
test sets to perform cross validation and fit HO- and SNN-
DEDICOM on S train and INDSCAL on the corresponding
symmetrized version S ′

train = (S train + S t
train)/2 where

S t
train denotes the tensor that contains the transpose of the

slices of S train. In this case S ′
train denotes the pairwise

similarities of each node visited by the player regardless of
its direction. Having fitted the models with latent factors
k ∈ [2, ..., 13], we compare how well they perform when
predicting retention using various classifiers: k-Nearest Neigh-
bors (KNN), Random Forest, Gradient Boosting Classifier
(GBC), and Ada Boost (ADA). In addition to using single
classification models, we used a community based voting
classifier that classifies given players based on the results
of the 4 algorithms and (similar to the above analysis) we
also used an ensemble of these four classifiers together with
Linear and Quadratic Discriminant Analysis in which the
clustering of the players done by Neural Gas algorithm. Tbl. II
summarizes our retention prediction results categorized by
the data representation and classifier used. We observe that
adding spatio-temporal features always increases the overall
prediction performance with respect to the composite metrics
indicating the importance of incorporating such features for
activity prediction in games. Additionally, we note that the
non-negative features extracted from SNN-DEDICOM yield
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mgnt blue cyan green red
mgnt 86.421 0.003 7.309 0.234 7.274
blue 0.003 48.025 0.051 0.015 0.172
cyan 7.203 0.051 229.170 0.229 2.257
green 0.234 0.025 0.230 408.387 0.000
red 7.281 0.174 2.271 0.000 1372.764

(a) A “balanced” player

mgnt blue cyan green red
mgnt 0.001 0.000 0.001 0.373 0.021
blue 0.000 0.000 0.000 0.015 0.001
cyan 0.001 0.000 0.002 0.438 0.014
green 0.373 0.015 0.438 291.414 5.770
red 0.021 0.001 0.014 5.772 1.393

(b) Active in green sector

mgnt blue cyan green red
mgnt 9.278 0.031 2.715 0.030 1.219
blue 0.031 5129.513 0.000 0.000 0.000
cyan 2.719 0.000 63.756 0.139 0.266
green 0.000 0.000 0.000 49.029 0.000
red 2.699 0.000 0.170 0.000 224.154

(c) Active in the blue sector

mgnt blue cyan green red
mgnt 2447.254 0.000 15.212 0.000 0.000
blue 0.000 0.000 0.705 0.000 0.000
cyan 0.000 0.706 2184.270 0.000 0.000
green 0.000 0.000 0.000 0.007 0.021
red 0.000 0.000 0.000 0.021 0.126

(d) Active in lower part of the map

mgnt blue cyan green red
mgnt 760.357 0.024 87.055 0.000 0.000
blue 0.008 0.000 0.349 0.000 0.000
cyan 35.252 0.350 1083.662 0.000 0.000
green 0.000 0.000 0.000 0.003 0.007
red 0.000 0.000 0.000 0.008 0.040

(e) Active in lower cyan sector

mgnt blue cyan green red
mgnt 1201.763 0.000 0.000 0.000 0.000
blue 0.000 0.000 0.060 0.000 0.000
cyan 0.000 0.060 185.911 0.000 0.000
green 0.000 0.000 0.000 0.001 0.008
red 0.000 0.000 0.000 0.008 0.042

(f) Active in lower magenta sector

Fig. 6: Prototypical affinity matrices as an outcome of k-maxoid analysis of the vectorized slices of the resulting R train. The
results show the diversity in types of movements players performed between the sectors found by DEDICOM. See text for
more details. Best seen in color.

the best performance which is associated to regularization
(when compared to the version with unconstrained affinities)
and the fact that the transition count data we are factorizing
is indeed non-negative. We observe feature importance ratios
similar to the analysis above. For an ensemble of random
forests, the hit ratio distribution for the occurrences of features
in the top 25 list is 100%, 83% and 16% respectively for SNN-
HO DEDICOM, HO DEDICOM and INDSCAL. In summary,
using asymmetric non-negative affinities as spatio-temporal
features through DEDICOM partitioning not only provides
interpretable results but also increases the performance of
retention prediction.

VI. CONCLUSION AND FUTURE WORK

Understanding player interactions and forecasting future be-
havior are two major tasks for future resource management in
AAA game analytics. In this paper, the problem of predicting
player retention in these games has been approached through a
tensor factorization-based learning framework that integrates
spatio-temporal behavior additional to providing descriptive
insights. The notion of three way relaxed DEDICOM has been
introduced, proposing this as a fast algorithm for retention pre-
diction. Our results indicate that spatio-temporal features are
important proxies for user engagement in Open-World Games
in a similar capacity to the game-specific and temporal features
known from F2P prediction models. Our future work involves
using the proposed framework to model player interactions in
the context of other AAA and F2P games that allow the player
to move freely in the game world.

ACKNOWLEDGMENT

The authors would like to thank Square Enix for access to
the telemetry data from Just Cause 2.

REFERENCES

[1] F. Hadiji, R. Sifa, A. Drachen, C. Thurau, K. Kersting, and C. Bauck-
hage, “Predicting Player Churn in the Wild,” in Proc. of IEEE CIG,
2014.

[2] El-Nasr, M. S. and Drachen, A. and Canossa, A., Game Analytics:
Maximizing the Value of Player Data. Springer, 2013.

[3] J. Runge, P. Gao, F. Garcin, and B. Faltings, “Churn Prediction for
High-value Players in Casual Social Games,” in Proc. of IEEE CIG,
2014.

[4] C. Bauckhage, R. Sifa, A. Drachen, C. Thurau, and F. Hadiji, “Beyond
Heatmaps: Spatio-Temporal Clustering using Behavior-Based Partition-
ing of Game Levels,” in Proc. of IEEE CIG, 2014.

[5] R. Sifa, C. Ojeda, and C. Bauckhage, “User Churn Migration Analysis
with DEDICOM,” in Proc. of ACM RecSys, 2015.

[6] R. Sifa, F. Hadiji, J. Runge, A. Drachen, K. Kersting, and C. Bauckhage,
“Predicting Purchase Decisions in Mobile Free-to-Play Games,” in Proc.
of AAAI AIIDE, 2015.

[7] H. Xie, S. Devlin, D. Kudenko, and P. Cowling, “Predicting Player
Disengagement and First Purchase with Event-frequency Based Data
Representation,” in Proc. of CIG, 2015.

[8] R. Thawonmas, K. Yoshida, J.-K. Lou, and K.-T. Chen, “Analysis of
revisitations in online games,” Entertainment Computing, vol. 2, no. 4,
pp. 215–221, 2011.

[9] B. G. Weber, M. John, M. Mateas, and A. Jhala, “Modeling Player
Retention in Madden NFL 11,” in Proc. of IAAI, 2011.

[10] A. Drachen, R. Sifa, C. Bauckhage, and C. Thurau, “Guns, Swords and
Data: Clustering of Player Behavior in Computer Games in the Wild,”
in Proc. of IEEE CIG, 2012.

[11] R. Sifa and C. Bauckhage, “Archetypical Motion: Supervised Game
Behavior Learning with Archetypal Analysis,” in Proc. of CIG, 2013.

[12] T. Martinetz and K. Schulten, “A ”neural-gas” network learns topolo-
gies,” Artificial Neural Networks, pp. 397–402, 1991.

[13] R. A. Harshman, “Models for Analysis of Asymmetrical Relationships
among N Objects or Stimuli,” in Proc. Joint Meeting of the Psychometric
Society and the Society for Mathematical Psychology, 1978.

[14] M. Nickel, V. Tresp, and H. Kriegel, “A Three-way Model for Collective
Learning on Multi-relational Data,” in Proc. of ICML, 2011.

[15] B. Bader, R. Harshman, and T. Kolda, “Temporal Analysis of Semantic
Graphs using ASALSAN,” in Proc. of IEEE ICDM, 2007.

[16] P. A. Chew, B. W. Bader, and A. Rozovskaya, “Using DEDICOM for
Completely Unsupervised Part-Of-Speech Tagging,” in Proc. Workshop
on Unsupervised and Minimally Supervised Learning of Lexical Seman-
tics, 2009.

[17] H. A. Kiers, “DESICOM: Decomposition of Asymmetric Relationships
Data into Simple Components,” Behaviormetrika, vol. 24, no. 2, pp.
203–217, 1997.

[18] J. D. Carroll and J.-J. Chang, “Analysis of Individual Differences in
Multidimensional Scaling via An N-way Generalization of Eckart-Young
Decomposition,” Psychometrika, vol. 35, no. 3, pp. 283–319, 1970.

[19] J. M. ten Berge, H. A. Kiers, and W. P. Krijnen, “Computational
Solutions for the Problem of Negative Saliences and Nonsymmetry in
INDSCAL,” Journal of classification, vol. 10, no. 1, pp. 115–124, 1993.

[20] C. Bauckhage and R. Sifa, “k-Maxoids Clustering,” in Proc. of KDML-
LWA, 2015.

[21] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

2016 IEEE Conference on Computational Intelligence and Games (CIG’16) 149



Intrinsically Motivated General Companion NPCs
via Coupled Empowerment Maximisation

Christian Guckelsberger
Computational Creativity Group

Goldsmiths, University of London
London, United Kingdom

Email: c.guckelsberger@gold.ac.uk

Christoph Salge
Adaptive Systems Research Group

University of Hertfordshire
Hatfield, United Kingdom
Email: c.salge@herts.ac.uk

Simon Colton
The MetaMakers Institute

Falmouth University
Falmouth, United Kingdom
Email: s.colton@gold.ac.uk

Abstract—Non-player characters (NPCs) in games are tradi-
tionally hard-coded or dependent on pre-specified goals, and
consequently struggle to behave sensibly in ever-changing and
possibly unpredictable game worlds. To make them fit for new
developments in procedural content generation, we introduce the
principle of Coupled Empowerment Maximisation as an intrinsic
motivation for game NPCs. We focus on the development of
a general game companion, designed to support the player in
achieving their goals. We evaluate our approach against three
intuitive and abstract companion duties. We develop dedicated
scenarios for each duty in a dungeon-crawler game testbed, and
provide qualitative evidence that the emergent NPC behaviour
fulfils these duties. We argue that this generic approach can speed
up NPC AI development, improve automatic game evolution and
introduce NPCs to full game-generation systems.

I. INTRODUCTION

Dogmeat from Fallout or Ellie from The Last of Us or the
pet from Nethack – memorable companions are an important
part of our gaming experience. But companions can also be
a great source of annoyance, especially when their behaviour
fails miserably [1]. The vast majority of companions are hard-
coded by means of e.g. finite state machines or behaviour
trees, and consequently struggle to produce believable or even
plausible behaviour in unforeseen contexts ([2], [3]). More
advanced companions can adapt their behaviour by means
of planning, or by learning a policy via neural networks or
traditional reinforcement learning. Nevertheless, they require
intense training or pre-specified rewards, which again renders
them inflexible especially in sandbox games where players
with a large choice of options can change a dynamic world.
In the future, the demands on non-player character (NPC) AI
in general are likely to increase further [4]. This is particularly
emphasised by progress in procedural content generation,
which not only focusses on game elements such as levels and
game mechanics ([4], [5]), but ultimately aims at generating
entire games [6]. How can NPC AI deal with these ever-
changing and potentially unpredictable game worlds?

One answer [2] is to drive the NPCs’ behaviour by means
of intrinsic motivation, such as artificial curiosity [7] or learn-
ing progress [8]. Instead of relying on pre-defined goals or
behaviours which might become meaningless when the game
changes, intrinsically motivated agents perform “an activity for
its inherent satisfactions rather than for some separable conse-
quence” [9]. Models of intrinsic motivation ground behaviour

in the agent’s sensorimotor relationship with the world [8], so
changes to the world or the agent’s embodiment are reflected in
potentially new behaviour. A curious mouse and a curious bird
would consequently behave differently, moderated by their
embodiment and environment. In this paper, we will work with
the intrinsic motivation of empowerment [10], a measure of
how much an agent is in control of the world it can perceive.
We have previously argued [11] that empowerment reflects an
agent’s drive to maintain its own precarious existence, and
allows them to adapt to changes in their embodiment and
environment. But while empowerment might be very useful
to produce an intrinsically motivated general NPC, we have
to look specifically into how to turn it into a good companion.

Players seem to expect a companion to behave differently
than a general NPC. For instance, in a qualitative study
on companion behaviour, a player said “I dislike that [the
companion] prioritises getting to the exit herself over helping
[me] first” [1], stressing the delicate balance between support
and independence. McGee and Abraham [12] argue that the
NPC must account for the player’s goals as part of coordinated
decision-making, possibly incorporating uncertainty. To guide
our approach, we identify the following three companion
duties, which should generalise across a range of game genres:

1) Player Integrity: Ensure that the player can continue
playing the game. Act against any limiting force.

2) Support: Support and do not hinder the player in achiev-
ing their goals. Maintain operational proximity, i.e. act
towards states where you can support the player.

3) Companion Integrity: Secure your own existence and
ability to act in order to support the player long term.

We did not define any explicit, goal-specific companion duties
which could constrain the NPC’s adaptivity. Instead, their goal
directedness will arise from the interaction with the player.

We design an intrinsically motivated, general companion
NPC based on the Coupled Empowerment Maximisation
(CEM) principle. CEM establishes a general frame for support
by relating an agent’s action selection policy not only to their
own, but also to the empowerment of other agents. We provide
an intuition and formalisation of the principle. We evaluate our
approach qualitatively in a dungeon-crawler testbed, by means
of observing whether the NPC fulfils its companion duties. We
finish with a discussion, conclusion and future work.
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II. BACKGROUND

A wide body of research exists on companion AI and
related notions. While the notion of “companions”, “sidekicks”
and “assistants” usually refer to a unidirectional, supportive
relationship towards the player (cf. [1]), research on “part-
ners” and “team-mates” puts more emphasis on bidirectional
collaboration and shared goals (cf. [12]). We are interested
in support; Nevertheless, only few projects from the first
category are relevant to us, as the majority specialises in
specific game genres. We in contrast propose a notion for
general companion-like behaviour in an arbitrary game.

We equip NPCs with the skill to coordinate their actions
with the player in a supportive way. Most related work
addresses this challenge by modelling the player’s goals
explicitly. Fern and Tadepalli [13] represent the player as a
noisy utility maximisation agent which is more likely to select
actions that have a high utility of completing a given task.
The player’s intentions are modelled by means of Markov-
Decision-Processes (MDPs) which can capture uncertainty in
human action-selection and in the environment. Nguyen et
al. [14] extend this approach in their Collaborative Action
Planner with Intention Recognition (CAPIR), combining pre-
computed MDP action policies and online Bayesian belief
updates. They improve the performance of Fern’s and Tade-
palli’s framework by decomposing tasks into subtasks. Their
approach is evaluated in a maze game where a companion
has to help the player kill ghosts. Macindoe, Kaelbling and
Lozano-Pérez [15] buid on CAPIR by steering NPC decision-
making by the information it can gain about the player’s
intentions. They evaluate their framework in a cooperative
pursuit game. Our formalism is also concerned with planning,
i.e. the simulation of experience, and is capable of accounting
for uncertainty in the player’s behaviour and the environment.
We do not model the player’s goals explicitly, but introduce
them implicitly into the policy. While the utility function in
these projects must be pre-defined, our approach employs
intrinsic motivation to overcome this limitation.

If we constrain our scope to intrinsically motivated agents,
the body of research becomes much smaller. The work by
Merrick and Maher ([2], [16]) is most closely related, looking
at how intrinsically motivated reinforcement learning [17] can
support NPCs in learning complex tasks in a dynamic game
world. They propose two models of motivation as reward
signals for Q-learning: an agent’s interest in a new situation,
given past experiences, and its competence based on the error
in learning policy updates. Their qualitative studies in Second
Life and a quantitative analysis of behavioural variety and
complexity in dedicated RPG testbeds confirm that intrinsic
motivation allows agents to adapt their behaviour in an unex-
pectedly changing environment. In contrast to our study, their
NPCs act in solitude, and not in favour of other agents such
as the player. In a related study, Forgette and Katchabaw [3]
focus on the development of more believable NPC behaviour,
by letting them choose actions in order to maintain basic
desires such as hunger or social contact. Similar to Merrick

and Maher, their focus is on learning complex sequences of
actions to satisfy their motives, while we are interested in
establishing supportive, immediate reactions to the player’s
actions. Forgette and Katchabaw’s desires can only loosely be
considered intrinsic, as they rely on sensor semantics (cf. [8]).
Unfortunately, this dependency makes the approach unsuitable
in PCG or dynamically changing game worlds.

Empowerment as intrinsic motivation has so far only been
employed for general game-playing, but not to steer the
behaviour of companion or enemy NPCs. Anthony, Polani and
Nehaniv [18] analysed empowerment maximisation to drive
player behaviour in Sokoban and Pac-Man, and in the same
course proposed several optimisation methods. Mohamed and
Rezende [19] focus primarily on optimisation, with a likely
application in general game playing.

III. FORMAL MODEL

We propose the principle of coupled empowerment max-
imisation (CEM) as an abstract notion for companion-like
behaviour in highly flexible and adaptive NPCs. We recently
introduced CEM in a co-creativity context [20], and will
expand it here to fit the requirements of companion NPCs.
We first provide an intuition and definition of the underlying
empowerment formalism and its variations. Equipped with
this, we show how the different notions come together in CEM
to drive the decision-making of NPCs.

A. Empowerment

Empowerment [10] is defined between an agent’s actuators
and sensors. In a deterministic environment, it quantifies the
options available to an agent in terms of availability and
visibility. In a stochastic setting, this generalises to its poten-
tial, perceived influence on the environment. Empowerment is
measured in bits; It is zero when the agent has no control
over its sensors, i.e. when all actions lead to the same or
a random outcome, and it increases when different actions
lead to separate perceivable outcomes. For simplicity, we
focus on interactions which are discrete in time and space,
but continuous implementations exist. An extensive survey of
motivations, intuitions and past research can be found in [21].

At the centre of the empowerment definition is the interpre-
tation of an agent’s embodiment as an information-theoretic
communication channel between its actuator A and sensor S,
where in A and S represent the possible actions and sensor
states. The agent’s interaction with the world is usually de-
scribed as a perception-action loop [22] as in Fig. 1. Modelled
by means of a causal Bayesian network, the figure illustrates
the turn-wise interaction of the player and a companion NPC,
unrolled in time. Each agent is represented by their sensor
and actuator, and the black, solid arrows imply causation
between these random variables. The companion chooses an
action based on its sensor input at time t, influencing the
rest of the environment R and the player’s sensor in the next
time step. The player’s sensor informs the player’s actions,
which influence the environment and the companion’s sensor
at t + 2. The latter in turn affects the companion’s actions,
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t+5
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t+2 AC
t+2 SC
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Fig. 1: Perception-action loop for player (SP , AP ) and companion (SC , AC), illustrating three different types of 2-step empowerment. The
agents interact in turnwise order, and are represented by their sensors and actuators. Purple, dotted lines (top) represent player empowerment.
Violet, dotted lines (bottom) stand for companion empowerment, and red dashed lines for companion-player transfer empowerment.

and the cycle repeats itself. The environment is affected
both by its preceding state and the character’s actions. The
causal probability distribution p(SC

t+2|SC
t , AC

t ) then represents
the (potentially noisy) communication channel between the
companion’s actions before-, and its future sensor states after
the player has performed an action.

Empowerment Est is then defined as the maximum potential
information flow that could possibly be induced by a suitable
choice of actions, in a particular state st. This can be for-
malised as the channel capacity:

Est = max
p(at)

I(St+2;At)

= max
p(at)

∑
A,S

p(st+2|st, at)p(at) log
p(st+2|st, at)∑

A
p(st+2|st, at)p(at)

Here, I(St+2;At) represents the mutual information be-
tween sensors and actuators. Empowerment as defined here
is the maximum amount of information that the active agent
can inject into the environment with its actions at t, and
perceive again at t + 2, after the other agent performed. N-
step empowerment is a generalisation of this principle where
not a set of single actions A, but a set of action sequences
As

t = (At;At+2; . . . ;At+2(n−1)) and their impact on a future
sensor state St+2n are evaluated. The parameter n specifies the
agent’s lookahead. For a detailed introduction to the general
information-theoretic notions, consult [23].

Fig. 1 illustrates the three variants of 2-step empowerment
used in this paper: Companion- (EC , , bottom) and player
empowerment (EP , , top) correspond to the NPC’s and
player’s perceived influence on their own future sensor state.
Companion-player transfer empowerment (ET , ) maps the
companion’s actions to the player’s future sensor, quantifying
the companion’s influence on the player’s perception.

Empowerment is local, i.e. the agent’s knowledge of the
dynamics p(St+2|St, At) is sufficient to calculate it. The
information-theoretic grounding makes it domain-independent
and universal, i.e. it can be applied to every agent-world
interaction that can be modelled as a perception-action loop. It
can thus be computed for arbitrary setups of what a NPC can
see and do, and can cope with changes to a game’s mechanics,
affecting how the NPC can interact with the world and player.

B. Coupled Empowerment Maximisation

Empowerment does not measure an agent’s actual, but
rather their potential influence on the environment. The em-

powerment maximisation hypothesis [21] suggests that an
agent should, in the absence of any explicit goals, choose
actions which likely lead to states with a higher influence
on the environment, i.e. potentially more options. Coupled
empowerment maximisation (CEM) is an extension of this
principle to the multi-agent case, and we use it to formalise
companion-like behaviour in a very general and flexible way.

Fig. 2 illustrates the turn-wise interaction of player P ,
companion C and enemy E. Each interaction cycle is initiated
by the player performing an action, which the companion will
react to, followed by enemies. Each agent can affect the others
either explicitly, or implicitly through their impact on the
shared game world, which can be quantified by empowerment.
Given the previous intuition, we suggest that increasing the
empowerment of a goal-directed agent can be considered
as supporting them in performing and achieving their tasks.
We consequently hypothesise that equipping an NPC with an
action selection policy which not only maximises their own-
but also the player’s empowerment leads to the emergence of
companion-like behaviour. We specifically suggest the policy

π(st) = argmax
at

(
αC · E[EC

st+4
]at

+ αT · E[ET
st+4

]at
+ αP · E[EP

st+3
]at

)
with parameters αC , αP , αT representing the influence of each
empowerment type in the overall coupling. The CEM princi-
ple establishes a depdendency between the NPC’s decision-
making and the player. Given a certain state, the policy returns
the action which maximises the NPC’s expected coupled em-
powerment, i.e. the combination of its own expected empower-
ment E[EC ], the expected empowerment of the player E[EP ],
and the NPC’s influence on the player’s sensor state, i.e.
expected companion-player transfer empowerment E[ET ]. The
latter allows the companion to maintain operational proximity,
i.e. to put the NPC in a position where it could potentially
affect and thereby maximise the player’s empowerment. We
look at expected empowerment, because the companion must
consider all possible ways the player could behave.

The calculation of coupled empowerment therefore involves
several estimation steps, which are illustrated in Fig. 2. To
select an action in t+1, the NPC has to calculate the expected
coupled empowerment for each of its actions at+1 separately.
As a first step, we thus have to estimate which potential
player states at t + 3 each of the companion’s actions and
the enemies’ reactions might lead to. From there on, we have
to anticipate how the player might react, resulting in potential
companion states at t + 4. This estimation stage is denoted
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Pt Pt+1 Pt+2 Pt+3 Pt+4 Pt+5 Pt+6 Pt+7 Pt+8 Pt+9 Pt+10
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Fig. 2: Causal Bayesian network illustrating the turn-wise interaction of player P , companion C and enemies E. The solid grey lines
denote mutual influence. The solid black lines denote the companion’s future state estimation, preceding the calculation of 3 types of 2-step
empowerment: player- (purple dotted, top), companion- (violet dotted, middle) and companion-player transfer empowerment (red dashed).

by black, solid arrows in Fig. 2. We then calculate player
empowerment ( , top) in t + 3, as well as companion- ( ,
middle) and companion-player transfer empowerment ( ) in
t+4. This involves another n rounds of estimations, depending
on the lookahead n. Expected coupled empowerment is finally
calculated by weighting the individual empowerment values
with the probability of the states the NPC’s actions trigger.

Note that empowerment maximisation per se is not goal-
oriented. Nevertheless, coupled empowerment introduces the
player’s empowerment into the companion’s policy, and thus
guides the companion by means of the player’s goals.

IV. EVALUATION: GENERAL COMPANION-LIKE
BEHAVIOUR

We claim that maximising coupled empowerment realises
companion-like behaviour. We evaluate this claim qualita-
tively, by designing several dedicated scenarios to probe each
of the companion duties outlined earlier. We describe the
emergent behaviour, and highlight the contributions of the in-
dividual empowerment types coupled in the agent’s policy, and
how they blend together. Our goal is to create highly flexible
and adaptive companions. Since explicit constraints decrease
this flexibility, we start with the plain formalism, highlight
drawbacks in the various scenarios, and propose modifications
which maintain this flexibility as needed. Importantly, we do
not tailor the formalism to each scenario; instead, we extend
it successively to eventually generalise across all of them.

A. Testbed

The following experiments were set in a minimal dungeon-
crawler game in which the player, supported by a companion
NPC, has to navigate through rooms connected by corridors
and defeat enemies in order to reach a goal state. Agents inter-
act in turn-wise order, starting with the player, and followed by
the companion and enemies. All agents have health points, and
can either move one step in each direction, shoot, or idle. They
can only hit other agents within a certain range in their view
direction, which changes with movement. While the player’s
actions cannot be exactly predicted by the companion, the
enemies act, for the sake of simplicity, deterministically: They
always shoot at, or chase, the closest non-enemy.

We chose this game type for various reasons: It tradition-
ally relies on procedural content generation and elements of
chance, and therefore poses interesting challenges to a general
NPC policy. Classic examples such as Nethack, but also more

recent variants such as Hashtag Dungeon illustrate how our
minimal testbed can be extended to introduce new challenges
to the formalism. Dungeon crawlers are traditionally discrete
in time and space and thus simplify the computation and
analysis of agent behaviour. The core mechanics are grounded
in the behaviour of living beings, and thus connect with the
biological origins of empowerment [11].

The player and companion sensors are local, non-
overlapping and asymmetric. We model locality by only ac-
counting for entities such as other characters in a maximum
distance of two units around the agent. They are represented
by an id and their relative position. Sensors do not overlap, i.e.
they only comprise the agent’s own absolute position, rotation,
and health. They are asymmetric, in that the player sensor also
comprises the game status (running, lost, won).

The non-overlapping sensor would make our NPC strictly
egocentric, if it only maximised its own empowerment. In our
simulations though, we weight the player’s empowerment the
most by αP = 0.5, the companion’s own empowerment by
αC = 0.2, and the companion-to-player transfer empowerment
by αT = 0.3, in order to reflect the companion duty hierarchy.
These values were determined by experimentation, and work
across all scenarios. They can be varied to some extent, and
we will provide details on their limits in each scenario. By
default, we assume a lookahead of n = 2.

B. Duty 1: Ensure Player Integrity
A companion must protect the player, and prevent its

death. Fig. 3 show a scenario in which the player is directly
threatened: An enemy faces the player, ready to shoot. The
companion in turn faces the enemy, and could therefore rescue
the player. The figures illustrate the empowerment values
relevant to the policy, by means of mapping them as greyscale
values to different positions in the scene. Brighter hues indi-
cate higher empowerment. The player, companion and enemies
are represented by purple, violet and orange squares with
letters “P”, “C” and “E”, respectively. The numbers on the
bottom specify their current and maximum health.

In Fig. 3a, the player position was fixed and the companion
moved around. The value at a particular location corresponds
to the player’s empowerment, if the companion was in that
position and chose to shoot. According to the core formalism
(cf. sec. III-A), empowerment would drop to zero if the player
was killed. Consequently, it is highest if the companion either
faces the enemy in close range, expressing the potential to
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(a) Player empowerment, given
that the companion chose to shoot
in a certain position, n = 2.

(b) Companion-player transfer
empowerment for non-local
sensor, n = 2.

Fig. 3: 1st scenario. The player is threatened to be killed by an
enemy. The companion faces the enemy, and could rescue the player.

(a) Vanilla (b) Modification applied

Fig. 4: 1st scenario. Player empowerment, given the companion
shoots in a certain position, and player health >n, n=2. Health-
performance consistency (right) indicates clearly where to shoot.

shoot, or steps between the two to take the bullet. It is less
preferable for the player to be faced by the companion, because
the latter could turn its weapon against the ally. Fig. 3b
illustrates the companion’s role as bodyguard by means of
companion-to-player transfer empowerment, i.e. its influence
on the player’s future sensor state. It shows that the companion
could still save the player by stepping in from the side.

CEM makes the companion kill the enemy for any value of
αC and αT , as long as αP >0. If αP =0, the companion does
not have access to the player’s sensor state. As their sensors do
not overlap, the companion would not “care” about the player.
Importantly, the companion would defend the player even if
the enemies did not pose a threat to itself.

Unfortunately, the companion would only protect the player
as long as its lookahead n is larger than the player’s health.
The reason can be found in an actual inconsistency present
in many (video) games: In nature, a living being’s health not
only indicates its closeness to death, but also corresponds to
a decline in the ability to interact successfully with the world
[11]. In games, health or similar labels for fitness often only
represent a mere warning, and affect the agent’s performance
irregularly or only when dropping to zero. A companion can
thus only foresee the tragic consequences of the enemy’s
actions if it evaluates the environment dynamics far enough

ahead. This can be expensive to compute, but could also result
in overcautious overall behaviour. We therefore suggest to
make the relationship between a character’s health and actual
performance more consistent, by introducing noise into the
agent’s state transition probabilities:

p(St+3|st, at)?=


p(s1t+3|st, at)
p(s2t+3|st, at)

...
p(sDt+3|st, at)

�


γ
γ
...

1− γ

 , γ= ht

hmax

Here, ht and hmax stands for the agent’s current and maxi-
mum health, as representative for some arbitrary fitness label.
The state sDt+3 resembles the agent’s default follow-up state,
e.g. the state resulting from idling. The more an agent’s health
decreases, the more likely it becomes that its actions will
lead to the default state. Applied to all available actions, the
modification will lead to a consistent, gradual decrease of an
agent’s empowerment with their health.

Fig. 4 illustrates the effect of this modification in the
previous scenario. Here, health-performance consistency al-
lows the companion to clearly differentiate between actions
that contribute to the player’s empowerment, despite a short
lookahead n<ht. The companion not only acts when the
player faces death, but also protects the latter from being
harmed. We will assume this modification by default in the
following scenarios. The behaviour can be watched online1.

C. Duty 2: Support the Player

In order to support the player in achieving their goals, the
companion should strive for states in which it can affect the
player and its perceivable environment best. Depending on the
NPC’s action set, this operational proximity can be different
from spatial proximity: We can imagine an NPC which can
operate terminals, but has no capacity for melee attacks. Such
a companion might support the player most by staying remote,
where it could e.g. unlock doors or trap the player’s enemies.
In our second scenario in Fig. 5, spatial proximity is key and
we expect the companion to stay close to the player and follow
them from one room to the other.

However, this is not self-evident: The companion’s empow-
erment (Fig. 5a) is particularly low at the room edges and
corners, but also in the corridor. Here, the NPC’s sequences
of navigational actions collapse into very few follow-up states,
as the agent can neither move north nor south. If the NPC’s
policy was only about maximising its own empowerment, it
would move to the centre of the current room, and avoid
the corridors. Nevertheless, adding companion-player transfer
empowerment to the equation renders all states but the ones
in which the player can be directly influenced less attractive
(Fig. 5b). When coupled with the other empowerment types,
it compensates for the barrier induced by the companion’s
empowerment (Fig. 5c). For the default setup and αT ≥0.3, the
companion consequently follows the player through the cor-
ridor and maintains spatial proximity. Note that this scenario

1Video on duty 1 (Ensure Player Integrity): http://y2u.be/uh3J_ENh11M
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(a) Companion empowerment, n=2.

(b) Companion-player transfer empowerment, n=2.

(c) Coupled empowerment with movement trace, n=2.

Fig. 5: 2nd scenario. The transfer empowerment in the coupling
allows the companion to maintain operational proximity, and thus to
follow the player through bottlenecks such as a narrow corridor.

only represents one example of an empowerment bottleneck,
and that our formalism should generalise to other situations.

The notion of support implies not hindering the player from
reaching their goals. In our third scenario, we check that the
companion does not block the player’s movement at any time,
while maintaining spatial proximity. Fig. 6a shows the player’s
empowerment for different companion positions. The values
are low around the player, because the companion would
constrain its movement. The same applies to the companion’s
periphery in respect to the player. Left alone, they would add
up and lead to generally repellent behaviour; Nevertheless,
the transfer empowerment in the coupling (Fig. 6b) makes
the companion maintain spatial proximity, while not blocking
the player whenever possible. It will consequently prefer the
corners around the player and either go ahead or follow.

Fig. 7a, showing companion empowerment for different
companion positions, highlights a shortcoming in the initial
formalism: Here, low values between companion and player
illustrate that the player can occasionally be perceived as

(a) Player empowerment, given
companion positions, n=2.

(b) Companion-player transfer
empowerment, n=2.

Fig. 6: 3rd scenario. The companion is reflected as an impediment
to movement in the player’s empowerment. Once coupled, it makes
the companion seek proximity off the player’s axes.

(a) Health-Performance Consis-
tency

(b) Health-Performance Consis-
tency and Minimal Synchronicity

Fig. 7: 3rd scenario. Without applying the trust function, the player
will be reflected as thread in the companion’s empowerment.

a threat. This is the case because the companion considers
scenarios where the player’s actions would harm it as feasible
as any other, and weights them equally in the calculation of
expected empowerment. As a consequence, the companion
might e.g. “flee” from the player, preferring not to stay within
their shooting range. We suggest that this behaviour is unnat-
ural for the interaction of a supporting agent and one which
benefits from this support and its continuity. In general terms,
it appears necessary for companion-like behaviour to emerge
that player and companion realise trust, in terms of not con-
sidering actions from their ally which threaten their existence
significantly. We consequently applied a correction function
to the action transition probabilities after the calculation of
empowerment, in order to remove actions counteracting such
trust from the expected empowerment calculation. Actions are
included in the trusted set A?

P ⊆AP as follows:

a∈A?
P ⇔¬

(
p(st+3|st+2, a)>τ ∧ EC(st+3)=0 ∧ EC(st+2)>0

)
The function removes player actions which reduce the com-
panion’s empowerment to zero with probability τ>0. The
companion therefore still considers player actions which are
unlikely to be fatal, but might benefit the player significantly.
Not only the player, but also the enemies could decrease the
companion’s empowerment to zero. In order to not confuse
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Fig. 8: 4th scenario: Companion and player are threatened simultaneously. Successive moves from left to right: the companion escapes its
own death, rescues the player, and finally defends itself. Left: coupled empowerment, for n=2. Arrows indicate shooting.

both effects, we calculate and compare companion empow-
erment before and after the player performed. Applied to
the previous scenario (Fig. 7b) the expected empowerment
of remaining in the player’s shooting range would increase,
making this action more likely to be performed. It also only
applies when agents are close to death, i.e. empowerment can
actually be decreased to zero in a single step. We will assume
the modification to be present in the following scenarios. Our
observations were documented in a video available online2.

D. Duty 3: Ensure Own Integrity

We demonstrated earlier that the companion will protect
the player from threats. Various earlier studies ([18], [24])
showed that empowerment maximisation makes agents death-
averse, allowing the NPC to defend itself against threats. In our
fifth scenario, we look at a more complex dilemma addressing
both the duties to protect the player and itself: What happens
if companion and player are threatened at the same time?
More specifically, what happens if the player might only be
harmed, compared to the situation where it might be killed if
the companion did not react immediately?

Fig. 8 illustrates the outcome of the first case by means of
a series of movements. The first image in the series shows
the coupled empowerment in the initial situation. Here, the
dark area between the companion and the enemy on the left
renders the latter as a threat, while the white area towards
the other enemy highlights the companion’s potential to save
the player from harm. The following images illustrate that the
companion will first escape from the enemy on the left, while
accepting that the player will be harmed. It will then kill the
player’s enemy before the latter kills the player. The remaining
enemy and companion follow each other, until the companion
eventually kills the enemy to save its own existence.

In the second case, the initial situation is the same, but the
player’s health is set to one. For the default parameter config-
uration and alphaP >0.5, the companion will sacrifice itself
to rescue the player from death, thus fulfilling the hierarchy of
duties outlined earlier. A video with both scenarios is online3.

V. DISCUSSION

Our experiments provide evidence that CEM enables the
emergence of companion-like behaviour. We proposed to
extend the formalism with a consistent relationship between

2Video on duty 2 (Support the Player): http://y2u.be/6g9qoa5BdwU
3Video on duty 3 (Ensure Own Integrity): http://y2u.be/z3gZ0iGE0wg

an agent’s fitness indicator, e.g. health, and its performance.
This modification represents a heuristic when the NPC does
not have a sufficiently large lookahead n. It thus reduces
computational complexity, but is not necessary for supportive
behaviour to emerge. Our trust function represents a minimal
case of coordination in anticipation, which complements the
coordination in the agent’s policy established by the CEM
principle. In contrast to health-performance consistency, we
suggest that coordination in anticipation is strictly necessary
for supportive behaviour, and that generalising trust to both
negative and positive effects on player and companion would
result in more fine-tuned, supportive behaviour. We therefore
propose to weight the likelihood of actions gradually according
to p(a)∝∆Es in future implementations. Coordination must
be extended into the calculation of empowerment itself, in
order to create more reliable biases for the policy. Learning
the actual distribution of actions as part of player modelling
would also contribute significantly to coordination, and speed
up calculation by pruning the search tree.

We fixed the parameters of αP , αC , αT to allow for sensible
behaviour across all scenarios. This exact configuration might
not work in an arbitrary game; We therefore suggest two
alternative solutions: Looking closely at the companion duties,
we claim that ensuring its own and the player’s integrity
emerges from general player support. We could translate this
hierarchy into the policy, and consequently choose actions pri-
marily to maximise player empowerment, followed by transfer
and companion empowerment. Alternatively or in addition,
we propose to evolve the NPC’s parameters by means of
automated play-throughs with a general game-playing agent.

Our goal was to investigate the richness of behaviour
induced by the CEM principle, and we consequently abstained
from any unnecessary constraints. Employing this principle in
an actual game might nevertheless require explicit constraints
to meet two industry requirements: predictability and perfor-
mance. Empowerment as an intrinsic motivation allows for
maximum adaptivity and flexibility in NPCs, but as a con-
sequence might trigger surprising behaviour. If predictability
is a strict requirement, we can fix the behaviour emerging
from CEM before deployment, or use the formalism as a
mere intuition pump to assist designers. Alternatively, we can
define illegal behaviours as constraints on top of the policy,
if the designer favours surprisingness over adaptivity. Such
explicit constraints can also help in decreasing computational
complexity, by pruning the search tree. Empowerment can be
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approximated and serve as tie-breaker to increase behavioural
variety. Optimisation methods allow for larger lookaheads,
and thus more behavioural complexity. Existing optimisations
use Monte-Carlo sampling [21], the information-bottleneck
method [18] and deep neural networks [19].

VI. CONCLUSION & FUTURE WORK

We formalised and evaluated the principle of coupled em-
powerment maximisation (CEM) to design an intrinsically
motivated NPC capable of companion-like behaviour. We
started with the raw formalism, and successively added modifi-
cations which generalise across the scenarios. Our experiments
show that CEM establishes a sufficiently general frame for
companion-like behaviour by inducing the player’s goal into
the companion’s policy, making it unnecessary to specify the
NPC behaviour explicitly at design time. Given our exper-
imental evidence and the universality of the formalism, we
hypothesise that the principle generalises to a wide range of
game scenarios and genres.

If this proves correct, the flexibility and adaptivity of
CEM could make NPCs fit for the most recent challenges
in the games industry and academic research. It could allow
industry to save efforts and reduce costs of manually authoring
NPC behaviour, especially in games with a strong focus
on procedurally generated content. Even if a game relies
strongly on scripting, our formalism can help in establishing a
default mode of interaction with the player and other agents.
In automatic game evolution and rapid prototyping, NPCs
driven by CEM will allow us to stretch the parameter space
and search regions where pre-defined NPCs would break. It
could enhance research in computational game creativity, by
increasing novelty and surprisingness in NPC behaviour, and
serve as cornerstone in the automatic generation of complete
games, which presently does not incorporate NPCs. Given
these developments, we hope to see NPCs soon in general
game playing competitions.

We plan to expand this research in three directions. First,
we want to investigate how well the principle generalises by
changing the mechanics and increasing the complexity of our
testbed. We particularly plan to look at shared resources such
as health packs or ammunition, additional actions which might
complement with the player’s skills, and more sophisticated
mechanics such as traps or door openers. A second potential
branch of future research concerns human player experience.
We are interested in evaluating qualitatively how enjoyable it
is to play with our companions, especially in respect to the
player’s perception of agency. We suggest that empowerment
relates closely to agency [11], and that varying the policy
parameters might affect the player’s locus of control, and
the perceived “character” of the NPCs. Finally, we want
to investigate how well this principle can be reversed to
generate enemy NPCs, demonstrating non-obvious ways to be
antagonistic. All branches will require more work in reducing
computational complexity and improving coordination.
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Abstract—We consider the problem of generating compact
sub-optimal game-playing heuristics that can be understood
and easily executed by novices. In particular, we seek to find
heuristics that can lead to good play while at the same time
be expressed as fast and frugal trees or short decision lists.
This has applications in automatically generating tutorials and
instructions for playing games, but also in analyzing game design
and measuring game depth. We use the classic game Blackjack
as a testbed, and compare condition induction with the RIPPER
algorithm, exhaustive-greedy search in statement space, genetic
programming and axis-aligned search. We find that all of these
methods can find compact well-playing heuristics under the given
constraints, with axis-aligned search performing particularly well.

I. INTRODUCTION

Much artificial intelligence and game theory research is
focused on quickly finding optimal moves in games; however
discovering optimal moves is often not practical for human
players. Novices look for ways to understand basic concepts,
players may have a limited amount of information in their
working memory, experts may try to trick their opponents
using gambits or other risky moves, and most games are
just too complicated for humans (or machines) to evaluate
in real-time to make optimal moves. In this paper, we focus
on algorithmically generating simple introductory heuristics
for novice players.

Nonetheless, novices are not the only types of players who
use simplified models to make decisions. Instead of humans
acting as purely rational agents making optimal decisions,
the behavioral economic theory of bounded rationality claims
that people make decisions based on a limited amount of
available information and decision-making time [1], [2]. The
process of making best guesses instead of optimally rational
decisions is called satisficing. By using simple heuristics to
make decisions, accuracy can actually improve over more
complicated algorithms because simple guidelines are easier
to execute without errors [3].

Teaching beginners a good simple strategy for a new game
can be a challenge but essential for enjoyment of the game.
Winning a match gives a sense of pleasure, but learning how to
play and improving can lead to a sense of accomplishment [4].
A game in which it is difficult to learn basic strategies may
be overwhelming for new players; a game in which high-
performing strategies are easy to come up with may not be
entertaining in the long run. Strategies that lead to moves that
are effective, simple to execute, easy to remember, and allow
the player to further improve are ideal. Examples of simple
heuristics for well-known games include playing on the middle

This work was done with the support of CAPES, Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior - Brazil.

and corners before the sides in Tic-Tac-Toe, while in Chess a
popular heuristic is learning the relative value of the pieces or
simple opening moves to begin the game.

Many well-respected games allow the player to “climb
a heuristic ladder” in which they learn deeper and more
complicated strategies [5]. The length of the heuristic ladder
can give a sense of a game’s depth. Strategies used by beginner
players at Chess may be very different from those used by
professionals. Players look for others of the same skill level to
play against, and as they gather more experience their gameplay
improves leading to more sophisticated and effective moves.
Strategies that once looked overwhelming and confusing can
become accessible. Games such as Chess and Go have such a
high-dimensional game state space that they permit strategies
only accessible to players of significantly higher skill levels,
measurable in Go by the Kyu and Dan rankings and in Chess
by Elo and Titles. On the other hand, easier games like Tic-Tac-
Toe are more accessible for new players for having relatively
simple and effective moves as a result of a low-dimensional
space of strategies. Players of Tic-Tac-Toe don’t need years
of training to improve their strategies to reach an optimal
strategy; therefore they usually stop playing it after learning
or discovering the optimal strategy as there is no longer any
reason to learn and improve.

A Fast and Frugal Tree (FFT) is a particularly good form
of human-usable heuristic and is commonly used in bounded
rationality theory. FFTs are easy to process and in practice have
very good performance over more complicated algorithms [6].
A FFT is a type of binary decision tree where at each decision
node, one path leads to a terminal action and the other path
either leads to a fast and frugal sub-tree or a default action,
as shown Figure 1. These trees can also be implemented as
series of if/elseif/else statements or as a decision list [7], [8].
In this paper, we generate FFTs that can be used by beginners
for effectively playing the game of Blackjack.

In this work we describe some techniques to generate easy to
understand and effective fast and frugal heuristics. We evaluate
and compare the results produced by the various methods.
Our test case game is Blackjack, as a powerful heuristic called
Basic Strategy is already known for the game. This allows us to
verify that our results agree with existing theory on Blackjack
[9]. Additionally, Blackjack is a two player game where the
second player (dealer) must always play by a pre-determined
algorithm only after the first player has completed their actions
– this makes it easier to analyze than games where both players
take turns and are more free in their action selection.

Expert agents to efficiently play games have been explored
for many games, including Chess [10], Othello [11], Check-
ers [12] and Go [13]. These agents are meant to win as often as
possible given an efficient amount of computation, and in many
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Condition 1

Action 1 Condition 2

Action 2 Condition 3

Action 3 Default

True

True

True

False

False

False

Fig. 1. Fast and Frugal Trees are a type of binary decision tree used in
bounded rationality theory. They are effective and easy to learn heuristic for
humans. In this paper, we generate fast and frugal trees – also known as
decision lists – for beginning strategy for Blackjack.

cases they are able to compete on the level of world champion
human players. The game playing heuristics we introduce in
this paper are of much lower skill level as we expect a trade-off
between performance and simplicity. The closer these simple
heuristics get to optimal play in terms of expected value, the
less need a player has to improve, and thus could possibly be
used as a metric to estimate the potential depth of a game.

Evolutionary algorithms are especially effective at devel-
oping strategies for playing games at a high-performing
level. Genetic Programming was used to evolve players for
traditional adversarial board and card games such as Chess
endgame [14], Lose Checkers [15], Backgammon [16] and
Poker [17]. Adversarial video games such as Core War [18]
and Robocode [19] incorporate evolved agents. Other work on
evolving strategies include: Evolution of neurons for a neuro-
network using reinforcement learning to generate controllers
capable of playing levels on a Super Mario Bros clone [20],
using genetic programming to create players for a solo variant
of the game Pong [21], evolving agents to play the game
Pac-Man [22] and evolving controllers with general driving
skills [23]. Blackjack strategies have been evolved using
strategy tables [24], genetic programming trees [25], and neural
networks [26], [27] but these were focused on improving expert
play, not focused on simple guidelines for novices. Blackjack
AIs have been used to model and predict human gambling
behaviors [28], in particular the ways that humans process and
recall information [29].

Similarly to Hyper-heuristics [30] we search in heuristic
space, however we only search for novice-friendly heuristics
for a single problem, instead of switching between heuristics.

In the following sections, we first describe the rules of
Blackjack and the Fast and Frugal Tree format we use for
generating novice heuristics. The next four sections each
describe a particular method for generating compact heuristics,
as well as the results from applying these algorithms and
heuristics to Blackjack. Finally we discuss the takeaways of
this comparative study, as well as the prospects for generalizing
the method to other games.

II. BLACKJACK

For evaluating different methods for generating fast and
frugal heuristics for novice players, we selected Blackjack
as a study case. Blackjack is a well-known gambling game
played all over the world. It uses one or more standard 52
card decks, but 8 decks is typical in modern casinos. In this
paper we assume an infinite number of decks to avoid issues
with counting cards or distributional effects caused by drawing
without replacement.

Blackjack is played against a dealer. The player tries to build
a hand of cards that beats the dealer’s hand, without going
over 21 points. The game starts with a player betting and then
two cards are dealt to the player while the dealer gets one
card face down and one face up. Play proceeds with the player
making all their moves followed by the dealer.

The player has 4 actions to choose from: hit, the player
receives the next card from the deck; stand, the player stops
and plays proceeds to the dealer; double down, the player
doubles their bet, receives exactly one more card and then
plays proceeds to the dealer; and split, the player splits their
two cards into two new hands and the player matches the initial
bet for the new second hand. A player can only split when
they have 2 cards and they are of the same value. The player
loses immediately if they goes over 21 points, called a bust.
After hitting or splitting, the player can continue to make more
actions until they bust or stand.

Cards in Blackjack are worth their face value, independent
of their suit, with the exception of the Jack, Queen and King
which are all worth 10 points and the Ace which is worth
either 1 or 11. The Ace takes on the value of whichever makes
the hand worth the most amount of points without busting. If
the hand contains an Ace that can still change value from 11
to 1 it is called Soft.

After the player made all their moves for a hand, play
proceeds to the dealer. The dealer plays his moves following
an algorithm: they hit while the total amount of points in their
hand is below 17. When they reaches 17 or more they stand.
If the dealer’s score exceeds 21 the dealer busts and the player
wins the hand (if they have not already busted).

There is one special case: when a hand is composed by an
Ace and one other card that is worth 10 points it is considered
a Blackjack. A Blackjack beats any other hand of 21 or less,
except another Blackjack, which results in a tie.

In Blackjack the dealer, who plays for the casino, has the
advantage over the player. That mainly comes from the fact
he plays last and so the player can lose the game by busting
without the dealer ever having to make a move. Although
the game has an element of randomness in the card drawing,
Blackjack has some skill [31]. Strategies for playing the game
to reduce the dealer’s advantage go from what is called Basic
Strategy [9] or Optimum Strategy [32], which closely relates
to the work we do in this paper, to more complex such as card
counting, which we do not address as it is not for novice play.

The Basic Strategy shown on Figure 2 determines the best
move for the player over the hand of the player and the card
the dealer is showing. Special cases occur when the player
holds an Ace or a hand that can be split.
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Player Hand
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 A,2 A,3 A,4 A,5 A,6 A,7 A,8 A,9 A,10 2,2 3,3 4,4 5,5 6,6 7,7 8,8 9,9 10,10 A,A

Dealer
Card

2 h h h h h d d h s s s s s s s s s 2 h h h h h s s s s 2 sp sp h d sp sp sp sp s sp

3 h h h h d d d h s s s s s s s s s 3 h h h h d d s s s 3 sp sp h d sp sp sp sp s sp

4 h h h h d d d s s s s s s s s s s 4 h h d d d d s s s 4 sp sp h d sp sp sp sp s sp

5 h h h h d d d s s s s s s s s s s 5 d d d d d d s s s 5 sp sp sp d sp sp sp sp s sp

6 h h h h d d d s s s s s s s s s s 6 d d d d d d s s s 6 sp sp sp d sp sp sp sp s sp

7 h h h h h d d h h h h h s s s s s 7 h h h h h s s s s 7 sp sp h d h sp sp s s sp

8 h h h h h d d h h h h h s s s s s 8 h h h h h s s s s 8 h h h d h h sp sp s sp

9 h h h h h d d h h h h h s s s s s 9 h h h h h h s s s 9 h h h d h h sp sp s sp

10 h h h h h h d h h h h h s s s s s 10 h h h h h h s s s 10 h h h h h h sp s s sp

A h h h h h h h h h h h h s s s s s A h h h h h h s s s A h h h h h h sp s s sp

Fig. 2. The Basic Strategy table. s=stand, h=hit, d=double down and sp=split. By our definition, the table has a fitness of 0 (expected loss of -0.0051875).

Despite being simple to read, the Basic Strategy has several
levels of granularity and so it can be hard to remember all
possible scenarios. Additionally, referring to the card while
playing is allowed but error prone, especially for beginner level
players. In the next sections we present several methods for
generating simple novice level heuristics for Blackjack.

III. HEURISTIC REPRESENTATION

The simple human-playable heuristics we generate can
be represented as fast and frugal trees, decision lists, or
as a series of if/elseif/else statements. For compactness, we
use the if/elseif/else format for this paper but they are all
equivalent. The heuristics are composed of any number of
condition/action pair and a default action. Each condition/action
pair is represented as if/elseif-statements. Conditions are formed
of one or more clauses that must all be true for a condition
to be true. The default action is taken if all the conditions are
not satisfied, and is represented by an else-statement.

Each clause is permitted to analyze Ppts, the total number
of points currently held by the player, and Dpts, the number
of points on the dealer’s visible card. Ppts can be compared to
πlower and πupper, parameterized lower and upper bounds for
Ppts. δlower and δupper are parameters for lower and upper
bounds for the clauses matching Dpts.

Two conditional boolean statements can also be checked,
canSplit and isSoft. If a player’s hand has two cards and
they are both of the same value, canSplit is True, False
otherwise. If there is still an Ace in the player’s hand that can
change value, isSoft is True, on any other case it is False.

With such, our heuristics are formed as a set of statements
with the following structure:

if CONDITION 1 then ACTION 1
else if CONDITION 2 then ACTION 2
else if ... then ...
else DEFAULT ACTION

where each condition is formed by conjoining together one or
more clauses selected from πlower ≤ Ppts, Ppts ≤ πupper,
δlower ≤ Dpts, Dpts ≤ δupper, canSplit, not canSplit,
isSoft and not isSoft.

We define the complexity of a heuristic by summing up the
total number of clauses plus the number of actions plus 1 for
the default action. This coarse definition does not take into
account that smaller numbers might be easier to memorize

than longer ones, or some orderings of conditions might be
easier to recall. However, our definition allows us a simple
way of comparing more complex heuristics with simpler ones.

We define fitness to be the expected value of the heuristic
minus the expected value of Basic Strategy.

IV. METHODS FOR FAST SIMULATION

In order to evaluate the quality of a heuristic, we need to
test it against a large number of possible hands. We are thus
incentivized to make our simulation run as fast as possible.
We do this by (1) precomputing as many results as possible
and (2) parallelizing the calculation.

Dealer will act only after having complete information of
what the Player’s actions have been. Therefore, given (1) the
final sum of the Player’s cards, (2) assuming an infinite deck
(i.e. choosing with replacement) where the distribution of cards
is the same for every draw, and (3) a fixed algorithm that
the Dealer must follow on their turn, we can precompute all
possible plays for the Dealer once the Player has finished their
turn. This precomputation allows us to store the expected value
of a Player’s final score given the Dealer’s visible card.

We calculate the table of expected values as follows. Given
every possible hand of cards for the Dealer and final score
for the Player, there are a total of 79,489 situations that might
occur. For each possible hand, we know if the game is a win
(+1), tie (0), or loss (-1) given a Player’s final score. For each
final score for the Player and face-up Dealer card, we calculate
the expected value by summing the number of wins minus
losses, dividing by the total number of possible hands given
that first card of the Dealer. We store these expected values
in a table. Instead of playing the Dealer hands, we just look
up the expected value from the table and use the precomputed
result of stopping with that player score against the dealer’s
visible card. Double downs need to multiply the expected value
by 2, and Blackjacks for the Player count as 1.5 wins instead
of 1. Splits require special handling, because the outcome of
the Player’s two hands are not independent. Given the Player’s
two final scores from the split, we calculate the expected value
of the hands together and store this in a separate table.

Unfortunately, we can’t precompute the Player’s hands
because the Player is able to stop at any time which gives
rise to too many possible hands to iterate through (and some
of them are extremely unlikely to occur, such as a hand with
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ten 2’s and one ace). However, we can be sure to deal out all
possible starting 2 cards for the Player and 1 starting card for
the Dealer to ensure the simulations cover a wide range of the
most likely outcomes. For each of these 13*13*13 = 2,197
starting conditions, we simulate between 100 and 500 games,
depending on the speed and accuracy required.

Because every game is independent, we can parallelize
the simulation across multiple cores. We use the python
multiprocessing library to split up the calculation across cores
on a single computer. In addition, we use Cython to compile
the simulation steps into faster C++.

Finally to avoid sampling errors where running equivalent
strategies would give different results depending on which
cards were drawn, we use the same seed for every simulation.
This ensures that equivalent strategies will get exactly the same
fitness every time we run the simulation.

V. INDUCTING HEURISTICS FROM THE BASIC STRATEGY

Following our expressions format we can generate decision
lists [7] as our heuristics, as long as we have a database
to extract our expressions from. For every possible initial
configuration of the game, between the player’s and dealer’s
hands, we simulated 200,000 games of Blackjack for each of
the possible moves for the player’s hand. Starting from the
games with the higher starting hand value and working in
descending order to the games with the lowest value, we tried
to generate a table analogous to the Basic Strategy. From the
average score of the playouts, the move with highest score was
selected. By building the table in descending order of points,
we could reference previous results to decide the next action
to take after a move draws a new card. The database has 550
entries. We compared the results to the moves that would have
been picked by the Basic Strategy. Both pick the same move
for 94% of the entries in the data. The case in which they
differ were mostly when picking split as a move with the Basic
Strategy. With further analysis, we could tell that increasing the
number of simulations would make the diverging data points
converge to the Basic Strategy selections. For this reason, we
decided to generate a database in the same format, but using
the move selection according to the Basic Strategy.

To extract the heuristics from the database we use the
Repeated Incremental Pruning to Produce Error Reduction
(RIPPER) [33] algorithm. The algorithm uses a grow and
prune approach, followed by a revision stage. The database is
split into two, 2

3 is used in the grow step and the other 1
3 in the

prune step. For each class in the data, from the least prevalent
to the most, conditions to classify that class are grown from
the database by adding clauses until maximum information
gain is reached. Pruning is then done on the condition to
maximize a target function. The revision stage then analyzes
each condition, in the order they were learned, and generate
two new candidates for it. One, the replacement, is obtained by
growing and pruning a new condition, where pruning looks to
minimize the error on the set where the condition was replaced
by this new candidate. The other, the revision, is generated
by greedily adding more clauses to the condition. Finally a
decision is made based on a heuristic to decide which to keep,

the original condition, the replacement or the revision. To
the conditions a resulting action is added. For Blackjack, the
possible moves represent the classes. The most prevalent class,
in this case hit, is used as the default move.

if canSplit and 11 ≤ Ppts ≤ 18 and Dpts ≤ 6 then
SPLIT

else if canSplit and isSoft then SPLIT
else if canSplit and Ppts ≤ 6 and Dpts ≤ 7 then

SPLIT
else if canSplit and Ppts ≤ 8 and 5 ≤ Dpts ≤ 6 then

SPLIT
else if canSplit and 13 ≤ Ppts ≤ 18 then SPLIT
else if 10 ≤ Ppts ≤ 11 and Dpts ≤ 9 then

DOUBLEDOWN
else if isSoft and Ppts ≤ 18 and 5 ≤ Dpts ≤ 6 then

DOUBLEDOWN
else if 9 ≤ Ppts ≤ 11 and 3 ≤ Dpts ≤ 6 then

DOUBLEDOWN
else if isSoft and 17 ≤ Ppts ≤ 18 and 3 ≤ Dpts ≤ 4
then

DOUBLEDOWN
else if 17 ≤ Ppts then STAND
else if 10 ≤ Ppts and Dpts ≤ 6 then STAND
else HIT

Fig. 3. The heuristic generated using the RIPPER algorithm. The set correctly
classified 92% of the entries in the database used. It has a fitness of -0.0134.

The results are shown in figure 3. The algorithm came up
with a set of 11 statements, plus the default move. To simplify
readability of the statements, we do a post-processing of the
results: reduce the set of clauses in the conjunctions of a
condition, if there are clauses whose coverage is already part
of another clause in the same condition; reorder the clauses for
readability, ordered from lower to upper bound coverage. Since
one of our goals was to reduce the granularity of heuristic
complexity in respect to the basic strategy, we believe that
the algorithm successfully achieves that up to a point. The
set generated misclassified 8% of the entries, meaning that it
chooses a different move that contained in the database. By
looking at the proximity in fitness, the misclassified scenarios
have a very low impact on the outcome.

In terms of generating novice level heuristics, the one
inducted by RIPPER is unwieldy. The conditions containing
canSplit and isSoft together with the number of statements
appears to be convoluted for a beginner. To address such, we
decided to remove isSoft from the possible clauses and run the
algorithm again, but we were still left with 8 rules and too
much complexity. So we ran the algorithm once more removing
both isSoft and canSplit from the possible clauses. Figure 4
shows the new heuristic, which is a lot closer to our goal,
having cleaner conditions and almost half the total statements.

As the algorithm goes, it looks to generate conditions to
classify members of each class, from the least prevalent to
the most. Since the statements that make up the heuristic
the algorithm generates start from least used moves, the later
statements have much more impact on improving the score
for the player. Since the heuristic generated by RIPPER has
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if Ppts ≤ 4 and Dpts ≤ 7 then SPLIT
else if 10 ≤ Ppts ≤ 11 and Dpts ≤ 10 then DOUBLEDOWN
else if 9 ≤ Ppts ≤ 10 and 4 ≤ Dpts ≤ 6 then

DOUBLEDOWN
else if 13 ≤ Ppts and Dpts ≤ 6 then STAND
else if 17 ≤ Ppts then STAND
else if 10 ≤ Ppts and 4 ≤ Dpts ≤ 6 then STAND
else HIT

Fig. 4. Using the RIPPER algorithm the heuristic generated from our database
without canSplit and isSplit. The set correctly classify 83% of the entries
in the database used. This heuristic has a fitness of -0.0234.

its coverage dependent on the order of the conditions found,
rearranging their positions would change the outcome. We
believe that having a heuristic in which the statements are
presented in descending order of their positive impact on the
gameplay would lead to a more flexible heuristic, i.e. if the
number of statements in the heuristic is too overwhelming
for a novice player, we could discard the bottom ones and
have a tighter set size with effective fitness value. We also
wanted to test the hypothesis of whether a heuristic generated
in such fashion could outperform the decision list generated
by RIPPER using a smaller number of statements, since we
know that playing the Basic Strategy was more profitable.

VI. EXHAUSTIVE-GREEDY SEARCH

To produce a heuristic with the most impactful statement
in each step we decided to use a exhaustive-greedy search
algorithm. After playing the game for each of the possible
statements, it picks the one that achieves the best average
score. The algorithm starts with just the default action and
with each new iteration the candidate statements are tested
at the bottom of the current set, before the default move.
Each selected statement is appended right before the default
action. We wanted to create a set of statements that could be
flexible, so that we can reduce the complexity by trimming the
statements on the heuristic while trying to have low impact on
its fitness. We then append the rules to enabling removing the
later statements without impacting the previous.

The algorithm tries different default actions when searching
for a heuristic. Having double down or split as default moves
did not generate statements with good fitness as they were a
much smaller part of the strategy when compared to the two
other moves. This lead to a lengthier set, as statements are
added to cover both hit and stand. The 1 statement heuristic
found proved hit to be a better default action for the algorithm
we were using. Figure 5 shows the same 1 statement heuristic
found with hit and stand as the default action.

if 16 ≤ Ppts then STAND
else HIT

if Ppts ≤ 15 then HIT
else STAND

Fig. 5. The first statement found using exhaustive-greedy search with hit and
stand as default moves. Fitness is -0.0546.

Since the exhaustive-greedy search algorithm added state-
ments to the end of the set, the first statement found had a

great impact. The 1 step heuristics found picked the same
moves in every setup, but the space left for the next ones to
be found is very different. The stand default move set could
only grow new statements for when the player had more than
15 points, which is a much more limited space than the one
where player has less than 16 points. And when looking at the
Basic Strategy we can see that the higher hand value strategies
are composed mostly of stand since the chances of busting are
very high. With such conditions, we decided to keep hit as the
default action and reduce the search space that the algorithm
had to explore. Since RIPPER also has the same default move,
it is also easier to compare the heuristics generated.

To run the algorithm we needed to generate all possible
statements to evaluate. When generating them, we can apply
domain knowledge to reduce the search space: canSplit
only needs to be called if the move being targeted is split
and we don’t need to constraint the player points by odd
numbers in that scenario. Generating all statements to cover
all possible combinations of conditions and moves, we have
9,405 statements for stand, 9,405 for double down and 3,025
for split, for a total of 21,835 different statements. Because the
search space is already this large, we decided not to generate
heuristics that use isSoft, as it would result in doubling the
number of possible statements, for what it seemed to be a
small gain in fitness. Figure 6 shows the heuristic found.

if 16 ≤ Ppts then STAND
else if 9 ≤ Ppts ≤ 11 and Dpts ≤ 8 then DOUBLEDOWN
else if 13 ≤ Ppts ≤ 15 and Dpts ≤ 6 then STAND
else HIT

Fig. 6. Greedy search selecting the highest average scoring statement. The
algorithm reached a local maximum on this 3 step heuristic. Fitness is -0.0302.

When comparing both, the RIPPER simpler set, shown
on Figure 4, outperforms the exhaustive-greedy search by
0.007 average fitness score. That result comes from increasing
complexity: the RIPPER heuristic has 3 more statements.

Greedy search for the best heuristic revealed an interesting
aspect of the game: if we had a single step to follow it would
be for the player to stand when having 16 points or more.
That contradicts a first impression from looking at the Basic
Strategy that the player should stand on 17 or more and on
16 if the dealer has 6 or less points, hit otherwise. Following
the nature of our decision structure, since we are only looking
at a 1-statement heuristic, what the greedy selection shows is
that, if we look at only the player points, when having to make
a choice of which move to make at 16 points, in average, is
better to stand than to hit. This is specially interesting since
16 is considered the worst hand in Blackjack [34].

Another interesting result was how fast the local optimum
was reached. The contender for fourth statement had no impact
since its condition was already covered in the set. As a result
of such and the observation that a heuristic that would more
closely resemble the Basic Strategy could have a better average,
we believe that greedily searching for a heuristic is very prone
to getting stuck on local optimums. In order to get better results
from searching we decided to expand our greedy approach.
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VII. EXPANDING THE EXHAUSTIVE-GREEDY SEARCH

Keeping the exhaustive search approach, we try to generate
a new heuristic by making the greedy aspect more expansive.
For that, we decided to no longer pick only the best statement
in each step, but instead register the top 5 ranking statements
for each step. On every iteration of the algorithm works in the
same fashion as exhaustive-greedy search, but now the 5 top
results are store and iterated upon separately. After the last
iteration we take the set with the best average score in the last
step. Figure 7 shows the heuristic found.

if 17 ≤ Ppts then STAND
else if 13 ≤ Ppts and Dpts ≤ 6 then STAND
else if 10 ≤ Ppts ≤ 11 and 3 ≤ Dpts ≤ 9 then DOUBLE
else HIT

Fig. 7. Using a greedy exhaustive search and considering the top 5 average
scoring statements. The top resulting heuristic the algorithm found is shown.
This set is a local maximum. This heuristic has a fitness of -0.0247.

Searching over the 5 best result shows that the heuristic
found by the greedy algorithm was a local optimum, despite
also being subject to such. The heuristic found outperforms
and is as simple as the one found by exhaustive-greedy, and
is also closer to the Basic Strategy. The first two statements
found are exactly on par with the Basic Strategy, but looking
at the bottom, we can see that, to match the Basic Strategy, it
needed to also include double down when the dealer is showing
a 2. That result comes from the fact that the case of the dealer
showing a 2 against a player’s hand of 10 or 11 is present in
only a very small number of games, if at all.

Another downside is that the new heuristic found was another
local optimum. Running another loop of the algorithm finds
no new statements, at the top 5, that cover a new scenario. We
can see from looking at the Basic Strategy layout that there
are other cases the set does not cover.

A better search algorithm would be needed to look for the
best n-statement heuristic algorithm. By limiting the size of
our search space by removing isSoft there is still a very
large search space. An exhaustive search of the full space
would guarantee the optimum heuristic, but would also be very
computationally expensive, even by pruning the statements
that do not further cover new elements. To look further for a
better strategy for generating simple heuristics we then turn to
algorithms that employ different search strategies.

VIII. AXIS-ALIGNED SEARCH

Another way to search the space of possible heuristics is to
use an axis-aligned search algorithm, modifying each parameter
in the conditions individually along each single dimension. For
example, for a 1-condition heuristic, we would individually
test all lower bounds βlowerfor Ppts keeping all other values
fixed, then all upper bounds βupper keeping all other values
fixed, etc. also exploring the lower and upper bounds for Dpts

and all actions for the condition and default action. Because
we do not have a large number of possible values for each
parameter (between 3 and 21 depending on the parameter), we
can search all values along each single dimension – on the

order of around 100 different heuristics to test for a 1-condition
Blackjack heuristic. However, we don’t need to evaluate all of
these heuristics because many of them are equivalent, so we first
pass through and remove any heuristics which are equivalent
to any others. This has the effect of only needing to search
approximately 75 statements per iteration for a 1-condition
heuristic, approximately 210 for a 3-condition heuristic, and
approximately 375 statements per iteration for a 5-condition
heuristic. This axis-aligned search has the benefit that it can
get out of local maximum as long as another maximum exists
anywhere on one of the dimensions holding all other dimensions
fixed. For games where parameters may be too many values to
search completely, one could use importance sampling or local
neighborhood search to find a smaller number of parameters
to choose along each dimension.

The algorithm proceeds as follows. We begin from a random
statement, and find its fitness. We then find all unique statements
along each individual dimension and find their fitnesses. We
take the one with the best fitness and repeat the algorithm from
there. When we find a statement that has the best fitness of any
of its candidates, we terminate and return the best candidate
found, which is a local best but not necessarily a global best.
Because this is not guaranteed to find the global best (as is
also the case for simulated annealing and other optimization
algorithms), we repeat the process several times and return the
best from all runs. We find that axis-aligned search performs
very well, finding some of the highest fitness heuristics for a
given complexity, but it has a high variance and often finds
badly performing ones. It is therefore essential to run several
times. It can also be used as a final touch-up process for other
algorithms to search for any final improvements.

For 1-condition heuristics, axis-aligned search would very
often find the optimal heuristics presented in Figure 5. The
best performing 3-condition heuristic is presented in Figure 8.
Split/Hit refers to the player using the split action when legal,
otherwise they would treat this as a hit. No other algorithm
found this highly performing heuristic, with a high fitness of
-0.0221 especially given its relatively low complexity.

if 17 ≤ Ppts then STAND
else if 13 ≤ Ppts and Dpts ≤ 6 then STAND
else if 10 ≤ Ppts ≤ 11 and Dpts ≤ 9 then DOUBLEDOWN
else SPLIT/HIT

Fig. 8. Starting from random conditions, the best 3-condition heuristic observed
for multiple runs of the Axis-Aligned Search algorithm. The heuristic has a
fitness of -0.0221.

IX. GENETIC PROGRAMMING

Finally, we examined using genetic programming [35] to
find the best decision list strategies at a given complexity for
use by novice players. Our approach is similar to that used in
[25]. We used the DEAP [36] framework for genetic algorithms
(GA), which includes implementations for various types of
stochastic optimization. We experimented with a basic genetic
algorithm as well as (µ+ λ)− ES [37].

We test the population of potential strategies by simulating
13*13*13*500 = 1,098,500 games for each individual. The
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genotype contains the default action and a list of conditions
bounds and actions. Each simple condition is made of four
possible clauses πlower ≤ Ppts, Ppts ≤ πupper, δlower ≤ Dpts,
and Dpts ≤ δupper as described in Section III. Because a clause
is meaningless if πupper < πlower or δupper < δlower, each
condition instead stores 4 positive integers πlower, πupper −
πlower, δlower, δupper − δlower to ensure that upper bounds are
never smaller than lower bounds. During mutation, we ensure
that the ranges are not violated by clamping to sensible values
that can only occur in Blackjack. We also include a boolean for
each clause, that allows the clause to be easily turned on and
off during mutation. For complex strategies that are allowed to
include canSplit and isSoft this adds 3 more variants where
each item can be =, 6=, or don’t care.

The hyperparameters used for controlling the genetic algo-
rithm needed to be tuned depending on the complexity of the
statements that were to be generated. For heuristics with 1
to 3 conditions, we found good results using 30% chance of
modifying each value in a genotype, 20% chance to flip on/off
a clause, 20% chance to shuffle the order of condition/actions,
40% chance to create an offspring with mutation, and 20%
chance to create an offspring with crossover, a population size
of 100, and 30-50 generations. For heuristics with 5 or more
conditions, we found better results by using a 10% chance
of modifying values, leaving all clauses on, and not shuffling
the clauses, and switching to a (µ+ λ)−ES framework with
µ = 20 and λ = 200 for 100 generations.

Our GP did not find as highly optimized heuristics as the
axis-aligned method, but on most runs would find something
adequate. In general, GP seemed to have a smaller variance in
final fitness but did not have the overall best results for a given
complexity. However, we believe that with more generations,
larger populations, and more highly-tuned hyperparameters the
GA would be likely to perform better.

X. DISCUSSION

We used several methods to generate heuristics for Blackjack.
The results show expressions of different lengths, heuristic
complexity and fitness. The different methods also have
different run-time computational complexity. The RIPPER
algorithm is very fast since the database only had 550 entries,
but relies on an existing database of optimal moves. Generating
the database to cross check the Basic Strategy was costly, but
needed to be done only once. Doing exhaustive-greedy search
was costly due to the amount of possible statements, and our top
5 greedy variation was even worse, being exponentially more
expensive for generating more complex heuristics. Genetic
Programming running time is related to the size of the
population and number of generations needed to converge
to a good solution, and requires tuning of hyperparameters.
Meanwhile Axis-Aligned Search searches a much smaller
number of statements, compared to the exhaustive-greedy
searches, but often finds bad performing heuristics given a
bad random starting point. Axis-aligned search will likely pose
problems for games with significantly more parameter space
to search without some tuning.

The results show an interesting relationship between the
heuristics complexity and fitness. Figure 9 shows the com-
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Fig. 9. Comparison of heuristic complexity vs fitness for various heuristics.
The numbers in the graph refer to the corresponding Figure index for the
different heuristics shown throughout this paper. 3 is RIPPER (complex), 4 is
RIPPER (simple), 5 is 1-rule exhaustive-greedy, 6 is 3-rule exhaustive-greedy,
7 is top-5 greedy and 8 is Axis-Aligned.

parison of different runs of each of our algorithms, plotting
the complexity of the heuristic against its fitness. Simple
heuristics do not use the isSoft or canSplit clauses, and
complex heuristics use all possible clauses. This shows that
low-complexity rules can have a large improvement in fitness,
but then smaller gains in fitness require larger increases in
complexity. RIPPER expressions show up as outliers in terms
of complexity, having twice as many causes and actions as most
of the expressions found, but also have the heuristic with the
highest ranked fitness. The highest fitted Axis-Aligned complex
heuristics are half as complex as the top fitted RIPPER, but
have very close fitness. By analyzing the hull atop the fitted
results over the increasing complexity, we can see the trend in
fitness gain is much greater on the lower complexity results.

We can observe the impact of increasing the space of possible
clauses by introducing of canSplit and isSoft leads to a small
fitness gain, but a much higher increase in complexity. The
best heuristics generated with their addition range from 2 to
close to 5 times more complexity.

We believe that our framework can be extended to other
games for generating beginning heuristics, but certainly with
some significant challenges. One of the major challenges is
finding a primitive set of operations to include in the conditions
and actions. For blackjack, these primitives are relatively
obvious and easy to implement (perhaps because we have
the Basic Strategy to refer to) but in other games, even simple
ones like Tic-Tac-Toe, the conditions and actions can become
far more complicated to encode.

For games that have a distinction between tactics and strategy,
we predict that different trees, conditions, and actions would
be required to represent differences between short-term tactical
moves and long term high-level planning. Perhaps a player
would need to first use a FFT heuristic to figure out a high-level
goal to reach, and then another FFT to implement that goal.

Some games have an existing known good strategy, either
obtained through collective wisdom gathered after collectively
many hours, years, or centuries of study and play, or by game
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tree exploration using minimax or Monte Carlo Tree Search.
In this case, using a simplification algorithm such as RIPPER
can make sense. For others, when the game is newly designed
and doesn’t yet have known-good strategies [38] or the output
of a computational creativity game generation system [39],
strategies need to be developed from the ground up, as we do
with the axis-aligned search and genetic algorithm methods.

We plan in the future to confirm that our heuristics are indeed
easy to learn and execute by novice players, by comparing
accuracy and speed at which novices can perform the correct
Blackjack plays given a fixed set of cards. Such a study can
also give us a more accurate complexity measure for clauses.

XI. CONCLUSIONS AND FUTURE WORK

This paper poses the problem of algorithmically generating
compact heuristics that can be easily learned by novice human
players. As an example we used Blackjack, a simple game
for which the optimal strategy is already known but requires a
significant amount of time to learn. We explored four different
approaches to discovering simple fast and frugal heuristics for
novice-level Blackjack. It was found that inducing conditions
from a known strategy table with the RIPPER algorithm
resulted in heuristics that were too large and not much better
than much smaller heuristics. Exhaustive search for expressions
that were linked together with greedy search was found to
be comparatively slow and suffer from the tendency to find
globally suboptimal choices inherent in the greedy search.
Genetic programming and axis-aligned search were both able
to find the desired compact yet effective heuristics. While we
have shown that finding these heuristics is doable for Blackjack,
the challenge of scaling up to games with larger state and action
spaces where optimal play is not already known remains. We
hypothesize that solving this will involve automatic extraction
of relevant behavioral and positional primitives.
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Abstract—In procedural content generation, it is often desir-
able to create artifacts which not only fulfill certain playability
constraints but are also able to surprise the player with unex-
pected potential uses. This paper applies a divergent evolutionary
search method based on surprise to the constrained problem of
generating balanced and efficient sets of weapons for the Unreal
Tournament III shooter game. The proposed constrained surprise
search algorithm ensures that pairs of weapons are sufficiently
balanced and effective while also rewarding unexpected uses of
these weapons during game simulations with artificial agents.
Results in the paper demonstrate that searching for surprise can
create functionally diverse weapons which require new gameplay
patterns of weapon use in the game.

I. INTRODUCTION

Procedural content generation has been used since the 1980s
in the game industry to quickly and computationally efficiently
create elaborate structures such as the dungeons of Rogue
(Toy and Wichman 1980) or the universe of ELITE (Acornsoft
1984). Commercially, procedural content generation (PCG) is
used primarily for two reasons: (a) to cut down on develop-
ment effort and time, and (b) to create unexpected, unique
experiences every time the game is played, thus increasing its
lifetime and replayability value. Due to the former, small teams
of game developers have been able to (procedurally) create
grandiose gameworlds such as those in Minecraft (Mojang
2011) and No Man’s Sky (Hello Games 2016). Due to the
latter, games such as Civilization V (Firaxis 2010) have been
immensely successful in retaining a userbase engaged despite
the lack of e.g. an overarching campaign.

Academic interest in PCG has often used search-based
processes [1] such as evolutionary computation to create game
content which optimize one or more game qualities deemed
important by the designers. To a degree, such gameplay
qualities are required from content in order to ensure the game
being playable and fair between players (e.g. in a competitive
game). On the other hand, a core motivation of commercial
PCG is the element of surprise it can elicit from players.
While the majority of PCG research focuses on creating
one final artifact which exemplifies the desired properties of
its type, there are several attempts at creating a diverse set
of content using e.g. multi-objective optimization [2], multi-
modal optimization [3] and novelty search [4].

This paper is inspired by earlier work on creating sets
of diverse artifacts [5], and applies a recently introduced
divergent search algorithm, namely surprise search [6], [7],

on the task of procedural content generation. In particular, the
goal is generating pairs of weapons for a competitive first-
person shooter game: the two weapons must be usable and
balanced between them, but also exhibit surprising behavioral
properties (i.e. different weapon pairs would allow different
types of gameplay or strategies to emerge). Towards that
end, constraints on usability and balance are satisfied via
a feasible-infeasible two-population approach (FI-2pop GA)
which guides infeasible content towards feasibility [8]. In
the feasible population, however, the weapon pairs evolve
towards surprising behaviors, i.e. behaviors that were not
predicted based on the previous generations. This constrained
surprise search algorithm is shown to create more diverse
content than objective-driven search. Moreover, its behavior
and performance is shown to be different than randomly
assigned fitness scores applied on the feasible population.

II. BACKGROUND

This section outlines the algorithm of surprise search which,
in this paper, is framed within constrained optimization for the
procedural content generation domain.

A. Procedural Content Generation

Compared to the historical use of procedural content gener-
ation in games, academic interest in PCG from the perspective
of artificial intelligence (AI) is relatively recent. PCG research
focuses on expanding the generative algorithms, going beyond
constructive approaches [1] which are carefully crafted scripts
used in the game industry to produce a limited range of content
which is however guaranteed to be playable. PCG research on
the other hand has used many different sets of algorithms, of-
ten revolving around evolutionary computation and constraint
satisfaction, among others. Broadly, evolutionary computation
under the umbrella term search-based PCG [1] evolves a large
population of artifacts towards a certain objective, usually
pertaining to in-game quality. Constraint satisfaction, on the
other hand, uses a carefully selected set of constraints to ensure
that all of the generated content is playable [9].

B. Constrained Optimization and PCG

While it would seem that constraint satisfaction and search-
based PCG are incompatible in terms of design approach, there
have been several attempts to integrate playability constraints
to search-based PCG [10], [4]. Often, the simplest solution is
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to assign a minimal fitness score and kill off the infeasible
individual [3]. In highly constrained spaces, however, this is
not a desirable strategy as most genotypical information is lost
[11]. Indeed, if a population consists only of infeasible results
then assigning a minimal fitness results in random search. In-
stead, constrained optimization often utilizes penalty functions
[12] which reduce the fitness score of an infeasible individual.
Designing a penalty function can become as challenging as the
optimization problem itself, however, as very high penalties
can kill off all infeasible results while very low penalties can
lead to extraneous exploration of the infeasible search space.
A more recent solution to constrained optimization is the
feasible-infeasible two-population (FI-2pop) genetic algorithm
[8], which evolves two separate populations towards optimiz-
ing a problem-dependent objective (in the feasible population)
and minimizing the distance to feasibility (in the infeasible
population). The feasible population contains only individuals
which satisfy all constraints, while the infeasible population
contains individuals which fail one or more constraints; feasi-
ble offspring of infeasible individuals migrate to the feasible
population and vice versa. The benefit of the two-population
approach is that (a) there is no competition between feasible
and infeasible individuals, and (b) any search strategy can
be applied to either the feasible or the infeasible population.
Earlier research on game level generation has explored the
use of novelty search in the feasible population or in both
populations [4], in order to ensure that playable (due to the
constraints) yet diverse (due to the divergent search) game
levels were being produced. The current paper explores the
use of surprise search [7], a recent but promising divergent
search method, on the feasible population for the purposes of
creating balanced but surprising weapons.

C. Surprise search

Surprise search [6], [7] is a new algorithm for evolutionary
divergent search which rewards unexpected — rather than
unseen — behaviors. Surprise search uses a prediction model
to construct the expected outcomes at the current stage of
evolution; when evaluating the actual outcomes in the popu-
lation, it rewards those which deviate from the expected [13].
This mimics a self-surprise process [14], where individuals
who do not conform to the evolutionary trend are selected
and ensuingly create their own trend which new individuals
must again diverge from. The algorithm has been shown to
outperform objective search in deceptive problems and to be
more robust than novelty search in a maze navigation task [7].
Surprise search is composed by two main modules: a predic-
tive model based on past behaviors and a distance formula to
assess deviation from the expected outcomes. Surprise search
uses the prediction model (m) to create a speculative ‘cur-
rent’ population, based on h previous generations; the model
considers a degree of local (or global) behavioral information
(expressed by k). The predictive model is described in eq. (1);
more details about m, h and k are found in [7].

p = m(h, k) (1)

The surprise score, used for selecting individual i in the current
population, is based on the distance of the closest n prediction
points obtained with the prediction model m:

s(i) =
1

n

n∑
j=0

ds(i, pi,j) (2)

where ds is the domain-dependent measure of behavioral
difference between an individual i and its expected behavior,
pi,j is the j-closest prediction point (expected behavior) to in-
dividual i and n is the number of prediction points considered;
n is a problem-dependent parameter determined empirically.

III. METHODOLOGY

The goal of the generative algorithms is the creation of
pairs of usable and balanced weapons which exhibit surpris-
ing behavioral characteristics. The weapons are used in the
commercially successful Unreal Tournament III (Epic Games
2007) game (UT3). Besides its commercial appeal, UT3 has
well-designed game levels and AI modules which allow for
simulations of game matches in order to derive behavioral
properties of the weapons. Weapons in UT3 are already quite
diverse, which allows the genetic algorithm to explore different
sets of parameters such as bouncing bullets, grenades affected
by gravity, or exploding projectiles.

A. Representation & Genetic Operators

In the genotype, each weapon is represented by 11 pa-
rameters with different value ranges and in-game properties
as shown in Table I. Since the generator evolves pairs of
weapons (one per player in a deathmatch FPS game), the
genotype therefore consists of 22 chromosomes, 11 for each
weapon. Evolution is carried out by applying simulated bi-
nary crossover with a 60% probability, and simulated binary
mutation with a 5% probability. These parameters have been
chosen empirically via pre-experimentation conducted in [5].
Simulated binary crossover [15] applies a polynomial proba-
bility distribution (controlled by the maximum and minimum
values of each parameter in Table I) to chromosomes; another
parameter (η = 20 as suggested in [15]) controls how much the
offspring will resemble their parents. This crossover strategy
ensures that the weapon of each player will be a combination
of parameters of weapons used by the same player (i.e.
weapons cannot be assigned to a different player from gen-
eration to generation). Simulated binary mutation performs a
similar modification with a chance of 5% for each parameter in
the gene. Using the same η value, modifications via mutation
depend on the value range of each weapon parameter (e.g. low
η values result in large mutations).

B. Simulations

The two weapons evolved in this scenario are tested by two
AI-controlled agents competing for the highest number of kills
in a UT3 level. Experiments in this paper use the Biohazard
UT3 level, which is small and thus ideal for one-versus-one
matches; moreover, it consists of two separate floors which
makes logging player positions easier. Each player is given
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TABLE I
PARAMETERS OF EACH WEAPON WITH THEIR CORRESPONDING VALUE RANGE AND DESCRIPTION.

Name Value Range Description
Rate of Fire (ROF) [0, 4] Number of bullets shot per second
Spread (Spr) [0, 3] This parameter affects the random deviation of the bullets trajectory: the higher the spread

the less accurate the shooting.
ShotCost (SC) [1, 9] Number of bullets shot at once by the weapon.
Lifetime (L) [0, 100] Amount of time the bullets remain in game when shot.
Speed (Sp) [0, 10000] Speed of bullet when shot.
Damage (Dmg) [0, 100] The amount of damage that each shot deals when it hits an opponent. In case of SC > 1,

each bullet has Dmg/SC damage per bullet.
Collision Radius (CR) [0, 100] Radius of the collision sphere of bullets (for hitting enemies).
Gravity (Gr) [-250, 250] Gravity force applied to bullets: the larger the value, the stronger the g acceleration applied

to the bullet. For positive values, gravity is reversed (the bullet goes upwards).
Explosive (Exp) [0, 300] When a bullet hits a target (opponent, object or wall), it generates an explosion with radius

equal to this parameter. All players within the radius of an explosion receive splash damage
(a fraction of the weapon’s damage depending on distance).

Ammo (A) [1, 999] Maximum amount of ammunition; all ammo packs increase ammo up to this value.
Bounce (B) [0, 1] Boolean value that says if the projectile will bounce when it hits a wall.

one weapon and ammunition as defined in the genotype; if
they pick up any weapon or ammo in the level then the ammo
for their generated weapon increases by the ammo value in the
genotype (i.e. players cannot pick up other weapons, including
the other player’s weapon). This ensures that each player tests
only one weapon: these simulations allow for a comparison in
terms of balance of the weapons, as well as for evaluating their
effectiveness (if it kills the opponent often) and safety (if it
does not result in the wielders shooting themselves). Moreover,
simulations are used to create a map of the death locations
of each player; these act as behavioral characteristics of the
weapons and are used to assess unexpected behaviors in the
surprise search algorithm. Simulations last up to a time limit
of 1200 seconds or until a score limit of 20 is reached in terms
of the total number of kills of the two players.

Since simulations require that AI agents use weapons of
variable quality, the system provides suggestions to the AI
behavior based on each weapon’s parameters. For instance, if
the weapon is a fast repeater (i.e. a rate of fire above 2) the
AI is instructed to use it for long sequences of shots. If its
bullets have a long lifetime, high speed and low spread, the
AI is instructed to use it for long distance shots. Finally if the
bullet has an explosive value above 50, the AI is instructed to
treat it as a splash weapon, which relies less on accuracy.

C. Constraints

There are certain playability requirements for the generated
weapons: balance, effectiveness and safety. Each of these
properties can be evaluated as a scalar value, via heuristics
discussed below, based on simulations between AI controlled
agents. A pair of weapons is considered playable (i.e. feasible)
if each property is above a specific threshold. Moreover, for
infeasible individuals the heuristics can be used to derive the
distance from feasibility with regards to each constraint.

Balance is computed as the Shannon Entropy [16] of the
kills obtained by the two agents:

fb =
1

n

n∑
j=0

(
ki
K
log

(
ki
K

))
(3)

where K is the total number of kills obtained by the two agents
in a simulation, ki are the kills obtained by i-th bot and n is
the number of players per simulation.

Effectiveness is calculated by dividing the total number of
kills obtained in the simulation by the maximum score limit:

fe =
K

Smax
(4)

where Smax is the score limit (Smax = 20 in this study) which
must be attained for the level to be considered completed
before the time limit expires.

Safety is introduced due to initial random weapons being
dangerous to the wielder (due to high explosive values), and its
goal is to make evaluations more robust against noise. Safety
is computed in eq. (5) where the exponent is the number of
suicides (i.e. deaths not scored as another player’s kill):

fs = 0.9D−K (5)

where D is the total number of agents’ deaths in a simulation.
The feasibility constraint is satisfied if fb ≥ 0.9; fe ≥ 1

(i.e. if exactly 20 kills are scored); fs ≥ 0.9 (i.e. if there’s at
most one suicide). The rationale for the strict thresholds for
effectiveness and safety are to avoid creating sparse heatmaps
of death locations (due to low effectiveness) or death locations
originating from suicides (due to low safety).

D. Constrained Surprise Search

Constrained surprise search fuses the properties of FI-
2pop constrained optimization [8] with surprise search [7]
evolving the feasible population. The proposed algorithm
uses two populations which evolve towards different goals.
The feasible population contains individuals which satisfy
all constraints listed above, while the infeasible population
contains individuals which have at least one of safety, balance
and efficiency below the minimal threshold. The infeasible
population assigns its members a fitness equal to fb +fe +fs,
regardless of whether some of the values of these properties are
above the feasibility threshold. This favors individuals which
satisfy more constraints to others which satisfy no constraints,
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Fig. 1. An example of the prediction model of surprise search in this paper, at generation t. The first two sets of heatmaps are computed in the last two
generations, Ht−2 and Ht−1; the death location density is always normalized per floor. Using linear interpolation, the difference Ht−1 −Ht−2 is computed
and applied to Ht−1 to derive the predicted current population’s Ht truncated to [0, 1]. An individual’s death locations are mapped to Ht to calculate the
surprise score per eq. (6).

although some averaging artifacts may occur. Unlike tradi-
tional FI-2pop approaches, the infeasible population attempts
to maximize this value, as the three properties act as objectives
(with minimal value constraints).

Due to the highly constrained search space that evolution
has to tackle, several steps are taken to make search in the
feasible population more effective. Both populations select
parents based on tournament selection (tournament size of
3), but the best individual of each population is copied as-is
to the next (elitism of 1). This elitism ensures that at least
one feasible individual will remain in the feasible popula-
tion. Moreover, if the feasible population is smaller than the
infeasible population, an offspring boost [4] is applied: the
offspring boost forces the (larger) infeasible population to only
produce offspring equal to 50% of the total population while
the feasible population produces more offspring than it has
parents, equal also to 50% of the total population.

In the feasible population, surprise search attempts to devi-
ate from predicted behavioral trends of the current population.
Behavior of a weapon is considered to be the playtraces of
the player who wields it, and in particular the locations where
their opponent died in this one-versus-one deathmatch game.
Since the genotype contains two weapons and the Biohazard
level consists of two floors, this creates a total of 4 heatmaps
of death locations of each player. These heatmaps assign
each death on a tile of a low-resolution grid (10 by 13
tiles per floor), incrementing the value (or heat) of that tile;
example heatmaps are shown in Fig. 1. Note that heatmaps are
normalized to a range of [0, 1] based on the maximum heat
value of each map (i.e. per floor and per player).

Surprise search attempts to deviate, therefore, from the
expected heatmaps of this generation: i.e. have death locations
which are unexpected based on the current evolutionary trends.
Surprise search focuses on diverging from predictions p (see
eq. (1)) of the current population, calculated by observing the
previous generations’ behavioral changes. This paper uses only
the populations of the last two generations (h = 2; eq. (1)) to
predict the current population, applying a linear interpolation
(m is a linear regression model in eq. (1)). The model, m,
considers the population as a whole (k = 1; eq. (1)). In

short, when predicting the heatmaps Ht for a population at
generation t, the heatmaps of the population at t − 2 (Ht−2)
is subtracted from those of the population at t − 1 (Ht−1)
to calculate ∆H . The prediction of Ht is obtained by adding
∆H to Ht−1, ensuring that its values fall within [0, 1] in all
4 heatmaps. Figure 1 illustrates this procedure.

In order to derive a surprise score for an individual i (which
the surprise search algorithm attempts to maximize), the loca-
tions of its agents’ deaths are mapped to the appropriate cell of
predicted heatmaps Ht (depending on floor and player). The
surprise score is calculated in eq. (6), as the complementary
of the average cell values of Ht where deaths occurred in
individual i. This rewards individuals which diverge from the
predicted consensus of the general population.

s(i) = 1 − 1

D

∑
d∈D

Ht(d) (6)

where D is the number of deaths of all agents in individual
i and Ht(d) the cell value of Ht at the location of death
d. This rewards individuals which diverge from the predicted
consensus of the general population.

This evaluation of surprise is different from that of novelty
used in novelty search [17], as the latter deviates from the
actual population rather than its prediction. By using a predic-
tion of the population, surprise search creates data (heatmaps
in this case) which may never be attainable: diverging from
such may push search in unexpected areas of the space.

IV. EXPERIMENTS

This paper aims to generate surprising weapons which have
a modicum of balance, safety and efficiency. Towards evalu-
ating constrained surprise search in terms of these different
priorities, several tests are performed on the results of 25
independent optimization runs of constrained surprise search.
The algorithm is compared with two baseline algorithms in
terms of constraint satisfaction and diversity preservation;
the most diverse solutions of constrained surprise search are
then assessed in terms of their use by AI agents in game
simulations; finally, a sample set of weapons evolved by
constrained surprise search is presented in detail, showcasing
how the different weapons are surprising yet balanced.
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(a) Feasible individuals.
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(b) Feasible clusters obtained with DBSCAN.

Fig. 2. Progress of two different performance metrics over the course of evolution averaged from 25
independent runs. Error bars depict standard error.
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Fig. 3. Feasible clusters obtained with DBSCAN
in the combined final populations of multiple evo-
lutionary runs.

A. Comparison with other methods

In order to assess the performance of constrained surprise
search, its outcomes and overall optimization progress will
be compared to two benchmarks: (a) objective search, which
attempts to optimize the sum of balance, safety and efficiency
(fb + fs + fe), (b) constrained random search, which uses
the FI-2pop paradigm but performs random search on the
feasible population. The objective search does not need two
populations, as it essentially amounts to the search in the infea-
sible population without minimal feasibility requirements. The
constrained random search evolves the infeasible population to
maximize fb + fs + fe while the feasible population assigns
a random fitness within [0, 1) to each of its members.

For the purposes of comparing the performance of the three
algorithms, it is not straightforward which performance met-
rics are most appropriate for evaluating surprise or diversity.
On one hand, it is relevant to evaluate how well-suited each
algorithm is for constrained optimization: for that reason we
use the number of feasible individuals as a measure of how
the different search methods on the feasible space (in the
case of surprise and random search) may create infeasible
offspring from feasible parents. In order to evaluate diversity
in the feasible population, we use the pairwise genotypic
distance of feasible individuals to measure how different (at
least in terms of weapon parameters) the genotypes are. The
genotypes’ values are normalized between [0,1] via min-max
normalization based on each parameter’s value range in Table
I. However, it should be noted that the number of feasible
individuals in the population may not be sufficiently diverse,
and thus a smaller set of the most diverse results would be
more appropriate both for in-game use and as a performance
metric. In previous work [3], this set of “solutions” was
discovered via k-medoids where k was a property specified
by the designer. In this paper, such solutions are obtained
by DBSCAN [18] which can return a variable number of
clusters (and their medoids) depending on the distribution of
data. Therefore, it is possible to gauge the diversity of the
population based on the number of clusters found by DBSCAN.
DBSCAN is a density-based clustering technique [18] which
groups individuals based on their nearest neighbor distance.

DBSCAN depends on two parameters: a distance ε,which is
the distance from a randomly chosen point for considering its
neighbors, and the minimum number of points within ε from a
random point in order to be considered a cluster; in this paper
ε is 0.2 and the minimum number of points is set to 1.

Reported results are collected from 25 independent opti-
mization runs per approach; evolution lasts for 50 generations
and is performed on a total population size of 50 individu-
als. Reported significance is obtained from two-tailed Mann-
Whitney U-tests at a 5% significance level.

Figure 2a shows the number of feasible individuals for each
method, as evolution progresses. It is immediately obvious that
at the start of evolution there are no feasible individuals, which
indicates a highly constrained search space. Since all methods
evolve infeasible individuals towards the same objective, it is
not surprising that all methods discover the first feasible indi-
vidual in approximately the same generation, i.e. generation 10
or so. More interestingly, the number of feasible individuals (in
a total population of 50) keeps increasing throughout evolution
as more and more infeasible individuals approach the border
of feasibility. With the offspring boost, ideally the feasible
individuals would be equal to the infeasible ones; however,
feasible parents are more likely to create infeasible offspring
than the reverse and thus feasible individuals are fewer.
Objective-driven search tends to create more feasible results,
while interestingly random search on the feasible population is
not more destructive (in terms of feasible population size) than
surprise search. Objective-driven search is expected to create
more feasible individuals, primarily due to the fact that it uses
a single population: therefore, feasible results are more likely
to get selected (multiple times) and thus create more feasible
offspring. Despite the feasible offspring boost in the FI-2pop
approaches, this single population approach which continually
tries to improve upon the constraints (even after all constraints
are satisfied) is more efficient at creating feasible results.

DBSCAN is able to identify distinct clusters, so the number
of clusters should be an indication of the population’s diver-
sity: essentially, DBSCAN plays the role of a designer choos-
ing the most representative weapons (the clusters’ medoids).
The number of clusters found among feasible individuals
(for a threshold of 0.2) is shown in Fig. 2b. While the
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TABLE II
PERFORMANCE METRICS AT THE END OF 50 GENERATIONS. RESULTS ARE

AVERAGED FROM 25 INDEPENDENT RUNS, WITH THE STANDARD ERROR
SHOWN IN PARENTHESES. DIVERSITY REFERS TO THE AVERAGE PAIRWISE

GENETIC DISTANCE.

Surprise Objective Random
Feasible Individuals 16.6 (1.28) 22.5 (1.98) 13.8 (1.29)
Feasible Clusters 5.84 (0.78) 4.04 (0.58) 2.96 (0.40)
Individuals’ Diversity 0.29 (0.03) 0.26 (0.02) 0.24 (0.02)
Medoids’ Diversity 0.33 (0.04) 0.28 (0.03) 0.26 (0.04)

objective-based approach creates more feasible individuals,
it is obvious that these individuals are genotypically similar
leading to fewer clusters than the smaller feasible population
of constrained surprise search. As the first feasible individuals
appear in the population, both objective-driven search and
surprise search start with a diverse population (and thus
many feasible clusters). However, as objective-based selection
prioritizes feasible individuals almost exclusively (i.e. when
the number of feasible individuals increases after generation
20), objective-driven search converges to a few promising
areas of the search space resulting in a drop in the number of
clusters. By comparison, the behavioral surprise prioritized by
surprise search manages to better preserve the genetic diversity
of the initial feasible individuals. It should be noted that in
the 25 runs performed for the reported results, there is a large
deviation, on average, between the number of clusters for every
approach, as can be gleaned from Fig. 2b.

Table II shows the final scores of the different performance
metrics at the end of 50 generations. While constrained
random search is able to maintain a sufficiently large feasible
population, the number of distinct clusters found by DBSCAN
is significantly lower (p < 0.05) than those of constrained sur-
prise search. Objective search creates significantly more fea-
sible individuals on average than constrained surprise search
(p < 0.05), but they are not as diverse (based on the number
of clusters); due to large deviations in the number of clusters,
significance can not be established. As additional metrics, the
average pairwise genotypic distance of all feasible individuals
and of the cluster medoids is compared. Constrained surprise
search tends to create more genotypically different medoids
than both objective search and constrained random search.

As another measure of diversity, DBSCAN is applied on the
final populations of multiple evolutionary runs and the number
of discovered clusters is plotted in Fig. 3. Surprise search
seems robust at finding clusters in the combined populations,
and thus does not converge to the same local optima in
every run. With few runs, the differences between random and
objective search are minimal while surprise search finds far
more clusters; the order of evolutionary runs being combined
could have a minor effect in this. DBSCAN finds 146 feasible
clusters in 415 feasible individuals collected from 25 runs of
surprise search, versus 101 clusters in 563 feasible individuals
of objective search. Indicatively, Fig. 3 shows that collecting
40 distinct weapon pairs (i.e. medoids) requires 6 runs of
surprise search versus 11 and 14 runs of objective and random

TABLE III
GAMEPLAY METRICS OF ALL CLUSTER MEDOIDS OF ALL 25

INDEPENDENT RUNS OF CONSTRAINED SURPRISE SEARCH. RESULTS ARE
AVERAGED FROM 10 SIMULATIONS, WITH DEVIATION BETWEEN MEDOIDS

IN PARENTHESES.

Both floors 1st Floor 2nd Floor
Total Kills 15.14 (0.27) 10.81 (0.18) 4.29 (0.15)
Kills 1st 7.83 (0.21) 4.32 (0.22) 3.51 (0.08)
Kills 2nd 7.3 (0.21) 5.11 (0.18) 2.19 (0.08)
Balance 0.87 (0.009) 0.84 (0.011) 0.71 (0.016)
Entropy 1st 0.71 (0.002) 0.63 (0.001) 0.74 (0.003)
Entropy 2nd 0.72 (0.003) 0.64 (0.002) 0.76 (0.004)

search respectively. Combined with a slightly higher medoid
diversity, surprise search seems preferable for discovering
more diverse weapons at a lower computational cost.

B. Gameplay Qualities of Weapons

In order to assess a modicum of the gameplay uses of the
generated weapons, all cluster medoids discovered in the 25
surprise search runs were tested in 10 simulations each. Table
III shows certain gameplay metrics of these weapons, averaged
from 10 simulations: ‘1st’ and ‘2nd’ refers to the first and
second player, while ‘entropy’ refers to Shannon’s Entropy of
the death locations’ heatmaps on both floors.

From Table III, it is clear that the number of total kills are on
average below the minimal playability thresholds set in Section
III-C; this points to a very noisy simulation-based evaluation.
During optimization, it seems that a single simulation can
decide that a weapon pair is playable in one generation and
reject the same pair in the next. Based on the number of kills
for each player, the calculated balance for the weapon pair
is 0.87 on average, which is also slightly below the minimal
threshold for fb. Suicides on the other hand remain low at
an average of 0.44 (standard error of 0.04), and therefore the
safety constraint is always satisfied.

An interesting insight from Table III is the gameplay differ-
ence between the two floors: significantly more kills occur in
the 1st floor for both weapons (p < 0.05), which should not
be surprising since the second floor is not as accessible and
offers a better vantage point to fire at enemies below. On the
other hand, deaths in the second floor are significantly more
dispersed spatially (based on Shannon’s entropy) than those in
the first floor (p < 0.05): this is also obvious from Ht−1 and
Ht−2 of Fig. 1. This is can be traced to the fact that the second
floor is in theory larger; moreover the second floor includes
narrow bridges which partition the space and therefore players
tend to die on opposite ends of that floor. The differences in
both number of deaths and entropy of death locations could
affect the performance of surprise search, however, which
currently normalizes each heatmap individually; if the first
floor has far more deaths than the second floor, treating them
equally in terms of surprise places unnecessary impact on the
second floor. A potential solution in future experiments could
be to normalize heatmaps based on the total number of deaths
rather than the number of deaths per floor and per player.
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C. Sample Weapons

In order to discuss a sample of the generated weapons in
more detail, a weapon pair was chosen agnostically among
the DBSCAN cluster medoids for surprise search; there is
no assumption that this weapon pair exemplifies all generated
content. For the sake of screenshots, weapons use the shock
rifle weapon model and bullet effects in UT3.

Figure 4a shows a genotype collected after 50 generations
of constrained surprise search. The first weapon fires very
concentrated projectiles (maximum shot cost and very low
spread) with no gravity and very low speed; the second weapon
shoots very fast projectiles, with no spread and high damage.
Trying these two weapons as a player, one quickly realizes that
the first weapon creates ‘mines’ around the map (see Figure
4b): its bullets are extremely slow, with a large blast area
(explosive, high collision radius) and they can also bounce on
walls or the level’s floor. Moreover, these ‘mines’ are fired
in clusters (high shot cost) as seen in Fig. 4b, thus costing a
lot of ammo (of which the weapon has little). This weapon
seems over-powered, allowing its wielder to control the map;
however as the bullets do not have a long lifetime, they are
effective only if the opponent is nearby and running towards
the wielder. Meanwhile, the second weapon is very similar to
a rifle: high-damage fast bullets which shoot straight (trivial
gravity effects) with a very low collision radius, thus requiring
precise aiming. Unlike traditional rifles, however, the weapon’s
bullets have some explosive qualities. Obviously, a match-up
between these two weapons requires a very different strategy
from each player: the first weapon requires its wielder to
move around the level, laying ‘mines’ in chokepoints when
the other player is nearby. Meanwhile, the player with the
second weapon does not need to move as much (also in order
to avoid any mines) as she can fire her high-speed, precise and
lethal bullets from a remote location.

V. DISCUSSION

The primary goal of this paper was to discover balanced
and efficient, yet surprising weapons via constrained surprise
search. Results indicate that constrained surprise search tends
to evolve genotypically more diverse pairs of weapons, which
have unexpected in-game uses. The FI-2pop paradigm also
allows this method to discover feasible individuals quickly
and consistently; preliminary experiments with surprise search
or random search on a single population without constraints
failed to find feasible results at any point of their evolu-
tion during 50 generations. Comparing constrained surprise
search with constrained random search shows a (statistically)
significant improvement of the former in terms of number
of clusters: this indicates that surprise search is substantially
different in terms of both process and results than random
search. On the other hand, performing objective search on a
single population finds significantly more feasible individuals;
due to the selection pressure towards feasible individuals,
however, much of the genetic diversity is eventually lost.
While objective search has more feasible individuals, those are
not necessarily as diverse or interesting as in surprise search.
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(a) Sample weapon pair evolved via constrained surprise search.

(b) Weapon 1, evolved via constrained surprise search.

Fig. 4. Example of weapons evolved via constrained surprise search

There is an obvious limitation to the generalizability of
the results reported in this paper, for several reasons: (a) the
high deviation in the performance metrics from one run to
the next makes assessing significance problematic, (b) there
are many parameters which could be fine-tuned to improve
both the algorithms and the assessment method. Regarding the
deviation found in reported values, the need for simulations
of full games (lasting up to 20 minutes) to assess each
individual prevents extensive experiments for parameter tuning
or for more runs to assess significance. Future work should
explore how surprise search performs with different behavioral
characteristics, as well as compare its performance against
more methods including two-population objective search or
two-population novelty search [4]. Finally, the choice of ε in
DBSCAN also affects the results and conclusions; with a much
lower ε the more numerous individuals of objective search
create more clusters (e.g. with one individual per cluster), and
with a much higher ε all methods create a single cluster.

Surprise search in this particular problem predicts the be-
havior of the population as a whole, based on the behavior of
the previous two populations. In the general predictive model
of eq. (1), the current approach uses the simplest predictive
model m (a linear model), the shortest history (h = 2)
and there is no locality as the model aggregates the entire
population (k = 1); for this reason the distance calculation in
eq. (2) considers one neighbor (n = 1). Obviously there is
a broad range of parameters to explore in order to improve
the performance of surprise search, such as using a non-
linear regression model or including a form of archive as
in novelty search [17]. Another possible improvement could
be choosing another behavioral characteristic to deviate from:

2016 IEEE Conference on Computational Intelligence and Games (CIG’16) 172



currently the system considers a “heatmap” of death locations;
this heatmap is relatively sparse, also considering that the
level has two floors. In many cases the differences between
two such heatmaps is circumstantial, also due to the high
stochasticity of combat; this was mitigated by using the lowest
locality for surprise search and aggregating a heatmap for the
entire population. Other behavioral characteristics could be
considered, such as players’ movements in the level or scalar
gameplay values such as the entropy and ratio of kills in each
floor or the distance between players at the time of death.

Finally, it should be noted that simulations with AI op-
ponents are a necessity due to the numerous matches which
need to be played per generation during evolution. The enemy
behavior in UT3 is quite well-designed and competitive (at
least for novice players), unlike many open-source games
such as Cube 2 used in other experiments [19]. However,
the AI in UT3 is designed for the weapons included in the
game which have specific parameters and uses; with generated
weapons, unexpected combinations of weapon parameters
such as high spread on a sniper rifle may result in less than
ideal agent performance. Currently, this is somewhat mitigated
when initializing simulations by instructing the AI that certain
weapons with certain properties should be treated as UT3
weapons (e.g. high lifetime weapons use the sniper rifle AI
module). However, completely unique weapons which do not
have any AI module may be impossible to use: for instance,
a mine weapon requires a very different navigational strategy,
going through chokepoints and leaving mines. While the AI
could be improved, it is perhaps more interesting to test the
final weapons generated by each approach in a user survey
with competing expert players. Observing emergent gameplay
strategies, and how the meta-game is affected by unexpected
uses of these weapons can offer a better insight of the usability
and balance of the generated weapon pairs.

VI. CONCLUSION

This paper introduced a constrained form of surprise search
and applied it on a procedural content generation problem. The
first goal of the generator is to create pairs of weapons for Un-
real Tournament III, which have a balanced and efficient per-
formance when played in simulated matches with AI agents.
Towards that end, a feasible-infeasible two-population genetic
algorithm was employed to maximize balance, efficiency and
safety on an infeasible population until those values were
above a required threshold. The second goal of the generator
is to create pairs of weapons which have surprising properties
and can result in interesting, unconventional gameplay. For this
purpose, surprise search is applied on the feasible population,
attempting to deviate from the expected behaviors of the AI
agents (i.e. their death locations) which were predicted from
past generations. Results in the paper show that the feasible-
infeasible approach is able to find feasible individuals quickly
and reliably, and that surprise search tends to create more
diverse (if not always more) content. Since the reported experi-
ment is small-scale, there is a broad range of future directions
for improving surprise search and its parameters, testing it

against more algorithms, and exploring other behavioral or
gameplay characteristics other than death locations.
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Abstract— This paper investigates the learning progress of in-
experienced agents in competitive game playing social environ-
ments. We aim to determine the effect of a knowledgeable oppo-
nent on a novice learner. For that purpose, we used synthetic 
agents whose playing behaviors were developed through diverse 
reinforcement learning set-ups, such as exploitation-vs-explora-
tion trade-off, learning backup and speed of learning, as oppo-
nents, and a self-trained agent. The paper concludes by highlight-
ing the effect of diverse knowledgeable synthetic agents in the 
learning trajectory of an inexperienced agent in competitive multi-
agent environments. 

Keywords—component; Multi-agent systems; Opponent based 
learning; synthetic agents; Social learning) 

I.  INTRODUCTION 

Organizational Learning (OL) has become an increasingly 
exiting area for studying simulated learning agents [1] [2] [3] [4] 
[5]. Computer social simulation is a way of modeling and under-
standing social and economic processes [4], while social learn-
ing is concerned with how humans learn from observations of 
others’ actions [2] [3] [6] [7] [8]. Typically, when many agents 
interact with each one in an environment, they constitute Multi-
Agent Systems (MASs) and Social Organizations (SOs), which 
attempt to simulate traits of human behavior [4] [9]. Social sim-
ulation involves artificial agents with different characteristics 
(synthetic agents), which interact with other agents, possibly 
employing a mix of co-operative and competitive attitudes, to-
wards the investigation of social learning phenomena [7] [8] 
[10]. 

Social Learning (SL) is important in diverse scientific areas, 
such as sociology and economics, as well as artificial intelli-
gence (AI) mechanisms for game playing to study complex sys-
tems and learning mechanisms [2] [4] [7] [10]. For a game agent, 
the social environment is composed of all relevant entities, such 
as rules, pay offs and penalties, and all other (competing or co-
operating) agents [2] [7] [8] [10]. Learning in a game is said to 
occur when an agent changes a strategy or a tactic in response to 
new information, thus mimicking human playing behavior [2] 
[9] [7] [8] [11]. Caballero et al. [12] simulated many experi-
ments on Multi-Agent-Based Social Simulation platforms to 
present an autonomous social world from which agents can cre-

ate social strategies and behaviors, while Marivate [7] demon-
strated that the efficiency of an agent, which has played in a so-
cial environment, is better than that of a self-playing agent. 
Kiourt and Kalles [8] developed social environments by employ-
ing a zero-sum game in tournaments, comparing the progress of 
socially trained agents against self-trained ones, and highlight-
ing the advantages of socially trained agents. They have also 
studied the interactions between agents in the same group as a 
means to improve the group’s representative in subsequent inter-
group social tournaments [10]. 

For that purpose, we used synthetic agents whose playing be-
haviors were developed through diverse reinforcement learning 
set-ups, such as exploitation-vs-exploration trade-off, learning 
backup and speed of learning, as opponents, and a self-trained 
agent. 

The main motivation of this work focuses on the investiga-
tion of how agents learn by exploiting their opponents’ models 
in competitive social environment. We study the learning evolu-
tion of inexperienced agents against opponents with diverse 
playing characteristics. The main contribution of this study is to 
highlight that equally inexperienced agents diverge pretty fast 
with respect to their playing performance, depending on their 
set-up on how to learn. We present tournaments with different 
sequences of opponents to determine the best learning sequence 
for inexperienced agents and we provide experimental evidence 
that self-trained agents have limited potential as trainers with re-
spect to their opponents. We frame these findings in the context 
of a generic research question on how to select the best opponent 
to learn from in a social environment.  

The rest of this paper is structured in three sections. The next 
section provides a brief background knowledge of game-playing 
social learning environment aspects and the synthetic agent 
characters using a home-grown board game as a proof of con-
cept. The third section describes the experimentation set up 
based on the synthetic agents. The forth section discusses the 
experimental results. Finally, the last concludes the paper with 
some important key points and some future directions. 

II. A BRIEF BACKGROUND DESCRIPTION 

The RLGame [13] is played by two players on an n x n square 
board. Two a x a square bases are on opposite board corners; 
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these are initially populated by β pawns for each player, with the 
white player starting off the lower left base and the black player 
starting off the upper right one. The goal is to move a pawn into 
the opponent’s base or to force all opponent pawns out of the 
board. 

 
Fig. 1. Example of game rules application 

The implementation of the RLGame rules is depicted in Fig. 
1. In the leftmost board in Fig. 1, the pawn indicated by the ar-
row demonstrates a legal (“tick”) and an illegal (“cross”) move, 
the illegal move being due to the rule that does not allow de-
creasing the distance from the home (black) base. The rightmost 
boards demonstrate the loss of pawns, with arrows showing 
pawn casualties. A “trapped” pawn automatically draws away 
from the game, either in the middle of the board or when there 
is no free square next to its base of the white pawn. 

The learning mechanism used (Fig. 2) is reinforcement 
learning inspired and is based on approximating a value func-
tion with a neural network [3] [5], with similar techniques al-
ready documented [14]. Each autonomous (back propagation) 
neural network [15] [16] is trained after each move. The board 
positions for the next possible move are used as input-layer 
nodes. The hidden layer consists of half as many hidden nodes. 
A single node in the output layer denotes the extent of the ex-
pectation to win when one starts from a specific game-board 
configuration and then makes a specific move. After each move 
the values of the neural network are updated through the tem-
poral difference learning method, which is a combination of 
Monte Carlo and dynamic programming [15] [16]. As a result, 
collective training is accomplished by putting an agent against 
other agents so that knowledge (experience) is accumulated. 

 
Fig. 2. Learning mechanism of RLGame. 

The agent’s goal is to learn an optimal strategy that will 
maximize the expected sum of rewards within a specific amount 
of time, determining which action should be taken next, given 
the current state of the environment. The strategy to select be-
tween moves is ε-Greedy (ε), with ε denoting the probability to 

select the best move (exploitation), according to present 
knowledge, and 1-ε denoting a random move (exploration) [1]. 
The learning mechanism is associated with two additional 
learning parameters, Gamma (γ) and Lambda (λ). A risky or a 
conservative agent behavior is determined by the γ parameter, 
which specifies the learning strategy of the agent and deter-
mines the values of future payoffs, with values in [0,1]; effec-
tively, large values are associated with long-term strategies. 
The speed and quality of agent learning is associated with λ, 
which is the learning rate of the neural network, also in [0,1]. 
Small values of λ can result in slow, smooth learning; large val-
ues could lead to accelerated, unstable learning. These proper-
ties are what we, henceforth, term as “characteristic values” for 
the playing agents. 

RLGame was transformed into a tool for studying MAS via 
its tournament version, RLGTournament [8] [17] [18] [10] [19], 
implementing a Round Robin scheme to pair participants 
against each other. RLGTournament fits the description both of 
an autonomous organization and of a social environment, as de-
fined by Ferber [3]. Depending on the number of the agents, 
social categories can be split into sub-categories of: micro-so-
cial environment, environment composed of agent groups and 
global societies, which are the next level of the cooperation and 
competition extremes of the social organizations [3] [5]. 

III. THE EXPERIMENTAL SETTING 

We now report on a series of experiments to simulate and 
analyze how an inexperienced agent with a good set up of learn-
ing mechanism, learns based on different opponents’ models 
[10]; to maximize its potential for performance improvement we 
endow it with the learning characteristics of the top performer of 
a previous tournament [10] (which is why we refer to it as 
“good”). Using the learning set-up of this top performer, we gen-
erated four clones, with the same parameters but without expe-
rience, one for each sequence of the TABLE I; in every sequence 
we name this agent as Plr3* and we subject each clone to a test 
against each of the four different opponents’ models of TABLE I. 
Each experiment is composed with different sequential oppo-
nents with various characteristics, which will determine the best 
learning evolution and progress of an inexperienced agent with 
good learning mechanism set up (which is starting to compete 
based on zero experience). The opponent’s and the testing 
agent’s configurations and the experiment setups are shown in 
TABLE I.  

We chose three agents, one from each class (Good Playing - 
GP, Moderate Playing - MB, Bad playing - BP) [10], as oppo-
nents, and we also added one self-trained agent. A self-trained 
agent’s experience is based on playing against, and learning 
with, an opponent with an identical configuration. The self-
trained agent has played the same number of games as the so-
cially-trained ones [10], about 12,500 games, using default val-
ues based on Sutton and Barto [16]. 
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TABLE I. DIFFERENT SEQUENTIAL OPPONENTS BASED EXPERIMENTS 
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Fig. 3. Plr3* progress and evolution analysis based on the sequential experi-
ments 

The opponents based model experiments are shown in 
TABLE I, where the configurations of the four different experi-
ments are also presented. In each experiment, Plr3* faces the 

same agents, but with a different order, for 100 games per match.  
Basically, the sequences of TABLE I roughly correspond to ex-
perimental scenarios; for example, in the first sequence, Plr3* is 
initially tested against a good playing agent (Plr8), then against 
a moderate playing agent (Plr76), then against a bad playing 
agent (Plr20) and, finally, against a self-trained agent. 

The graphs in Fig. 3 demonstrate the progress and the evo-
lution of Plr3* based on the experimental sequences of TABLE 

I. We show four graphs for each sequence. The continuous line 
of the graphs (y axis) shows the cumulative Grades of Plr3*, 
while the x axis shown the number of the games as separated 
into match sequences. Grades, is the sum of games won by each 
agent during the tournament (simply, a crude agent rating tool). 
Each win contributes +1 while each loss contributes -1 to the 
grade. The arrows below the straight lines shows how Plr3* 
performs relatively to each opponent. At the bottom of each se-
quence graph we show the opponents and their classes (a trian-
gle with the top looking up, denotes the good playing opponent, 
a rectangle denotes the moderate playing opponent, a reverse 
triangle denotes the bad playing opponent and an oval denotes 
the self-trained opponent). 

A summary view of how Plr3* wins and loses per match is 
presented and analyzed in TABLE II. Plr3* won most of the 
games in nearly all of the matches; by inspecting the average 
number of wins we confirm it is the best agent. Plr3* faced 
more difficulties against agents with similar configurations to 
its coming from good playing classes but won more than 70% 
of the games against bad playing agents. Quite as importantly, 
when Plr3* faced self-trained agents, it performed consistently 
better, suggesting that self-training experience is not powerful 
even against non-experienced agents. 

TABLE II. PLR3*GAME WINS PER MATCH 

 

IV. A BRIEF DISCUSSION OF KEY FINDINGS 

We now highlight and discuss some key points: 

• In all four different experiments, Plr3* concludes 
some of its games with draw, at the beginning of the 
session, until it develops some experience. Draws are 
due to a game being interrupted and finished at an ear-
lier stage, with the number of moves limited to 128, to 
avoid wasting time and knowledge [10]. Such draw-
initiated sessions are shown by the blue arrows in the 
graphs of Fig. 3. 

• Plr3* demonstrates the most stable progress-evolution 
when it starts against low level opponents and, there-
after, faces higher-level opponents, as shown in the 
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third sequence of Fig. 3, with an overall win rate of 
about 64%.  

• Plr3* performs very well against low level opponents. 

• In all matches against the self-trained opponent, Plr3* 
reports a win rate of about 60%, which is notable im-
provement compared to the less than 50% scores re-
ported for the games in the 2nd, 3rd and the 4th experi-
ments against the good playing agent, Plr8. As this be-
havior is also confirmed in last three sequences/exper-
iments, it suggests that the good performance of the 
Plr3* against the self-trained agent did not enhance its 
experience, since in the next matches against the good 
playing agent, Plr8, Plr3* did not perform well. 

The overall view of these experiments shows that the best 
progress and stable evolution of a good playing agent arises 
with opponents of increasing capacity, which can be interpreted 
as “it takes a step at a time to build useful experience”. 

V. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK 

We have confirmed that a socially trained agent, with an in-
itially strong learning mechanism [10], performs better against 
self-trained agents, even if the self-trained agent has quite some 
experience (in our case, PlrS has played about 12,000 iterated 
games before participating in the experiment described in this 
paper). We have also demonstrated that an opponent is an im-
portant key point on an agent’s learning progress in a social en-
vironment. We have observed that an agent with a good set up 
of its learning mechanism progresses better when facing less 
favorably set-up agents in its first games (as the third sequence 
of Fig. 3 suggested) and that such first games between an inex-
perienced agent and low-level opponents can be quite tedious 
and long. 

The above experimental results suggest that if an agent 
could be equipped with a mechanism to choose an opponent 
from a group of diverse synthetic agents, to improve its chances 
of better and faster learning, it should attempt to locate oppo-
nents with initially similar learning characteristics and then at-
tempt to gradually move towards opponents with stronger 
learning set-ups, as it gathers experience. 

In addition to the above, we plan to study the opponent se-
lection problem under constraints of limited information about 
tournament participants. We also plan to investigate how agents 
may decide to select their opponents in a limited number of 
games so as to not waste their effort quotas and to improve their 
(individual and collective) learning (and playing) behavior. 
This, we also plan to couple with an investigation of the dy-
namic manipulation of the characteristic values, which could 
produce more powerful agents, with the ability to dynamically 
match their effort to their opponents.  
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Abstract—This paper presents a procedural content generation
algorithm for the physics-based puzzle game Angry Birds. The
proposed algorithm creates complex stable structures using a
variety of 2D objects. These are generated without the aid of
pre-defined substructures or composite elements. The structures
created are evaluated based on a fitness function which considers
several important structural aspects. The results of this analysis
in turn affects the likelihood of particular objects being chosen in
future generations. Experiments were conducted on the generated
structures in order to evaluate the algorithm’s expressivity. The
results show that the proposed method can generate a wide
variety of 2D structures with different attributes and sizes.

I. INTRODUCTION

Procedural content generation (PCG) is a major area of
investigation within the video game industry [1]. It is typically
defined as the automatic creation of aspects of a game which
affect gameplay other than non-player characters (NPCs) and
the game engine [2]. PCG is commonly used to create new
unique experiences for players without the need to design
every possibility manually. This can dramatically cut a game’s
development time, as well as increasing available content and
reducing memory consumption [3]. PCG can also be used to
learn about the player’s abilities and adapt the game’s content
accordingly [4].

Previous research has investigated the use of PCG for
many different types of game content, including vehicles
[5], weapons [6] and rulesets [7]. Level generation, or the
generation of certain level aspects, is one of the most popular
uses of PCG and has been implemented in many different
game types. These include real-time strategy games [8], role-
playing games [9], platform games [10], racing games [11]
and arcade games [12].

Physics-based puzzle games such as Angry Birds, Bad
Piggies, Crayon Physics and World of Goo have increased
in popularity in recent years and provide many interesting
challenges for PCG. However, as far as we can tell, very little
research has been done on this particular area of PCG. A small
collection of studies have explored PCG for the physics-based
game Cut the Rope [13], [14], as well as the popular mobile
game Angry Birds [15], [16], [17].

Physics-based games make PCG more difficult for a variety
of reasons. Firstly, there are typically many constraints that
dictate the types of content that can be created. Any PCG

algorithm must be aware of the physical limitations of its
environment and create content that functions as expected, e.g.
a procedurally generated car must be able to drive and steer.
Secondly, the state and action spaces are typically very large.
This makes the task of determining if a procedurally generated
level can be completed extremely difficult, especially for
increasingly complex levels and content. Lastly, the variety of
content that the algorithm can create must not be significantly
reduced by any constraints imposed. The main appeal of PCG
is that a large and diverse range of content can be created.
Designing algorithms with restrictions that are unnecessarily
strict will severally limit its PCG capabilities.

Previous research into PCG for Angry Birds has been rather
basic in terms of the complexity of the structures they generate.
These prior methods create Angry Birds levels by generating
columns of either single objects or small predefined structures
[16]. These columns are then recombined using simple genetic
algorithms in an attempt to maximize structural stability [15],
[17]. Whilst this method is suitable for creating primitive
structures in Angry Birds levels, it cannot generate anything
more complex than an array of single columns.

This paper presents a search-based procedural content gen-
erator for the Angry Birds game which can create complex
stable structures using a variety of different objects. The
structures are evaluated using an improved fitness function
which measures various important aspects. These include
the structure’s block count, pig count, aspect-ratio and pig
dispersion. The probability of selecting certain block types
during the construction process is evolved over successive
generations, using this function as the optimisation criterion.

Several experiments were conducted to analyze the expres-
sivity and of the structure generator. Metrics such as frequency,
linearity, density and leniency were calculated to describe the
characteristics of the content generated.

II. ANGRY BIRDS

Angry Birds is a physics-based puzzle game where the
player uses a slingshot to shoot birds at structures composed of
blocks, with pigs placed within or around them. The player’s
objective is to kill all the pigs using the birds provided. A
typical Angry Birds level, as shown in Figure 1, contains a
slingshot, birds, pigs and a collection of blocks arranged in
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Fig. 1: Screenshot of a level from the Angry Birds game.

Fig. 2: The thirteen different block types available.

one or more structures. The ground is usually flat but can vary
in height for certain difficult levels. Each block in the game
can have multiple different shapes as well as being made of
several possible materials.

Angry Birds is a commercial game developed by Rovio
Entertainment who do not provide an open-source version
of their code. Instead we use a Unity-based clone of the
Angry Birds game developed by Lucas Ferreira [15], which
is open-source and available to download from GitHub. This
clone provides many of the necessary elements to simulate
our procedurally generated structures in a realistic physics
environment. There are currently eight different rectangular
blocks available, of which five can be rotated ninety degrees to
create a new block type. This gives a total of thirteen different
block variants with which to build our structure, see Figure 2.
Each block is also assigned one of three materials (wood, ice
or stone), bringing the number of possible options to thirty
nine.

III. PROCEDURAL STRUCTURE GENERATION

The proposed structure generator operates by recursively
adding rows of blocks to the bottom of the already generated
structure. This process continues until a desired number of
rows are reached. Unlike previous methods, our structure is
created using only the original block types and does not require
any composite elements to be created prior to structure gener-
ation. This vastly increases the number of possible structures
that can be constructed, whilst also allowing greater algorithm
flexibility to satisfy conditions and restrictions which may
be imposed. The complexity of a generated structure can be
defined in a manner similar to that of Kolmogorov complexity
[18]. The extensive amount of variation that can occur within
each structure, including the number, size, orientation and

Algorithm 1 Structure Generation
1: currentRow ← 1
2: blockType← SelectBlockType(probabilityTable)
3: currentStructure← InitializeF irstRow(blockType)
4: while currentRow < desiredRow do
5: subsets← SubsetCombinations(currentStructure)
6: blockType← SelectBlockType(probabilityTable)
7: currentStructure← AddRow(blockType, subsets)
8: currentRow ← currentRow + 1
9: end while

10: PopulateStructure(currentStructure)
11: EvaluateStructure(currentStructure)

Fig. 3: The bottom row of this structure has three possible subset combina-
tions: each block is in a separate set (red), all blocks are in a single set (blue),
and the three left/right blocks are partitioned into two sets (green).

positioning of blocks used, allows our generator to create a
diverse range of complex structures. Algorithm 1 provides
an overview of the proposed generator, with a more detailed
explanation given below.

A. Structure Generation

First, a starting block type is selected at random from all
possible variants. This block type will become the peak(s) of
the structure, beneath which all other blocks will be placed.
For our implementation up to three blocks can be placed at
the top of the structure at varying distances apart, with the
number of peaks being chosen at random. Initially we are
only concerned about the local positions of blocks relative to
each other with the world positions being calculated after the
structure has been fully generated.

After the first row has been initialized we recursively add
more rows of blocks to the bottom of the currently generated
structure. The blocks at the base of the structure are split into
subsets based on the distances between them. All possible
subset combinations are then recorded, see Figure 3. A new
block type is then selected at random. For each possible subset
combination there are now three possible supporting block
placement options:

• Blocks are placed underneath the middle of each subset.
• Blocks are placed underneath the edges of each subset.
• Blocks are placed underneath both the middle and edges

of each subset.
All three of these possibilities are shown in Figure 4. Each

of these options is created for all subsets using the selected
block type, after which they are tested for validity. Any case
where blocks overlap each other is deemed invalid and is
removed as a possible option. In addition, each object in the
structure’s bottom row is tested for local support by the new
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(a) (b) (c)
Fig. 4: The three possible supporting block placement options for a single
block subset: middle (a), edges (b), both middle and edges (c).

(a) (b)
Fig. 5: An example of a generated structure (a) and its corresponding directed
acyclic graph representation (b).

row. Each block in the bottom row of the current structure
must be supported from below, either at its middle position or
both of its edge positions. Any case that does not fulfil this
requirement is also deemed invalid. After validity checks have
been performed for all possible supporting block locations and
subset combinations, one of the valid options is selected at
random. If no valid options are available then a new block
type is selected and the process repeated. The selected option
is then used as the structure’s new bottom row. This process is
repeated until the desired number of rows is reached. Once the
structure is complete each block is assigned a random material.

Any structure generated using this method can be depicted
as one or more directed acyclic graphs, with each node
representing a specific block. Each block is a descendant of
the blocks that it supports (supportees) and subsequently an
ancestor of the blocks that support it (supporters), see Figure
5. This can be extremely useful for other stability analysis
techniques, such as identifying structural weak points [19].

B. Pig Placement

Once the structure has been fully created it is populated with
pigs. First, the space directly above the middle of each block
is analyzed to see if there is space for a pig to fit such that it
doesn’t overlap any other blocks. If this is not possible for a
particular block then the positions directly above the edges of
the block are checked as well. Any positions that are found to
be big enough to place a pig are recorded. Next, we test all
the possible ground positions that are within the structure (to
a set precision). Again we check for any overlap with nearby
blocks and valid positions are recorded. We then randomly
choose a position from all the valid possibilities and place a
pig at the given location. Any remaining pig locations that
would overlap the newly placed pig are removed and another
location is chosen at random. This continues until there are no
more valid locations or a desired number of pigs is reached.

Fig. 6: An example structure that has local stability but is globally unstable.

This process ensures that the structure will always contain at
least one pig, as a pig can always be placed on top of the
structure’s peak block(s).

C. Global Stability Analysis

Whilst our structure generation method ensures that each
block has local stability, the global stability of the structure
must be determined after its construction, see Figure 6. As
all the relevant physics parameters (mass, density, friction and
location) of blocks and pigs are known beforehand we can
calculate the global stability of our structure exactly [20]. It
is also possible to use qualitative stability analysis techniques
to estimate the stability of the structure more quickly, whilst
sacrificing some accuracy [21] [22]. Unfortunately, the Unity
Engine upon which the Angry Birds clone is based suffers
from simulation inaccuracies. These minor discrepancies cause
structures which are theoretically stable to collapse within the
simulation if given enough time. Currently, the only way to be
certain that the structure will not collapse in this environment
is to place the structure within a level and record if any blocks
move a significant distance from their origin point [15]. If the
structure is deemed unstable using the chosen approach then
it is abandoned and a new structure is generated.

D. Structure Placement

Once the structure has been fully generated it can be placed
within the Angry Birds level. For the clone implementation,
levels are specified as xml files with the block and pig
locations given as coordinates in world space. First, we take
the bottom row of our structure and place it on top of the
level’s ground (the location of the ground is fixed within the
level). We then continue adding additional rows on top of the
structure’s base until all rows have been placed. Pig locations
are then converted to their corresponding world coordinates
and placed within the level as well. It is also possible to place
multiple structures within the same level at different locations.

IV. FITNESS FUNCTION

In order to evaluate individual structures against each other
we define a fitness function to measure certain desirable
properties. This fitness function calculates a fitness value for
a given structure, with a lower fitness value indicating a more
desirable structure. A fitness function has been proposed in
previous Angry Birds papers [15], [16] for a similar reason
but we believe it has several limitations in its current form.
The original fitness function takes into account the structure’s
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simulated velocity over time (used to measure the stability of
the structure) as well as the number of blocks and pigs used.
Our method analyzes stability outside of the fitness function,
automatically rejecting a structure if it is deemed unstable.
This provides the user with more freedom over which approach
to use and will allow any new stability estimation techniques
to integrate seamlessly with our algorithm. Our fitness function
also improves upon the previous implementation by updating
the analysis of certain parameters, as well as proposing some
new ones of our own. These can be separated into four distinct
factors, number of pigs, number of blocks, structure aspect
ratio and pig dispersion; each of which can affect the fitness
value of a structure. We believe that this new function provides
a broader and more sophisticated analysis of the structures
generated by our algorithm.

A. Number of Pigs

This is the only component of the original fitness function
that has not been altered. Simply put, the more pigs that are
present within a structure the more desirable the structure. |p|
is defined as the total number of pigs in the structure. This
section of the fitness function is described by equation (1):

1

1 + |p| (1)

B. Number of Blocks

The original fitness function defined this component as the
difference between the desired and actual number of blocks,
divided by the difference between the maximum and actual
number of blocks. While this was appropriate for simple
columns of blocks it becomes very impractical when used
for more complex structures. This is because the maximum
number of blocks that a structure could theoretically contain
grows exponentially as the number of rows increases. For
example, a ten row structure generated using our method
typically contains between twenty and sixty blocks, but the
maximum number it could theoretically contain is 88,572
(structure with three peak blocks and each block having
three supporting blocks). This means that the value for this
component of the fitness function will become insignificant for
any structures with a medium to high number of rows. Instead,
we suggest a more suitable calculation, where the difference
between the desired number of blocks B and the actual number
of blocks |b| is multiplied by a set factor X . This factor is used
to adjust how much of an impact the difference between the
desired and actual number of blocks has on the structure’s
overall fitness value. This section of the fitness function is
described by equation (2):

X(
√

(B − |b|)2) (2)

C. Structure Aspect Ratio

One of the new components that we have added to our
fitness function is the structure’s width to height ratio (aspect
ratio). Similar to the previous component, the maximum aspect
ratio for any structure can be extremely large depending on the
number of rows. This means that any attempt to normalize the

ratio by dividing by the maximum would severely reduce the
effectiveness of this component. Instead, we simply multiply
the difference between the desired ratio R and the actual ratio
|r| by a set factor Y . This factor is used to adjust how much
of an impact the difference between the desired and actual
structure aspect ratio has on the structure’s overall fitness
value. This section of the fitness function is described by
equation (3):

Y (
√

(R− |r|)2) (3)

D. Pig Dispersion
The other component that we have added to our fitness

function is the dispersion, or spread, of pigs throughout the
structure. The theory here is that structures with pigs located
throughout them will be more desirable than structures with
the pigs all grouped together. There are several methods that
are currently available for measuring the spread of points (or
in ours case pigs) throughout a 2D space.

1) Variance from center point: This method estimates the
dispersion of pigs by calculating the variance for the Euclidean
distance between each pig’s position and the mean position of
all pigs. This value is then normalized by dividing it by the
length of the diagonal of the structure’s bounding box.

2) Mean nearest neighbor distance: This method estimates
the dispersion of pigs by calculating the mean of the nearest
neighbor distances for each pig [23]. This value is then
normalized by dividing it by the length of the diagonal of
the structure’s bounding box.

3) Morisita’s index of dispersion: This method first divides
the structure’s bounding box into a set number Q of equally
sized quadrats. The number of pigs in each quadrat ni is then
counted and used together with the total number of pigs N
to calculate Morisita’s index of dispersion [24], described by
equation (4):

MI = Q(

∑Q

i=1
ni(ni − 1)

N(N − 1)
) (4)

4) Pig surrounding area overlap: This method was created
specifically to address limitations which were identified in the
previous methods and so provides a robust estimation of pig
dispersion. First, the total width and height of the structure is
divided by the square root of the number of pigs. A rectangle
with this new width and height is then placed at the location
of each pig within the structure. If none of these rectangles
overlap then their total area would equal the area of the
structure’s bounding box. However, it is likely that some of
these rectangles will overlap those that are nearby, resulting
in a lesser value. The total area that all the rectangles cover is
then calculated and normalized by dividing it by the area of
the structure’s bounding box (maximum possible area).

5) Comparison of methods: Whilst all the methods de-
scribed above give suitable estimations of pig dispersion for
the majority of generated structures, there are several cases
where they can give unreliable results. To compare all the
methods, each was tested on four different structures, see
Figure 7, and the results are given in Table I.
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TABLE I
COMPARISON OF PIG DISPERSION ESTIMATION METHODS

Mean
Variance

Mean
Nearest
Neighbor

Morisita’s
Index of
Dispersion

Surrounding
Area
Overlap

Structure a 0.7314 0.0763 0.3333 0.5782
Structure b 0.3613 0.2568 0.6667 0.8908
Structure c 0.1592 0.0763 0.2778 0.3263
Structure d 0.5092 0.0763 0.5556 0.5958

In Figure 7, we can see that although the pigs are more
dispersed in (b) than in (a) the mean variance from center
point was higher for (a) than (b). This is because this method
essentially rewards structures with pigs placed away from
the center point, rather than structures with pigs dispersed
throughout. A single grouping (c) would correctly give a very
low dispersion value but two separate groupings results in an
incorrect estimation.

In Figure 7, we can also see that although the pigs are
more dispersed in (d) than in (c) the mean nearest neighbor
distance is the same for both. This is because this method only
uses the distance between each pig and its nearest neighbor
to estimate pig dispersion. Having groupings of two pigs at
multiple locations gives the same value as having all pigs at
one location.

The problem with Morisita’s index of dispersion is that
although it gave good estimations for the structures tested, it
relies on the number of quadrats to be chosen effectively. For
this comparison, we created nine quadrats (3x3) but a different
number of quadrats would have yielded quite a different result.
This means that this method is only accurate when there are a
large number of pigs available, so that each quadrat contains
a sufficient number of pigs to be representationally accurate.

Our own method for estimating pig dispersion, based on
measuring the overlap of each pig’s surrounding area, per-
formed well in all cases and can be normalized effectively.
This method was therefore chosen to be used in our fitness
function, where d defines the dispersion value. The set factor
Z is used to adjust how much of an impact the dispersion of
pigs has on the structure’s overall fitness value. This section
of the fitness function is described by equation (5).

Z(1− d) (5)

E. Complete Fitness Function

The sum of all these separate components for number
of pigs, number of blocks, structure aspect ratio and pig
dispersion makes up the complete fitness function, described
by equation (6):

F = 1
1+|p| +X(

√
(B − |b|)2) + Y (

√
(R− |r|)2) + Z(1− d) (6)

V. PROBABILITY TABLE

Instead of randomly selecting a block type during structure
generation in an unbiased manner, a probability table can
be used to alter the chance of a particular block type being
selected. Each of the block types available is allocated a
probability of being selected, with all probabilities summing

to one. Whilst this probability table allows for more designer
control, it can also be optimized automatically using a training
algorithm and our fitness function. The training algorithm
attempts to find structures which minimise the fitness function
for the given parameters. Each training algorithm iteration
creates nine different structures (a single generation) and uses
the fitness function to rank them from most desirable (R = 9)
to least desirable (R = 1). The frequency of block types
in each structure is then used to update the corresponding
sections of the probability table using equation (7):

Pi = Pi +

∑9

R=1
(SRi)(R− 5)

n
∑9

R=1
(SR)

(7)

Pi represents the probability table value for block i, SRi

represents the number of i blocks that the structure with
rank R contains, SR represents the total number of blocks
that the structure with rank R contains, and n is an update
factor which influences the speed at which the probability table
values converge. If the probability table value for any block
type is more than one then it is reduced to one. Likewise,
any probability table value less than zero is increased to zero.
After the probability table has been fully updated the values
are renormalized so that they again sum to one. The probability
table can be updated recursively over many generations using
this technique.

The ability to update the probability table with the fitness
function can be used to provide greater direction over what
types of structures are created. Each component of the fitness
function can be weighted to indicate how much emphasis
should be placed on each factor. This allows the user to alter
the parameters of the fitness function and hence tailor the out-
put of the structure generator to suit their needs. For example,
if the user prefers structures that are tall and thin, rather than
wide and short, then the desired structure aspect ratio is set
very low and the corresponding section of the fitness function
weighted to give more of an impact on the structure’s overall
fitness value. The probability table is then repeatedly updated
using this fitness function, after which the mean aspect ratio
of structures generated using this new probability table will be
less than before. Whilst this method does not guarantee that
certain requirements will be met (e.g. the structure’s height
must be greater than its width) it can be used to improve the
probability of such a structure being created without severely
restricting the generator’s expressivity.

VI. EXPERIMENTS AND RESULTS

Several experiments were carried out to test different com-
ponents of the structure generator and fitness function.

A. Probability Table Optimisation

As previously discussed, a probability table for block type
selection can be optimized over many generations using our
specified fitness function. We therefore updated our probability
table over 200 separate generations, with nine structures in
each generation, for a total of 1800 structures. Each structure
had ten rows and for our fitness function we defined: B = 40,
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(a) (b)

(c) (d)
Fig. 7: Four structures with the same block placement but with different pig dispersions.

Fig. 8: Probability table values for each block type after 200 generations.

R = 2.0, X = 0.01, Y = 0.2 and Z = 1.0. We then compared
three different update factors of n = 10, n = 100 and n =
1000, with the probability for each block type initially set to
1/13. The result of this experiment is illustrated in Figure 8.

For n = 10, only five block types had a probability greater
than zero. These were block types 1, 2, 8, 10 and 12, with
block types 1 and 10 taking almost 70% of the probability
between them. This is a clear indication that the update factor
is set too low, as once the probability for a block type is near
zero it is very difficult for it to increase again. This places an
overemphasis on the fitness function, increasing the likelihood
of creating a desirable structure, but greatly reducing the range
of structures that can be generated.

For n = 1000, the probability values changed very little
even after 200 generations. This suggests that the update factor
is set too high and that the probability table values are not
being updated by a significant amount for each generation.

For n = 100, the probability values have been updated
a reasonable amount but the change is not so large as to
significantly reduce the structure generator’s expressivity. The
probability values for block types 1, 2, 6, 8, 10 and 12
increased, whilst the values for block types 3, 4, 5, 7, 9, 11
and 13 decreased.

As a result of this experiment, an optimized probability
table was created using 200 generations and n = 100 for

each of three different row values, five, ten and fifteen.
These probability tables were then used when analyzing the
generator’s expressivity.

B. Expressivity analysis

Expressivity analysis has been described and implemented
in many previous content generation papers as a means of
comparing and contrasting different techniques. This is typ-
ically expressed as a metric which indicates the generator’s
strengths and weaknesses in various capacities. In this paper
we define four measures based on metrics used in previous
research [14], [15], [25]: frequency, linearity, density and
leniency. Frequency evaluates the number of times that a block
occurs within a structure. Linearity measures the width and
height of each structure. Density provides a measure for the
amount of ’free space’ within a structure. Leniency estimates
the difficulty of a structure, taking into account pig and block
numbers. These metrics will allow our structure generator to
be compared against any future methods. Presently however,
there are no suitable prior algorithms with which to compare
ours against.

For our experiments we generated 200 stable structures for
each of three different row values, five, ten and fifteen. Each
of these 200 structure groups was then sampled to find the
average and standard deviation for the frequency, linearity,
density and leniency. Example structures created using our
generation algorithm are displayed in Figure 9.

Figure 10 shows the results of frequency sampling for
structures with five rows. The average number of blocks is
12.72 with a standard deviation of 7.08. The average number
of pigs is 3.07 with a standard deviation of 1.92. Figure 11
shows the frequency results for structures with ten rows. The
average number of blocks is 27.39 with a standard deviation
of 14.07. The average number of pigs is 4.93 with a standard
deviation of 3.28. Figure 12 shows the frequency results for
structures with fifteen rows. The average number of blocks is
47.07 with a standard deviation of 24.59. The average number
of pigs is 7.54 with a standard deviation of 5.44.

The increase in pig numbers for structures with more rows
is likely due to the increased number of blocks and hence the
increased availability of viable pig locations. However, the pig
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(a) (b) (c)
Fig. 9: Three example generated structures with five rows (a), ten rows (b) and fifteen rows (c).

Fig. 10: Average and 95% confidence interval for block type frequency in
structures with five rows.

Fig. 11: Average and 95% confidence interval for block type frequency in
structures with ten rows.

Fig. 12: Average and 95% confidence interval for block type frequency in
structures with fifteen rows.

frequency relative to the block frequency was much greater for
smaller structures than the larger ones. This is probably caused
by the fact that the total number of pigs within a structure has
a much greater impact on the fitness function for structures
with a low number of blocks.

The relative frequencies of each block type also varied for
structures of different sizes. Structures with fewer rows tended
to favour smaller block types such as 5 and 7. This was likely
due to the fact that their small width allowed more of them
to fit within each row, which increased the total block count,
and their small height meant that they did not decrease the
structure’s aspect ratio as much as taller blocks. Structures
with more rows tended to favour the wider block types, as
these both decreased the total block count and increased the
structure’s aspect ratio.

Linearity was measured using both the average width (µW )
and height (µH ) of all generated structures for each row
amount, see Table II. The large standard deviation (σ) shows
that the structures created can differ greatly in terms of their
width and height, indicating a large variation in the block
arrangement of the generated structures.

The density of a structure was measured by summing the
areas of all blocks within the structure and dividing this by the
total area of the structure itself, including all sections of empty
space that it contains. The average density (µD) for each row
amount, as well as the standard deviation (σ), is provided in
Table II. The density of a structure appears to decrease as the
number of rows increases, meaning that larger structures are
likely to have more empty space within them and are therefore
less robust than their smaller counterparts.

For many prior and current content generation methods,
leniency is measured by analyzing the presence of certain
objects within the subject [25], [26]. For this experiment we
defined leniency using the number of pigs |p| and blocks |b|
that are present within the structure, described by equation (8):

Leniency = −2|p| − |b| (8)

Although primitive, this formula gives a rough estimate of
how difficult it will be to kill all the pigs located within
the given structure. The average leniency (µL) for each row
amount, as well as the standard deviation (σ), is provided in
Table II. The leniency of a structure can be seen to increase
with the number of rows, due to the expanded number of
blocks and pigs that are present within the structure. This
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TABLE II
LINEARITY, DENSITY AND LENIENCY FOR STRUCTURES WITH 5, 10 AND

15 ROWS

Rows Width
(µW |σ)

Height
(µH |σ)

Density
(µD|σ)

Leniency
(µL|σ)

5 2.651|1.727 2.841|0.995 0.701|0.186 −18.86|10.22
10 3.631|1.765 5.749|1.563 0.653|0.169 −37.25|17.14
15 6.349|2.450 6.353|1.274 0.612|0.126 −62.15|25.92

information can be used to influence other important aspects
within the Angry Birds game, such as the number of birds
provided or the ordering of certain levels.

VII. CONCLUSIONS AND FUTURE WORK

This paper has presented a search-based procedural content
generation algorithm for creating complex stable structures
within the video game Angry Birds. The algorithm builds
structures using a top-down approach, with block types se-
lected using a specified probability table. Each generated
structure is symmetrical and can be represented as a directed
acyclic graph. The structures created are populated with pig
targets and analyzed for global stability. Other factors such
as a varying number of peaks, multiple locations for support
block placement and several possible materials, ensure that the
range of possible structures is extensive and diverse.

Each generated structure is evaluated using a fitness function
which considers the pig number, block number, aspect ratio
and pig dispersion. This function can also be used to evolve the
probability table by updating each block’s chance of selection
over many different generations. Each section of the fitness
function can also be given a different weighting, allowing
the user to define which aspects of the structure are most
important.

Our structure generator was evaluated in terms of its expres-
sivity and optimization potential. Four metrics were defined
to investigate important aspects of the generated structures:
frequency, linearity, density and leniency. The results of this
analysis demonstrated that our structure generator can create
a wide range of structures with many different attributes.

Future work could be to develop algorithms which create
structures that can contain multiple block types and angles
within each row. Additional research could also be conducted
into estimating the number of birds required to kill all pigs
within a given structure. This information could then be
combined with our structure generation algorithm to create
a full procedural level generator for Angry Birds.
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Abstract—Simulation Balancing is an optimization algorithm
to automatically tune the parameters of a playout policy used
inside a Monte Carlo Tree Search. The algorithm fits a policy so
that the expected result of a policy matches given target values
of the training set. Up to now it has been successfully applied to
Computer Go on small 9× 9 boards but failed for larger board
sizes like 19×19. On these large boards apprenticeship learning,
which fits a policy so that it closely follows an expert, continues
to be the algorithm of choice. In this paper we introduce several
improvements to the original simulation balancing algorithm and
test their effectiveness in Computer Go. The proposed additions
remove the necessity to generate target values by deep searches,
optimize faster and make the algorithm less prone to overfitting.
The experiments show that simulation balancing improves the
playing strength of a Go program using apprenticeship learning
by more than 200 ELO on the large board size 19× 19.

I. INTRODUCTION

Monte-Carlo Tree-Search (MCTS) [1] is one of the most
important tree search algorithms in game playing especially
in Computer Go. It builds up a search tree and evaluates
the resulting positions using playouts. In a playout moves are
randomly played out until the game ends where the game result
can be determined by the rules of the game. The expected
result of games is then used in the tree search as evaluation
function.

Moves in a playout can be selected uniformly randomly
or with the help of expert knowledge. This type of knowl-
edge can be encoded by rules and patterns to assign each
move a probability to be played. To find a good playout
policy several techniques were developed. They range from
finding good patterns by hand [2] to automatically determine
weights by supervised learning [3], reinforcement learning
[4] or simulation balancing [5]. Simulation balancing stands
out from all algorithms as it is specifically developed for
evaluating positions in MCTS. While supervised learning [3]
and reinforcement learning [4] learn a policy which is a strong
player in itself simulation balancing improves the expected
result of a policy. As this is the primary usage in MCTS it
was argued that this leads to stronger game playing programs
[5]. Simulation balancing was compared to supervised learning
and reinforcement learning on 5×5 and 6×6 Go and showed
to be superior [5].

Later, simulation balancing was tested on more realistic 9×
9 and 19× 19 boards [6]. While simulation balancing showed
to be superior to apprenticeship learning on 9× 9 it failed to
do so on 19 × 19. Simulation balancing was also tested [7]
in the open source program pachi [8] and while it marginally
improved the playing strength apprenticeship learning proved
to be the better algorithm. As a result up to now it is not clear

weather apprenticeship learning or simulation balancing is the
better algorithm for policies in MCTS.

In this paper we reexamine simulation balancing and com-
pare it to apprenticeship learning on 19×19 Go. We introduce
a few improvements to simulation balancing and show that
also on large boards simulation balancing is the far superior
algorithm improving our Go program by more than 200 ELO.
The results confirm the original idea of simulation balancing
that a balanced policy is more important than a strong policy
[5].

The contributions of our paper are:

• Before running simulation balancing we pre-train the
policy by optimizing the log likelihood on expert
games. This not only decreases training time but even-
tually results in a superior policy as the optimization
finds a better local minimum.

• We use the optimization algorithm ADAM [9] to
improve upon plain stochastic gradient descent. This
change is especially important for infrequent features
in the policy that might have a major impact on
playing strength.

• We demonstrate that target values can be extracted
from expert games instead of using results from deep
searches. This simplifies simulation balancing, allows
for larger training sets and removes any inherent bias
which is involved when using deep searches.

• We show that overfitting is a major problem with sim-
ulation balancing. In addition to using a large training
set we control overfitting by a L2 regularization which
keeps the learned policy close to the pre-trained policy.

• We run experiments to measure the playing strength
in Computer Go. Contrary to previous papers [10]
results show that simulation balancing improves policy
weights even on boards with size 19× 19.

The remainder of this paper is structured as follows:

In section II we provide background information on simu-
lation balancing. In section III we introduce several extensions
to the standard simulation balancing algorithm. In section IV
we apply this algorithm to Computer Go. We evaluate the
effect of the extensions to the algorithm, examine how strong
simulation balancing is affected by overfitting and show the
results of experiments on playing strength. Finally, in section
V we draw our conclusion and point to future directions.
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II. BACKGROUND

In this section we introduce background information on the
simulation balancing algorithm as presented in [5]. If we had a
strong playout policy (always playing the best move), sampling
this policy would result in a perfect evaluation of positions.
Unfortunately, we will not be able to learn a playout policy
which always plays the best move and as a consequence it
will introduce errors in the evaluation. Small mistakes on every
move can accumulate over the long playouts into a large overall
error. So even a very strong policy can result in a bad overall
evaluation if the small mistakes on every move accumulate
unfavourably. The main idea of simulation balancing is to not
optimize a policy to be strong (without any control of how the
errors accumulate) but to produce a balanced policy so that
the small errors on every move cancel each other out during
the whole playout.

Throughout the paper we assume to use a softmax policy
to generate playouts:

πθ(s, a) =
eφ(s,a)

T θ∑
b e
φ(s,b)T θ

(1)

The policy πθ(s, a) specifies the probability of playing the
move a in position s. It is calculated from the feature vector
φ(s, a) ∈ Rn and a weight vector θ ∈ Rn. Some example
features used in practice can be seen in Section IV. The
gradient of the log of this policy is:

∇θ log πθ(s, a) = φ(s, a)−
∑
b

πθ(s, b)φ(s, b) (2)

To simplify notation in the following we abbreviate this
gradient with ψθ(s, a).

To learn the weights for a policy automatically we can fit
the policy to follow moves from expert-games as closely as
possible. To achieve this we can use apprenticeship learning
and maximize the log likelihood of the policy on a set of
expert games [5]. The resulting algorithm optimizes the log
likelihood using the gradient:

∇ log
n∏
i=1

πθ(si, ai) =
n∑
i=1

∇ log πθ(si, ai) =
n∑
i=1

ψθ(si, ai)

(3)

For optimization we use a form of stochastic gradient
descent which automatically determines learning-rates for all
parameters by approximating the diagonal hessian matrix [11].
Another popular algorithm not used in this paper is based on
the minorization-maximization principle [3].

In Monte Carlo Tree Search given a position s we are only
interested in the result1 z of the policy πθ starting in position
s. The idea of simulation balancing is to optimize a policy so
that this expected result Eπθ [z|s] is similar to a given target
value. The training set now consists of positions si and target
values V ∗(si) and we minimize the squared error:

1

2

n∑
i=1

(V ∗(si)− Eπθ [z|si])2 (4)

1This assumption is only true for plain MCTS and does not hold for
extensions like RAVE [4].

To optimize the policy with stochastic gradient descent we
need the gradient of the squared error (V ∗(si) − Eπθ [z|si])2
which is:

∇θ
1

2
(V ∗(si)− Eπθ [z|si])2 =

(V ∗(si)− Eπθ [z|si]) · −∇θEπθ [z|si]

The first part of the gradient (V ∗(si) − Eπθ [z|si]) can
be estimated by sampling random games following policy πθ
in position si and averaging the results z. The second part
∇θEπθ [z|si] can also be sampled using insights from policy
gradient reinforcement learning. If a game is defined as a
sequence of states and actions g = (s1, a1, ..., sn, an) and
a result of the game z(g) is 0 for a loss and 1 for a win
then the gradient of the policy πθ can be determined using the
REINFORCE algorithm [12]:

∇θEπθ [z|s] =
∑
g

∇θpπθ (g)z(g)

=
∑
g

∇θ
(∏

i

πθ(si, ai)
)
z(g)

=
∑
g

∏
i

πθ(si, ai)
∑
j

∇πθ(sj , aj)
πθ(sj , aj)

 z(g)

=
∑
g

pπθ (g)z(g)∑
j

∇πθ(sj , aj)
πθ(sj , aj)


=
∑
g

pπθ (g)z(g)∑
j

∇ log πθ(sj , aj)


= Eπθ

z(g)∑
j

ψθ(sj , aj)

 (5)

The first sum is over all possible games starting in position s
weighted by pπθ (g), the probability of their occurrence under
policy πθ. With this result to estimate ∇θEπθ [z|s] a number
of random playouts is sampled using πθ starting in s while
averaging z(g)

∑
j ψθ(sj , aj).

As shown both parts of the gradient can be approximated
by running several playouts. To minimize the squared error of
the training set we use two independent samples and apply
stochastic gradient descent. The final algorithm is shown in
Algorithm 1.

In practice we only have expert games with positions
and move decisions of strong players but no target value
for simulation balancing. In [5] and [6] target values were
calculated by running a deep Monte Carlo Tree Search using
apprenticeship learning as policy. If the search is deep enough
this serves as a good approximation to the true value V (s).

III. EXTENDED SIMULATION BALANCING

To make simulation balancing more effective and easier to
apply we used several extensions to the standard algorithm.

Instead of starting with a weight vector of zeroes we use
apprenticeship learning [5] to pre-train the weights on expert
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Algorithm 1 Standard Simulation Balancing

θ0 ← 0
for t = 0 to T do

(s1, V
∗(s1))← Random choice from training set

V ← 0
for j = 1 to M do

simulate (s1, a1, ..., sN , aN , z) following πθt
V ← V + z

end for
V ← V

M
for i = 1 to M do

simulate (s1, a1, ..., sN , aN , z) following πθt
g ← g + z

∑N
n=1 ψθt(sn, an)

end for
g ← g

M
θt+1 ← θt + α(V ∗(s1)− V )g

end for

games by optimizing the log-likelihood∑
i

log πθ(si, ai)

which fits the policy to follow the moves chosen by an expert
as closely as possible. In the simulation balancing algorithm
instead of using zero weights the weight vector is initialized
by the weights from apprenticeship learning. This has the
advantage to start from a sensible policy which does not have
to learn everything from scratch. It also the advantage that
the initial weights can be learned by more powerful optimiza-
tion algorithms like stochastic gradient descent with learning
rates based on the diagonal hessian [11] or minorization-
maximization [3].

In [6] it was shown that using 1/-1 for win/loss game results
leads to faster learning than 1/0. This can be reframed to using
1/0 results but using a baseline b of 0.5, i.e. transforming the
results z ← z − b. This is common practice in policy gradi-
ent reinforcement learning and we can choose any constant
baseline without changing the expectation:

Eπθ

(z(g)− b)∑
j

∇ log πθ(sj , aj)


=
∑
g

pπθ (g)z(g)∑
j

∇ log πθ(sj , aj)

−
b
∑
g

pπθ (g)∑
j

∇ log πθ(sj , aj)


= Eπθ

z(g)∑
j

∇ log πθ(sj , aj)

− b∑
g

∇pπθ (g)

pπθ (g) is the probability of a game under policy πθ. The
last term then drops, as from

∑
g pπθ (g) = 1 it follows

that
∑
g∇pπθ (g) = 0. While 0.5 is a sensible choice for

the baseline based on the reasoning that most positions are
about equal we replace it by the average reward baseline.
This removes one hyper-parameter to tune and allows for
better learning if positions are not equal. As we already

independently sample M playouts to obtain the average reward
V this baseline comes with no additional costs.

To avoid overfitting we regularize the policy by the L2-
Norm. Instead of penalizing large values ‖θt‖22 we use the
difference to the initial policy ‖θ0 − θt‖22. In this way we can
control how much the policy learned by simulation balancing
is allowed to differ from the apprenticeship learning policy.
If we interpret the initial policy learned by apprenticeship
learning as a strong policy and the policy learned by simulation
balancing as a balanced policy as argued in [5] then this
form of regularization has an additional benefit: It explicitly
controls the compromise between having a strong policy and a
balanced policy. Experiments in [6] have shown that a balanced
policy can play bad moves to achieve the desired result. Using
this type of regularization allows us to distract the simulation
balancing algorithm of this kind of trade-off.

Finally, we replaced plain stochastic gradient descent by
the optimizer ADAM [9]. ADAM uses exponential moving
averages of the mean m and the variance v of the gradients to
update the weight vector. It is invariant to diagonal rescaling
and each weight has its own learning rate. This improves
learning in Computer Go as policy features appear with
very different frequencies. Moreover, the moving average of
the mean provides a kind of momentum and smooths the
noisy gradients of simulation balancing. While it uses four
parameters (learning rate α, exponential decay rates β1, β2 and
minimum variance ε) these parameters were simple to set. We
used recommended default values of β1 = 0.9, β2 = 0.999,
ε = 10−8 and only fine-tuned the learning rate α.

Algorithm 2 Improved Simulation Balancing

θ0 ← Weights from Apprenticeship Learning
m0 ← 0
v0 ← 0
for t = 1 to T do

(s1, V
∗(s1))← Random choice from training set

V ← 0
for j = 1 to M do

simulate (s1, a1, ..., sN , aN , z) following πθt−1

V ← V + z
end for
V ← V

M
for i = 1 to M do

simulate (s1, a1, ..., sN , aN , z) following πθt−1

g ← g + (z − V )
∑N
n=1 ψθt−1

(sn, an)
end for
g ← g

M
l← (V ∗(s1)− V ) · g + λ(θ0 − θt)
mt ← β1 ·mt−1 + (1− β1)l
vt ← β2 · vt−1 + l � l . element wise square
m̂t ← mt

1−βt1
v̂t ← vt

1−βt2
θt ← θt−1 + α m̂t√

v̂t+ε
. element wise division

end for

Previously, the target values in the training set were gener-
ated by performing a deep MCTS [5] [6]. As this is a very time
consuming process only small training sets of up to 10,000
positions have been used so far [6]. But if the training set is too
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small overfitting is a major problem as we will show in Section
IV. Moreover, if there is a bias in the policy which is used in
the MCTS it is difficult to reduce this bias by performing a
deep search. In Computer Go for example policies tend to
like the centre of the board more than territory on the side.
If such a policy is used inside MCTS the overall search will
certainly have the same properties especially if the board is
large and long term effects are not visible inside the search tree.
To counter these problems we propose to use positions from
expert games and the result of these games as target value.
The target values (0/1) are less fine-grained than those of a
MCTS but are less biased and there are plenty of expert games
available. To avoid any potential problems with correlations
between successive positions inside a game we only use one
position/result-pair per game for the training set.

To decrease the training time we run the algorithm in
parallel on 16 machines2 by using mini-batches of positions
of size 128. Positions in a mini-batch are evenly distributed
across all machines and the result for the average results V and
the gradient g are averaged before updating the parameters.
With M large the number of simulations is so high that
communication-costs are negligible. Moreover, the playouts in
each of the two loops in simulation balancing are independent
so that they can be distributed across all cores on a single
machine. Using MPI and OpenMP the resulting algorithm with
M = 1024 takes about 45 min for one epoch trough the
training set of 200,000 positions.

IV. EXPERIMENTAL RESULTS

A. Dataset

We used games3 with the board size 19×19 which were
played on KGS with players having at least 4 dan strength
using only no-handicap games with at least 150 moves. The
resulting 270,000 expert games are used to create the dataset
for positions and target values. Of each game we randomly
chose one position and the result of the game as target value.
We used 200,000 positions for the training set and 70,000 for
the validation set.

B. Policy Features

The playout policy used in the experiments uses 3 × 3
patterns and local features dependent of the last move (7, 487
features in total). These are typical features of playout policies
in Go and are similar to those used in a previous paper on
Simulation Balancing [10]. Figure 1 illustrates some of the
features. 3 × 3 patterns contain atari-information of the four

(a) 3× 3 Pattern (b) Contiguous (c) Semeai

Fig. 1: Features of playout policy

2Each machine has two Intel Xeon E5-2670 (16 cores total), 2.6GHz,
64 GByte main memory, connected with QDR InfiniBand PCIe3, 40 Gbit/s
Mellanox

3http://u-go.net/gamerecords-4d/

direct neighbours and are grouped so that they are invariant to
rotation/mirroring/colour-reversal.

The local features are:

1) Contiguous to the last move (distinguished by dis-
tance |dx| + |dy| + max(|dx|, |dy|) for distances 2
and 3)

2) Save new atari-string by capturing
3) Save new atari-string by capturing but resulting in

self-atari
4) Save new atari-string by extending (distinguished by

group-size)
5) Save new atari-string by extending but resulting in

self-atari (distinguished if resulting group has nakade
shape)

6) Solve ko by capturing
7) 2-point semeai: if the last move threatens to kill a

2-liberty group any move which kills a neighbouring
string within 2 moves has this feature

8) 3-point semeai: if the last move threatens to kill a
3-liberty group any move which kills a neighbouring
string within 3 moves has this feature

9) 4-5-point semeai heuristic: if the last move reduces a
string to 4 or 5 liberties and this string cannot increase
its liberties (by a move on its own liberties) then any
move on a liberty of a neighbouring string of the
opponent which also cannot increase its liberties has
this feature

10) Make-Eye: if the last move threatened to destroy an
eye the move that creates the eye has this feature

11) Destroy-Eye: if the last move threatened to make an
eye the move that destroys the eye has this feature

12) Nakade: if the last move created a nakade-shape the
move on the vital point has this feature

C. Algorithmic Improvements

We conducted several experiments to measure the impact
of our improvements to simulation balancing using a leave-
one-out scheme. We remove the natural gradient, the average
reward baseline or the initialization of the weights from the
full algorithm (see Algorithm 2) and compare these variants
using five epochs of training. We use the error of the training
set to measure the differences between all variants and not
of the validation set to exclude overfitting effects and only
concentrate on the quality of the optimizing algorithm. For the
same reason we also turned off the L2-regularization for all
variants. The learning-rate for plain stochastic gradient descent
was set to α = 10. When using ADAM the learning-rate was
decreased to α = 0.01. We used a sample size of M = 1024
and a mini-batch size of 128 using the parallel version as
outlined above.

The results are shown in Figure 2. Leaving out the average
reward baseline is almost equal to the full algorithm. This
shows that a 0.5 baseline was a good default choice. The
average reward baseline removes this parameter from the
simulation balancing algorithm but does not improve the speed
of learning. Using pre-training for the weights accelerates
learning a lot. Moreover, simulation balancing can only find
a local minimum. It seems to be important to start from good
weights to achieve a low error. The ADAM solver improves
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the speed of learning in contrast to stochastic gradient descent
and achieves a lower error.
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Fig. 2: Leave-One-Out Experiments

D. Evaluation Error

The mean squared error on the validation set is 0.2143 for
apprenticeship learning while simulation balancing decreased
the error to 0.2002 with λ = 1e− 7. Figure 3 shows the mean
squared error depending on the game-phase each consisting of
15 moves. The MSE is calculated on 100,000 random positions
and sampling 100 playouts for each position. In the opening
phase apprenticeship learning and simulation balancing have
a similar error and only in the middle game and endgame the
policy is considerably improved. The failure to improve the
policy in the opening might be attributed to the rather small
3×3 patterns used in the policy which cannot capture opening
patterns in Go.
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Fig. 3: Mean Squared Error of Apprenticeship Learning and
Simulation Balancing for different game phases, 100,000
random positions, 100 playouts sampled at each position,
λ = 1e− 7

E. Overfitting and Regularization

To see how simulation balancing is affected by overfitting
we decreased the amount of positions in the training set from
200,000 to 10,000 and kept the validation set as it is with
70,000 positions. Regularization was turned off.

In Figure 4 we show training and validation errors for this
small training set. The gap between the error of the training set
and the validation set increases during training and the error
of the validation set even starts to get larger in the middle of
training which is a clear sign of overfitting. In Figure 5 we
show training and validation errors for the original training set
with 200,000 positions. While there is still some gap between
training set and validation set error the amount of overfitting is
reduced considerably. This shows that simulation balancing is
strongly affected by overfitting if the training set is too small.
This might also explain earlier failures of simulation balancing
on larger boards which used training sets of at most 10,000
positions [6].

To counter overfitting we used a large training set and
added L2-regularization. In Figure 6 we show the effects of
L2-regularization for different values for λ. We see that we can
effectively control how much the policy is allowed to adapt to
the training set.
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Fig. 4: Overfitting with a small training set with 10,000
positions
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Fig. 5: Overfitting with a large training set with 200,000
positions

F. Playing Strength

We also measured the effect on the playing strength of our
Go program Abakus. It uses RAVE [4], progressive widening
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[13], progressive bias [14] and a large amount of knowledge
(shape and common fate graph patterns [15] as well as Deep
Convolutional Neural Networks [16] [17]) in the tree search
part. Playout weights of apprenticeship learning and simulation
balancing are improved during the tree search with adaptive
playouts [18]. Abakus holds a 6-Dan rank on the internet server
KGS4.

To measure the playing strength we run tournaments
against the open-source program Pachi [8]. As Abakus is
considerably stronger than Pachi we used handicap games with
7 stones to level the chances. In addition to handicap games we
also run a tournament with even games against Abakus itself.
While self-play games can easily overrate an improvement they
have the advantage to fully concentrate on the difference of
the playout policies. With all factors involving the tree search
or the knowledge applied inside the tree the same they give
additional insight. We use 5s thinking time per move which
translates into about 50,000 playouts/move for Abakus and
135,000 playouts/move for Pachi. Results are shown in Table I.
MCTS with a playout policy learned by simulation balancing
is more than 200 ELO stronger than MCTS with a policy
learned by apprenticeship learning. Simulation Balancing uses
λ = 1e− 4 which achieved the strongest playing strength.

Algorithm Winrate ELO
Apprenticeship Learning (vs. Pachi) 39.9% ± 2.8 -71 [-92,-51]
Simulation Balancing (vs. Pachi) 71.6% ± 2.6 161 [140,183]
Simulation Balancing (vs. Apprenticeship) 84.3% ± 2.1 292 [267,321]

TABLE I: Playing strength of abakus against pachi with 7
stones handicap or no handicap against itself, 1200 games
played for each entry, 5s per move, 95% confidence intervals

Table II shows the playing strength with varying L2-
regularization. An interesting observation is that a policy with
a trade-off between strong and balanced achieved the best
results and not the policy with the lowest validation error.
This shows that regularizing the weights in relation to the
apprenticeship policy is not only important to decrease the
effect of overfitting. It is also crucial to achieve a strong
playing strength by adjusting the relation of strength and
balance in the playout policy. A reason for this might be

4www.gokgs.com

that our MCTS implementation uses RAVE [4] and adaptive
playouts [18] which work more effective with a strong playout
policy.

Regularization Winrate ELO MSE Validation Set
1e-3 60.5% ± 2.8 74 [54, 94] 0.2102
1e-4 71.6% ± 2.6 161 [140,183] 0.2051
1e-5 66.5% ± 2.7 119 [99,140] 0.2014
1e-6 63.9% ± 2.7 99 [79,120] 0.2003
1e-7 62.4% ± 2.7 88 [68, 109] 0.2002

Apprenticeship learning 39.9% ± 2.8 -71 [-92,-51] 0.2143

TABLE II: Playing strength of abakus against pachi, 7 stones
handicap, 1200 games played for each entry, 5s per move, 95%
confidence intervals

G. Weights

In Table III feature weights for local features are shown for
apprenticeship learning and simulation balancing. We show the
weights which achieved the best playing strength (λ=1e-4) and
the ones achieving the best mean squared error (λ=1e-7). In
general weights for capturing or semeai features are raised.
This leads to a policy which plays tactical moves much more
deterministically than a policy learnt by apprenticeship learn-
ing. This is in line with similar findings in previous simulation
balancing experiments [6]. If only little regularization is used
this effect is especially strong.

In addition, the contiguity weight is increased letting the
policy play more around the last move. It is interesting that the
simulation balancing algorithm can learn this automatically as
it is well known that playing around the last move in playout
policies in Computer Go is very valuable [2].

Feature
Apprenticeship

Learning

Simulation
Balancing
λ=1e-4

Simulation
Balancing
λ=1e-7

Contiguous (distance 2) 9.5 66.7 139.7
Contiguous (distance 3) 6.7 31.2 115.5
Atari-Capture 470.6 2158.1 22,026.5
Atari-Capture-Self-Atari 0.3 0.3 0.8
Atari-Extend-Small 15.1 43.2 46.0
Atari-Extend-Big 106.5 163.0 1,143.1
Atari-Extend-Huge 183.2 426.0 11,680.1
Atari-Extend-Self-Atari 0.2 0.1 0,8
Atari-Extend-Self-Atari-Nakade 1.8 1.8 1.5
Solve-Ko 7.5 9.1 4.8
Semeai-2 165.6 306.4 14,013.0
Semeai-3 74.4 105.5 17,508.5
Semeai-n 6.4 8.8 2,550.0
Make-Eye 2.8 4.4 6.1
Destroy-Eye 6.0 10.3 53.1
Nakade 2.1 3.6 24.3

TABLE III: Comparison of feature weights for apprenticeship
learning and simulation balancing for λ=1e-4 and λ=1e-7,
Gamma values of weights are shown, γi = eθi

V. CONCLUSIONS AND FURTHER WORK

In this paper we investigated simulation balancing which
is an algorithm to optimize the parameters of a playout
policy inside a Monte-Carlo Tree-Search. The algorithm was
specifically designed to optimize policies for MCTS but so far
has failed in practice on large boards in Computer Go [6] [7].
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We added several improvements to the standard simulation
balancing algorithm. Instead of starting from a random policy
the weights are initialized by apprenticeship learning which
optimizes the log-likelihood of the policy to match move
decisions from experts. This proved to speed up training and
resulted in a better local minima of the policy. Moreover,
we added an average reward baseline to reduce the variance
of the gradient. While this did not improve learning it re-
moved a hyper-parameter from the algorithm. We replaced
plain stochastic gradient descent by ADAM [9] which is an
extension to SGD so that each weights has its own learning
rate. As the policy has a lot of infrequent but important features
this improved training-time and quality. Finally, we added
L2-regularisation to avoid overfitting and control the trade-
off between a strong and a balanced policy. Experiments on
playing strength showed that simulation balancing produces
much better policies than apprenticeship learning resulting in a
strength improvement of more than 200 ELO. We also showed
that neither a strong nor a balanced policy got the best playing
strength but a mixture controlled by the L2-regularization. To
simplify simulation balancing and to remove any inherent bias
we did not generate a training set based on deep searches but
used an expert database. From each game we took one random
position and the game result as a target value. This allowed us
to use much larger training sets than before which was shown
to be important to decrease the amount of overfitting.

Future work includes testing simulation balancing in com-
bination with value networks as used by AlphaGo [19]. Al-
phaGo uses deep convolutional neural networks to provide
much better evaluations than playout policies. The evaluation
of the value networks vθ(s) and the average results of the
playout policy are then mixed in MCTS to provide a value
estimate. While AlphaGo used apprenticeship learning to learn
the policy weights simulation balancing might improve evalu-
ations further. In this setting it might be useful to replace the
cost function to minimize in Equation 4 by

1

2

n∑
i=1

(V ∗(si)− [(1− γ)vθ(si) + γEπθ [z|si]])2 (6)

. In this way the policy weights are not optimized indepen-
dently from the value network but are learned to complement
the value network in reducing the MSE in the best possible
way.
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Abstract—The behavior of virtual characters in computer
games is usually determined solely by decision trees or finite state
machines, which is detrimental to the characters’ believability.
It has been argued that enhancing the virtual characters with
emotions, personalities, and moods, may make their behavior
more diverse and thus more believable. Most research in this
direction is based on existing (socio-)psychological literature,
but not tested in a suitable experimental setting where humans
interact with the virtual characters.

In our research, we use a simplified version of the personality
model of Ochs et al. [1], which we test in a game which has human
participants interact with three agents with different personali-
ties: an extraverted agent, a neurotic agent, and a neutral agent.
The model only influences the agents’ emotions, which are only
exhibited by their facial expressions. The participants were asked
to assess the agents’ personality based on six possible traits.

We found that the participants considered the neurotic agent
as the most neurotic, while there are also indications that
the extraverted agent was considered the most extraverted.
We conclude that players will indeed distinguish personality
differences between agents based on their facial expression of
emotions. Therefore, using a personality model may make it easy
for game developers to quickly create a high variety of virtual
characters, who exhibit individual behaviors, making them more
believable.

I. INTRODUCTION

Over the last decades, computer games have evolved from
plain and simple environments, to extensive virtual worlds,
with refined visuals and options for players to make personal
adjustments [2], [3]. The degree of realism that is achieved by
the graphical representation of the game is, however, being
shortchanged by the simplistic implementation of the non-
player characters (virtual agents) in games, of which the
behavior is often controlled by finite state machines [3] rather
than responding to the human player. Such agents can hardly
be called “believable”. Creating more believable virtual agents
is not necessarily about making them as realistic as possible
[4]; on the contrary: Bates [5] describes the believability of
an agent not as creating a reliable or honest virtual agent, but
“one that provides the illusion of life”, so that the player can
have a “suspension of disbelief”. Therefore creating a game
that is credible is more important than creating one that is
realistic [1].

A common solution used by game developers to make
virtual agents respond to the human player is to code all
possible options in a decision tree [1]. However, creating such
a tree, even if only a limited number of options is taken into
account, is time-intensive and costly, both during development

and testing. Games therefore limit the creation of complex
interactions with a few choice non-player characters, turning
the remainder into a series of clones which all respond to the
player in exactly the same way.

An extensive attempt to tackle the problem of creating
believable virtual agents for games was done by Ochs et al.
[1], who developed a model which takes the virtual agent’s
personality and social relations into account, to determine its
emotional state. They claim that their model is consistent
with results from (social) psychology. However, they never
tested their model in experiments with real life participants,
to determine if human players actually consider the agents
believable. McRorie et al. [6] evaluated the believability of
virtual agents with human participants, but these evaluations
were limited to the participants watching pre-recorded footage
of interactions with virtual agents, rather than interacting with
the agents themselves.

In our research we extend upon the work by Ochs et al.
[1] and McRorie et al. [6] by actually testing a model for
believable virtual agents in interaction with humans. We use a
simplified version of the model of Ochs et al. [1]. We test this
model on real life participants, who have to interact directly
with the virtual agents, to find out to what extent the agents
are indeed believable according to the participants.

II. BELIEVABILITY OF VIRTUAL AGENTS

When discussing the believability of virtual agents, various
researchers list different factors of importance. McRorie et
al. [6] consider personality as a determinant factor for the
believability. Ochs et al. [1] list emotions and social relations.
Gebhard [8] add moods to the mix. Regardless the factors,
Ortony [7] argues for internal consistency. In practice, the
implementation of behavioral characteristics in virtual agents
is not based on existing psychological knowledge, but on
intuition of the game designers [6]. McRorie et al. [6] reason
that an approach to designing virtual agents based on social
psychology will result in more believable characters.

In the following subsections, we provide some theoretical
background for the most commonly named factors of believ-
ability of virtual agents, as well as examples of recent research
on modeling these factors.

A. Emotions

The ability to express emotions is key for the believability
of virtual agents, as it shows that the virtual agent “cares”
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about what is happening in its surrounding environment [5].
Virtual agents who do not show any emotions do not provide
an “illusion of life” and therefore do not generate compassion
in players.

However, it is not easy to describe what, exactly, emotions
are. Despite being extensively investigated, researchers have
not yet agreed on a uniform definition of emotions. There is
no agreed-upon clear distinction between the terms “emotion”,
“mood”, “attitude” and “feeling”[9]. Literature often focuses
on Ekman’s notion of six basic emotions: happiness, sadness,
fear, anger, surprise and disgust [10]. Du, Tao and Martinez
[11] describe a group of compound emotions, which can be
constructed by combining basic emotions, such as “happily
surprised” and “sadly disgusted”.

In designing virtual agents with believable emotions three
main challenges occur: (1) identifying the specific circum-
stances in which a certain emotion should appear, (2) deter-
mining how to display these emotions, and (3) defining which
behavior on the part of the agent will be the result [1].

As for identifying circumstances, the Ortony, Clore and
Collings (OCC) model provides a popular approach to appraise
events in research concerning the simulation of emotions [12].
The OCC model determines which of 22 types of emotion
occurs using three different factors: the consequences of
events, the actions of the agents, and the aspects of objects
[13].

Displaying emotions in virtual agents is usually attempted
via facial expressions, gestures, and tone of voice, with fa-
cial expressions being most important [14]. A well-known
system that can be used for animating facial expressions in
virtual agents is the Facial Action Coding System (FACS)
[15]. The system measures facial expressions in terms of
Action Units (AUs), which are the smallest possible units of
moving muscles in the face. For each facial expression, certain
combinations of AUs are activated with different intensities.

Amini et al. [16] developed the HapFACS software, which
can simulate AUs described by FACS on virtual agents. The
system works together with Haptek software, which creates
virtual avatars. The advantage of using the software is that the
AUs are FACS validated [16]. The main disadvantage is that
it only runs on outdated operating systems.

B. Personality

Personality can be described as “a pattern of behavioral,
temperamental, emotional, and mental traits for an individual”,
including its “longterm tendencies” [13]. It can be interpreted
by “encoding and decoding [...] mainly non-verbal cues” [14].
According to Albeck and Badler [13], personality is key to
creating believable autonomous agents. Ochs et al. [1] state
that virtual agents with a personality will contribute to the
consistency of a game, and thus to believability of the agents.

There are two well-known psychological models that de-
scribe personalities. The first is the model by Eysenck [17],
which uses only two traits: extraversion versus introversion
and neuroticism versus emotional stability. The second (and
most commonly used) model is the five-factor model by Costa

and McRae [18], which adds to Eysenck’s model the factors
openness, agreeableness, and conscientiousness.

McRorie et al. [6] explain how people tend to make auto-
matic judgments about the personalities of their interaction
partners, so they should also do this with virtual agents.
Modern game characters already feature facial expressions
and head and eye movements, on which players will base
personality judgments. To test their theory, McRorie et al. [6]
used still images of their designed virtual agents with different
personalities as well as video clips, where the interaction
between the virtual agents with a (male) player was shown.
They measured three values: the virtual agents’ believability,
consistency and familiarity. However, none of the participants
in the study interacted with the virtual agents themselves.

C. Moods

Moods are often considered similar to, but not the same as,
emotions. Ekman [10] points out several differences between
moods and emotions. The three main differences are: (1)
moods last longer than emotions (though it is unclear what
lengths of time are meant), (2) moods do not have a unique
facial expression, contrary to emotions, and (3) moods may
have an influence on emotions. As an example for the third
difference, consider irritation (a mood) and anger (an emotion).
When one is irritated, one is quicker to get angry, and being
irritated causes the anger to last longer.

Gebhard [8] used mood as a factor in his “layered model
of affect”, called ALMA, which was intended to simulate
believable behavior in virtual agents. According to Gebhard,
the three types of affect are emotions (short-term affect),
moods (medium-term affect), and personality (long-term af-
fect). These three types interact with each other in the ALMA
model, which was implemented in virtual agents. However,
whether or not this model improves believability of agents
has not been investigated yet.

D. Social relations

Most models of social relations contain a finite set of
variables, each of them representing one of the dimensions of
the social relation between two (virtual) agents [1]. Ochs et al.
[1] state that each model uses different variables; there are no
pre-set requirements that researchers have reached consensus
on. An example of the implementation of social relations in a
game is found in the work of McCoy et al. [19].

E. Ochs’ model

Ochs et al. [1] did an extensive attempt to design virtual
agents based on knowledge of the field of (social) psychology.
Instead of having a focus on a single component that is
important for the believability of a virtual agent (emotions, per-
sonality, moods or social relations), they developed a model,
aimed at game developers, which calculates the virtual agents’
emotional state and its resulting behavior, by taking the virtual
agents’ personality and social relations into account. They
argue that this results in more consistent behavior, increasing
the believability of the virtual agents.
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Fig. 1. Ochs’ model (from Ochs et al. [1]).

Ochs’ model (see Figure 1) is based on several theories in
(social) psychology. It uses an adapted version of the OCC
model to model emotions. Two differences with the OCC
model is that Ochs’ model uses 10 instead of 22 emotions
(namely joy, hope, disappointment, distress, fear, relief, pride,
admiration, shame, and anger), and that it does not require the
definition of explicit agent goals (because, as Ochs reasons,
they might often be difficult to apply for a game). Instead of
goals, Ochs’ model uses “actions, objects, and other characters
of the environment” [1].

For personalities, Ochs’ model uses the original Eysenck
two-factor model. The influence of personality on emotions
is based on Gebhard’s ALMA model [8] (despite the fact
that ALMA is used with moods rather than emotions). In
Ochs’ model, the intensity of an emotion is determined by
the personality dimensions, as follows: a higher score on the
extraversion dimension increases the intensity of “positive”
emotions (such as joy, hope, pride, and relief), while a higher
score on neuroticism increases the intensity of “negative”
emotions (such as sadness, frustration, irritation, and anger).
This idea of linking the effect of personality to emotions in
this way follows from the work by Watson and Clark [20].

Social relationships are covered by Ochs’ model by calcu-
lating the effects of “liking”, “dominance”, “solidarity”, and
“familiarity”.

While Ochs’ model is quite extensive, we note three short-
comings in its design and the reasoning behind the design:

1) No motivation is given for reducing the number of
emotions from 22 to 10, and for adapting the ALMA
model from moods to emotions;

2) While it is claimed that the model will result in believ-

Fig. 2. Simplified version of Ochs’ model.

able, consistent behavior, the model omits a description
of how behavior follows from the model; and

3) The model was never tested with real-life participants;
the only tests done with the model were on correctness
of implementation, not on the effect on the believability
of agents controlled by the model.

In our research, we aim to (partly) resolve the third of these
shortcomings, by testing the effect of agents controlled by
a version of Ochs’ model on humans interacting with these
agents.

III. EXPERIMENTAL SETUP

For our experiments, we derived a simplified version of
Ochs’ model [1] to control agents with a predefined personality
in an interaction with human participants.

A. Model design

The primary goal of our research is to investigate if per-
sonalities in a virtual agent, simulated by our model, are
recognized by real-life participants. Since we focus on the
recognition of the virtual agents personality, we have to
exclude other interfering aspects of the model of Ochs et
al. [1]. The simplified version of Ochs’ model that we used
is shown in Figure 2. There are two important differences
between our model and Ochs’ model:

1) In our model we do not account for attitudes. In Ochs’
model, attitudes influence the intensity of emotions.
Since we want to measure the effect of personality,
which also influences the intensity of emotions, we have
to leave attitudes out of the model.

2) Neither do we account for social relations in our model.
In Ochs’ model, social relations influence behavior next
to emotional states. Since in our model we want to
measure the effect of personality, which interacts with
emotions which influence behavior, we need to exclude
any other factors that influence behavior.

As can be seen in Figure 2, in our model the virtual agent is
characterized by its personality, which influences the intensity
of emotions triggered by events, and thus the emotional state
of the virtual agent. The agent’s emotional state determines its
expression of these emotions.

Emotions can be expressed in different ways, such as
visual appearance and behavior; however, in our experiments
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we focus exclusively on facial expressions. Moreover, rather
than including all ten emotions covered by Ochs’ model, we
chose to focus on only two combinations of emotions: joy-
distress and admiration-anger. The reason to select these two
combinations is that they are relatively easy to trigger and
recognize, as they are direct reactions to events occurring at a
present moment, instead of being related to a larger context of
the past or future (according to the definition of these emotions
by Ochs et al. [1]).

B. Implementation

We implemented our model in a small game, in which the
player has an interaction with three different virtual agents.
The model allows the creation of a wide variety of agents,
but for our experiments we decided to focus on three which
are fundamentally different: (1) an extraverted agent which
scores high on the extraversion dimension, but neutral on the
neuroticism dimension; (2) a neurotic agent which scores high
on the neuroticism dimension, but neutral on the extraversion
dimension; and (3) a neutral agent, which scores neutral on
both dimensions.

Each agent has an emotional state, consisting of values for
joy, distress, admiration, and anger. In our game, the values
for the emotions in the emotional state range from 0 to 2, with
an initial value of 0.

Events in the game are defined as 3-uplets consisting of (1)
an independent event that occurs or an agent that performs an
action, (2) a positive or negative effect that follows, and (3)
the virtual agent that experiences the effect. This information
is used to determine which emotion occurs following the
event. Emotions that may follow an independent event are joy
(positive) or distress (negative). Emotions that may follow the
action of an agent are admiration (positive) or anger (negative).

After the type of emotion is determined, the intensity is
calculated. In our game the initial intensity of each emotion
is 1, which is further influenced by the personality of the
agent. For the extraverted agent, for positive emotions the
intensity value is doubled, while for the neurotic agent, for
negative emotions the intensity is doubled. For agents of
other personality types (e.g., slightly neurotic but also a bit
extraverted) obvious adaptations to these values can be made.

The experienced emotion’s intensity is then added to the
corresponding value in the agent’s emotional state, in our
implementation capped at the boundary of 2.

After every event in the game, all values in the emotional
state of the agent are decreased by a “decrease rate”. In Ochs’
model, a logarithmic decrease rate is used, which we simplified
to a linear rate (of which the effect happened to be close to
what happens in Ochs’ model), which decreases each of the
values by 0.2 with a lower bound of 0.

Finally, the agent’s emotional state determines its facial ex-
pression in the game. For this, we took the dominant emotion
(i.e., the one with the highest value) from the emotional state,
and selected a facial expression corresponding to the intensity
of that emotion. Examples of facial expressions are shown in
Figure 3: rows from top to bottom representing joy, distress,

admiration, and anger, columns from left to right representing
intensity values 0.4, 0.8, 1.2, 1.6, and 2.0. The emotional
expressions were generated with the FaceGen software.

FaceGen has pre-programmed expressions for “anger”. For
“distress”, we used the pre-programmed “sadness” expres-
sions. For “joy”, according to Du et al. [11] AUs 6, 12, and
25 are used, which we managed to approach using detailed
FaceGen sliders. For “admiration” we consulted Parke and
Waters [21], which describe an admiration expression as gen-
erated by “the muscles of astonishment associated with those
of joy”, which we also implemented using detailed FaceGen
sliders. We pre-tested the expressions with ten participants,
asking them to describe the emotion associated with a facial
expression. Most participants labeled our initial creations
correctly, except for “admiration”. We tweaked the expression
for “admiration” and offered it to a second group of ten test
participants, of which five specifically recognized the face as
expressing “admiration”, and none of the others labeled it as
a negative emotion. This was the expression that we used in
the experiments.

Note that we are not claiming that personality and emotions
only influence facial expressions in practice: in fact, they
influence all aspects of interaction, including speech patterns
[22], gestures [23], and behavioral responses [18]. However,
to be able to correctly assign the players’ assessments to
particular elements in the game, we wanted to limit the effects
of the model to a single feature, for which we chose facial
expressions.

C. Game

We implemented our game in Ren’Py, a tool for creating
visual novels. Players control the game by making menu
choices in their interaction with virtual agents. The simple
storyline of our game had the participant fulfill the role of
a detective who is investigating a robbery. The player had
to interrogate three virtual agents: the extraverted, neurotic,
and neutral agents that we defined. Two short excerpts from
a dialogue are displayed in Table I, including the emotional
effect of the player’s statements on the agent, and whether
this effect was caused by an event, or an action of the player.
These excerpts provide only one possible choice for each of
the player’s dialogue options. Note that in the actual game the
dialogue is much longer, and includes a situation in which the
player suspects the agent of being involved in the robbery.

The choices that the player made had little effect on the
progression of the story; while it might seem to the participant
that their choices drove the interrogation, they actually always
led to the same follow-up responses of the virtual agents.
The interactions were slightly different between the three
agents that the player encountered, but the order in which the
interactions were presented to the participants were always
the same. However, the three personalities imprinted on the
agents differed between the participants: the six different
orders in which the three personalities could be presented
to the participants all occurred the same number of times.
For example, while the first agent encountered always had
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Fig. 3. Facial expressions.

a particular interaction with the participant, one-third of the
participants had this interaction with the extraverted agent,
one-third with the neurotic agent, and one-third with the
neutral agent. The emotional impact of the events was only
visible in the facial expressions of the agents.

In each interaction, five different events occurred that trig-
gered an emotion. Three of those were negative, one of them
caused by the participant. Two were positive, one of them
caused by the participant.

After each of the three interactions with the virtual agents,
the participants had to indicate to what extent they thought
the virtual agents had certain personality traits. This was
questioned by means of five-point Likert scales, where one re-
sembled “totally disagree” and five resembled “totally agree”.
The participants did this for the following six statements: (1)
the agent is introverted, (2) the agent is emotionally stable,
(3) the agent is orderly, (4) the agent is extraverted, (5) the
agent is neurotic, and (6) the agent is intelligent. The third

and sixth statement served as control statements: in theory,
the scores on these two statements should not differ between
the personalities.

At the end of the game, the participants had to answer a
few questions on their gender, age, education and experience
with games.

D. Participants

36 people participated in the experiment, who were between
21 and 57 years old (M = 27.31, SD = 10.11). Of
these participants, 16 were male and 20 female. Four people
attended higher professional education, 32 went to university.
16 of the participants stated they did not have any experience
with computer games at all. The participants were equally
distributed over the six conditions.
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TABLE I
TWO EXCERPTS FROM A DIALOGUE.

Speaker Text Effect
Player: “You have a personal storage locker at the bank.

Is that correct?”
Agent: “Yes.”
Player: “Can you tell me what was in it?”
Agent: “Why? What is this about?”
Player: “The bank was robbed this weekend. I am investigating Negative

the robbery.” (event)
Agent: “I understand. There were a few family valuables in the

locker. Jewelry and a watch.”
Player: “Some of the personal lockers were broken into. I am Negative

afraid that yours was also emptied.” (event)
Agent: “Will I ever see my possessions again?”
Player: “I can tell you that some of the stolen goods were Positive

recovered this morning.” (event)
Agent: “Did you also find my jewelry?”
Player: “If you give me a moment, I will check.”

(Player makes a phone call)
Player: “My colleague tells me that it looks like some of your Positive

possessions have indeed been found. I will make sure (action)
that they are returned to you as soon as possible.”

IV. RESULTS

Figure 4 shows the average assessment of the participants
over the personality traits of the three virtual agents (exact
numbers follow in Table III, and more numerical details have
been reported by Kersjes [24]). The six personality traits that
are assessed are shown in groups of three bars, of which the
left represents the score for the extraverted agent, the middle
for the neurotic agent, and the right for the neutral agent. We
stress once more that by balancing the order in which the
virtual agent personalities were presented to the participants,
the differences between the assessments are the sole result of
the participants’ observations of the facial expressions of the
virtual agents, which were generated by our personality model.

A visual inspection shows some notable differences between
the assessments:

• All three agents score higher on “extraverted” than on
“introverted”. This indicates that all of them are consid-
ered to be leaning towards being extraverted, though for
the extraverted agent the difference between the scores is
a bit higher than for the other two agents.

• Both the extraverted and neutral agent score higher on
“emotionally stable” than on “neurotic”. For the neurotic
agent, however, these scores are almost equal. This in-
dicates that the participants assess the neurotic agent as
considerably more neurotic than the other two agents.

• Finally, the extraverted agent scores higher on both “or-
derly” and “intelligent” than the other two agents. The
neurotic agent scores lowest on these traits, though the
difference with the neutral agent is small.

A. Reliability and factor analysis

In order to further analyze these results, a reliability and
factor analysis was conducted. All scores on each of the six
traits were combined into six general (dependent) variables.
The personality of the agents served as an independent variable
in this way of grouping the data. The polarity of “introverted”
and “neurotic” was reversed. The internal consistency of the

Fig. 4. Assessment of personality types.

TABLE II
FACTOR ANALYSIS RESULTS.

Scale Introverted- Emotionally stable- Orderly-
extraverted neurotic intelligent

Introverted (reversed) .83
Emotionally Stable .73 .24
Orderly .11 .44
Extraverted .77
Neurotic (reversed) .84 .10
Intelligent .12 .67

six measured traits was low (Cronbach’s α = .45), thus all
items appeared worthy of retention.

A principal factor analysis was conducted, resulting in three
factors. Factor loadings are displayed in Table II. The clustered
items indicated that the first factor represents the introverted-
extraverted trait, the second factor represents the emotionally
stable-neurotic trait, and the third factor represents the two
control variables: orderly and intelligent. We added these
factors as three new variables, consisting of (1) the mean score
of extraverted and reversed introverted, (2) the mean score of
emotionally stable and reversed neurotic, and (3) the mean
score of orderly and intelligent.

For the nine variables (the six original scores and the three
new ones) we did an analysis of variance with repeated mea-
sures. Table III shows the means and (between parentheses)
standard deviations for each of the scores.

The analysis of variance shows the following:

• Between the agents, there is no significant differ-
ence for the scores on “introverted”, “orderly”, “ex-
traverted”, “intelligent”, “introverted-extraverted”, or
“orderly-intelligent”.

• Between the agents, there is a significant difference for
“neurotic” (F (2, 70) = 7.02, p < .005). The score for
the neurotic agent is significantly higher than the scores
for the other two agents. There is no significant difference
between the scores for the extraverted and neutral agents.

• Between the agents, there is a significant difference for
“emotionally stable” (F (2, 70) = 8.72, p < .001). The
score for the neurotic agent is significantly lower than the
scores for the other two agents. There is no significant
difference between the scores for the extraverted and
neutral agents.
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TABLE III
AVERAGE SCORES ON THE PERSONALITY TRAITS AND FACTORS.

Extraverted Neurotic Neutral
Introverted 2.50 (.97) 2.53 (.88) 2.64 (.90)
Emotionally stable 3.56 (.70) 2.86 (.93) 3.31 (.75)
Orderly 3.36 (.87) 3.14 (.80) 3.17 (.74)
Extraverted 3.31 (.89) 3.19 (.82) 3.14 (.93)
Neurotic 2.31 (.67) 2.89 (1.01) 2.33 (.72)
Intelligent 3.42 (.65) 3.22 (.54) 3.33 (.76)
Introverted-extraverted 3.40 (.85) 3.33 (.74) 3.25 (.85)
Emotional stable-neurotic 3.63 (.58) 2.99 (.90) 3.49 (.65)
Orderly-intelligent 3.39 (.62) 3.18 (.56) 3.25 (.58)

• Between the agents, there is a significant difference for
“emotionally stable-neurotic” (F (2, 70) = 10.15, p <
.001). The score for the neurotic agent is significantly
lower than the scores for the other two agents. There
is no significant difference between the scores for the
extraverted and neutral agents.

B. Conversation order

While the personalities were presented in varying orders
to the participants, the textual aspects of the story always
occurred in the same order. To see whether there was a
difference between the three conversations that the participants
had, we did an analysis of variance for these conversations.
We found a significant difference for the “introverted” scores
(F (2, 70) = 4.69, p < .05), indicating that the participants
assessed the second agent as significantly more introverted
(M = 292, SD = .97) than the other two agents (M =
2.33, SD = .79 and M = 2.42, SD = .87). We found the
same for the “extraverted” score (F (2, 70) = 9.45, p < .001),
where the second agent was significantly less extraverted
(M = 2.78, SD = .80) than the other two agents (M =
3.58, SD = .69 and M = 3.28, SD = .94). These results
indicate that the second conversation gave textually the im-
pression of the agent being more introverted than the agents
in the other two conversations.

V. DISCUSSION

We found significant differences between the assessment of
the participants of the agents’ emotional stability and neuroti-
cism. The agent for whom, based on our model, the facial
expressions were created representing a neurotic personality,
was deemed, by the participants, as considerably more neurotic
than the other two agents. Note that the main effect of having
the neurotic personality was that the agent showed a more
intense response to negative events than the other two agents,
while showing the same response to positive events as the
neutral agent. We may therefore conclude that the model
manages to display a recognizable neurotic personality.

The participants did not clearly recognize the extraverted
personality, though the individual scores that the extraverted
agent received seem to indicate that this personality scored
higher on “extraverted” and lower on “introverted” than the
other two agents. We offer two possible reasons why the results
for being extraverted were less pronounced than the results for
being neurotic.

Firstly, as explained above, we found that the participants
considered the second agent they encountered as significantly
more introverted than the other two agents. This indicates that
the textual cues of the second conversation were representative
of an introverted personality. While we had intended the results
to only depend on facial expressions, we now know that the
results for introversion and extraversion were influenced by
the conversation texts. In future research, this can be resolved
by not only varying the order of the agent personalities, but
also the order of the conversations.

Secondly, each conversation contained three events that
triggered negative emotions (which make a difference for
the neurotic agent), while only two events triggered positive
emotions (which make a difference for the extraverted agent),
which also occurred late in the conversations. In retrospect,
this might have caused the neurotic traits to be recognized
more easily. In future research a longer and more diverse
interaction with the agents may make it easier to recognize
all personality traits.

One interesting observation on our results is that, while we
included two control traits that should not differ between the
personalities, from Figure 4 we can see that the participants
considered the extraverted agent to be more orderly and more
intelligent than the other two agents, and that the neurotic
agent was considered less orderly and less intelligent than
the other two. Evidently, subconsciously people automatically
associate extraversion with being orderly and intelligent.

As for the use of a personality model by game developers:
the idea is that the model determines emotional state based on
settings for personality (and perhaps also moods and social
relations). This emotional state can then be used to determine
not only facial expressions, but also actual behaviors, body
language, tone of voice, and choice of words. In our research
we only used facial expressions to allow us to draw solid
conclusions on participants recognizing personality features;
however, game developers naturally would want to include
more extensive influences of emotional states. This would help
the diversity and believability of the portrayed characters.

VI. CONCLUSION

One approach to create more believable characters in games
is to provide characters with a personality, which automat-
ically influences the characters’ behavior and (emotional)
expressions without extra coding on the part of the game
developers. For instance, two guards could have exactly the
same programmed conversations with the player, but by using
a personality model to generate their visual characteristics
(such as facial expressions), these two guards can give the
impression to the player of being two fundamentally distinct
characters. In a more extensive implementation where also
behaviors are concerned, one guard could have a personality
that responds more intensively to negative emotions than the
other, and thus be quicker to get angry and try to arrest the
player.

Few personality models for game characters are known,
and as far as we know none of them have been tested
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with human participants interacting with virtual characters.
Therefore, there is little evidence that humans indeed think
the virtual agents driven by such a personality model behave
in a believable or realistic way. In our research, we presented a
simplified version of the model of Ochs et al. [1], which we use
to let three different agents interact with human participants
in a game; the three agents have an extraverted, neurotic, and
neutral personality. In our experimental setup, personality only
influences the facial expressions of the agents.

Our results showed that the neurotic agent was indeed
deemed to be more neurotic than the other two agents. While
the results for the extraverted agent were not significant, a
visual inspection (see Figure 4) shows that it was deemed to
be more extraverted than the other two agents. It should be
noted that the results for the extraverted agent might have been
influenced by the fact that the second agent that the partici-
pants interacted with was considered to be more introverted
than the other two, regardless of its actual personality. This
issue may be resolved in future research.

We conclude that using a personality model to control
the behavior and emotional expressions of virtual characters
may indeed have human players regard these characters as
fundamentally different with recognizable personalities, even
if the interaction or storyline remains unchanged. Therefore,
using a personality model may make virtual characters more
diverse, more human-like, and thus more believable.
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Abstract—Deep Q-Learning is an effective reinforcement learn-
ing method, which has recently obtained human-level perfor-
mance for a set of Atari 2600 games. Remarkably, the system
was trained on the high-dimensional raw visual data. Is Deep Q-
Learning equally valid for problems involving a low-dimensional
state space? To answer this question, we evaluate the components
of Deep Q-Learning (deep architecture, experience replay, target
network freezing, and meta-state) on a Keepaway soccer problem,
where the state is described only by 13 variables. The results
indicate that although experience replay indeed improves the
agent performance, target network freezing and meta-state slow
down the learning process. Moreover, the deep architecture does
not help for this task since a rather shallow network with
just two hidden layers worked the best. By selecting the best
settings, and employing heterogeneous team learning, we were
able to outperform all previous methods applied to Keepaway
soccer using a fraction of the runner-up’s computational expense.
These results extend our understanding of the Deep Q-Learning
effectiveness for low-dimensional reinforcement learning tasks.

Keywords:

I. INTRODUCTION

Deep learning [25] is currently a hot topic in machine
learning. Deep neural networks, which are neural networks
with many hidden layers [1], have been successfully applied
to supervised learning problems involving high-dimensional
data in the fields of image processing [14], speech recognition
[4], or natural language processing [28].

Up until recently, however, deep neural networks were
considered to exhibit unstable dynamics in reinforcement
learning settings. Things have changed with the seminal Deep-
Mind’s paper [18], which demonstrated how to make deep
reinforcement learning obtain human-level performance on a
large set of Atari 2600 games. Their method, called Deep
Q-Learning involved Q-learning, deep convolutional neural
networks, and a set of additional techniques: experience replay
with minibatches, target network freezing, a modified version
of the RMSProp backpropagation algorithm, and merging
subsequent states into a meta-state. The input to the learning
system involved high-dimensional visual pixel data.

In this work, we ask the question whether the Deep Q-
Learning techniques used for high-dimensional inputs are
equally effective for reinforcement learning problems with
low-dimensional states. To this aim, we evaluate the com-
ponents of DeepMind’s Deep Q-Learning on a challenging
Keepaway soccer task.

Keepaway soccer [33] is a task within the RoboCup Soccer
simulator, which goal is to control a team of players to

maintain the possession of the ball away from the opposing
team. It presents many challenges to machine learning methods
which include the continuous state space, uncertainty, multiple
agents, and delayed effects of players’ actions. The mechan-
ics of the game are physically simulated, which makes the
problem complex enough so it cannot be solved trivially. On
the other hand, the simulation time is limited thus complete
machine learning approaches are computationally feasible.
This is why, it has been a popular benchmark for reinforcement
learning methods, neuroevolution and, genetic programming.

The contributions of this work include an experimental anal-
ysis of the components of the DeepMind’s Deep Q-Learning
techniques on the Keepaway soccer task. We demonstrate that
although experience replay with minibatches indeed improves
the agent performance, target network freezing and meta-state
slow down the learning process. Our results indicate that deep
architectures do not help the agents and shallow networks with
only two hidden layers are enough. We hypothesize that this is
due to the low-dimensionality of the input data in Keepaway
soccer.

In addition, as the Keepaway soccer is a multi-agent prob-
lem, we treat it as an opportunity to compare homogeneous
and heterogeneous learning. The latter resulted in outper-
forming all previous methods applied to this task using only
a fraction of the computational expense of the runner-up,
Symbiotic Bid-based (SBB) GP [11]. The results indicate a
considerable potential of (at least some of) the components
of Deep Q-learning also when applied to low-dimensional
problems.

II. RELATED WORK

Reinforcement learning [36] has been applied in the past
to fields such as robotics [13], operations research [21], or
economics [19]. One of the first application of reinforcement
learning is Tesauro’s TD-Gammon [40], a computer program
trained to play Backgammon at super-human level using
temporal different learning and self-play. Other successful
applications of reinforcement learning to games include Go
[26], Othello [38], Chess [27], and 2048 [37].

The Keepaway soccer problem was first proposed by Stone
et al. in 2001 [32]. Since then, it has been approached by a
number learning methods [6], [33], [34], [30], [43], [31], [10],
[7], [44], [23], [5], [2], [11], [12]. Below, we mention only the
selected ones.
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Figure 1. 3 vs. 2 Keepaway soccer

Stone et al. [31] used SARSA(λ) with different function ap-
proximators: linear tile-coding (CMAC), radial basis functions
(RBF) and neural networks. Several work [29], [39] treated
the problem with NeuroEvolution of Augmenting Topologies
(NEAT) or HyperNEAT [42].

The best results for Keepaway soccer to date have been
obtained by symbiotic bid-based (SBB) genetic programming
[15] by Kelly et al [11]. A control policy is defined by
a team of programs that coevolve, each specializing on a
subcomponent of the task.

III. KEEPAWAY SOCCER

Keepaway soccer is a problem within the RoboCup Soccer
simulator [3], in which the task for one team (the keepers)
is to maintain possession of the ball in a rectangular field,
preventing another team (the takers) from taking it over
[33]. Keepaway soccer is a challenging problem involving a
continuous, partially observable state space, multiple agents,
and noisy actions.

The most popular configuration in Keepaway soccer, which
we focus on in this paper, involve n = 3 keepers and m =
n − 1 = 2 takers playing in 20m× 20m region (see Fig. 1)
but other settings have also been considered in the past.

At the beginning of the game, all the players are placed in
predefined locations of the playing field. In each turn, they
move or kick the ball. The game ends when the ball leaves
the playing field or any of the takers take it over.

Each agent acts based on the information about relative
distances and angles to the other objects in the world. The
state consist of i) distances from the players to the center of
the playing region; ii) distances from the keeper possessing
the ball to its teammates; iii) distances of each keeper to its
closest opponent; and iv) angles between the keeper possessing
the ball, some other keeper and an opponent. For the 3 vs. 2
version, the state is described by 13 variables.

It is worth to note that the simulator introduces noise to the
state variables.

In the simplified, standardized keepaway player framework,
we consider here, only the keeper that currently possesses
the ball can be controlled. The rest of the keepers follow a
predefined behavior — they either wait for the ball or go
towards the ball if none of its teammates is in the possession
of the ball. The keeper possessing the ball can make one of n

possible actions: it may hold the ball or pass it to one of its
teammates. The movement of the keepers is controlled by an
arbitrary algorithm.

The framework comes with two fixed policies for the
players: Random (choose the action randomly) and Hand-
coded (a.k.a. All-to-ball, always go towards the ball). In the
standardized Keepaway soccer, the takers behave according to
the Hand-coded policy.

The Keepaway soccer task is a reinforcement learning
problem, in which rewards are provided for each simulator
second of ball possession.

IV. METHODS

A. Reinforcement Learning

Reinforcement learning [36] is a class of Markov Decision
Process (MDP). An MDP is a discrete-time, stochastic control
process, defined as a quintuple (S,A, P,R, γ), in which:
• S is a finite set of states (st ∈ S, where st is state

observed at (discrete) time t),
• A(st) is a finite set of possible actions in state st (at ∈
A(st), A(s) ⊆ A, where at is action executed at time t),

• P (s, a, s′) = P (st+1 = s′|st = s, at = a) is the
probability, that executing action a in state s at time t
will lead to state s′ at time t+ 1,

• R(s, a) is function describing the immediate (or expected
immediate) reward for taking action a in state s,

• γ ∈ (0, 1] is the discount factor, which denotes the
difference in priorities between the immediate reward and
future rewards.

The solution to the MDP is a policy π : S → A. The policy
should maximize the expected discounted cumulative reward:

E[
∞∑
t=0

γtrt+1],

where rt is a reward obtained in step t.
The reinforcement learning problem is an MDP in which

the model of the environment (R or P ) is unknown.

B. Q-Learning

Q-learning is a model-free, off-policy, temporal difference
[35] algorithm to solve reinforcement learning problems. It
learns the action-value function Q defined as:

Qπ(s, a) = E[
∞∑
t=0

γtrt+1|s0 = s, a0 = a, at = π(st)].

The optimal Q = Qπ
∗

value fulfills the Bellman equation:

Q(s, a) = R(s, a) + γ
∑
s′∈S

P (s, a, s′) max
a′∈A(s′)

Q(s′, a′) (1)

for all s ∈ S. The optimal policy is greedy w.r.t to Q:

π∗(s) = argmaxa∈A(s)Q(s, a)

Due to the search space size, the Q function has often to be
approximated, which is done by choosing a family of functions
Qθ, where θ is a vector of parameters to learn.
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To learn θ, the agent gathers training examples by interact-
ing with the environment according to its behavioral policy.
One training example is a quadruple (s, a, r, s′). The agent
iteratively updates θ to minimize the error on the one-step
prediction:

Lθ(s, a) =
1

2
(Qθ(s, a)−Qtarget) 2,

where

Qtarget(s, a) = R(s, a) + γ max
a′∈A(s′)

Qθ(s
′, a′).

Q-learning minimizes the loss function by following the
gradient:

θ ← θ − η (Qθ(s, a)−Qtarget(s, a))
∂Qθ(s, a)

∂θ
.

C. ε-greedy Policy

During collecting the training examples, the agent follows a
behavioral policy. As making actions greedily according to the
current policy may lead to a local optima, a common choice is
the ε-greedy policy, which consists in making a greedy action
w.r.t. to the current state-action function with probability 1-ε
and a random one with probability ε, where ε ∈ (0, 1) is the
exploration rate.
ε can be fixed during the learning but annealing it often

leads to better results. Here, we decrease it linearly from 0.1
towards ef ∈ (0, 0.1), which is reached after the first K
learning episodes.

D. Deep Q-Networks

The action-value function can be approximated by a linear
weighted function of hand-designed features. This has been
a common choice since the Q-learning with a linear function
approximator has converge guarantees [36]. Neural networks,
which are nonlinear function approximators, are known to be
notoriously unstable (or even to diverge) when coupled with
Q-learning [41]. Their unstable behavior is especially evident
when many hidden layers were used (deep architectures).

Recently, however, in a breakthrough paper, Mnih et al.
[18] proposed a set of techniques, called Deep Q-Learning
in the following, to stabilize the Q-learning with (deep)
neural networks. The techniques include experience replay
with minibatches, target network freezing, and Root Mean
Squared Gradient (RMSProp) algorithm for backpropagation.
We describe the techniques in the following sections.

1) Experience Replay and Minibatches: Experience replay
is originally due to [16]. In this idea, the data used for learning
is randomly sampled at each step from a memory of agent’s
previous transitions. In result, it removes the correlations in
the sequence of training examples and smooths the training
distribution over many past behaviors reducing oscillations of
the learning process. Another advantage of this mechanism
is the reuse of a single experience in many weights updates,
which allows for greater data efficiency [18].

To perform the experience replay, agent’s transitions at each
time step t are stored in replay memory D as a tuple et =

1: function DEEPQLEARNING
2: D ← ∅ . Replay memory
3: Q← RANDOMWEIGHTS() . initialize Q
4: while not stop condition satisfied do
5: s0 ← INITIALSTATE()
6: for time step t in current episode do
7: if RANDOMVALUE() < ε then
8: at ← RANDOMACTION()
9: else

10: at = argmaxa′ Q(st, a
′)

11: rt ← EXECUTEACTION(at)
12: st1 ← OBSERVESTATE()
13: Store (st, rt, at, st+1) in D
14: for (si, ri, ai, si+1) in SAMPLE(M,D) do

15: yj =

{
ri if terminal(si+1)

ri + γmaxa′ Qθ(si+1, a
′) otherwise

16: L←
∑M
j=1(yj −Qθ(sj , aj))2 . Backprop

Figure 2. Deep Q-Learning with experience replay and minibatches.

(st, at, rt, st+1), where st is state observed at time t, at is
action performed in state st, rt is the obtained reward, and
st+1 is the resulting state after taking action at. The replay
memory D = {e1, e2, ..., en} stores the last N such tuples.

Another technique, used together with experience replay, is
minibatch learning, which consists in learning more than one
training example at each step. It makes the learning process
less prone to outliers and noises as the gradient computed at
each step uses more training examples. At each step of the
training, dataset D is sampled uniformly to get a minibatch
of experiences of size M ((s, a, r, s′) ∼ U(D)). The Deep
Q-Learning algorithm with experience replay and minibatches
is presented in Fig. 2.

2) Target Q-Network Freezing: Target Q-Network freezing
[18] consists in maintaining two separate networks: i) a target
network, called Qθ− in the following, with a fixed set of ‘old’
parameters θ− for generating target Q-values, used in the Q-
learning process, and ii) a network Qθ for interacting with the
environment, with the current set of parameters θ.

Target Q-values are calculated using the old set of parame-
ters θ−:

Qtarget(s, a) = R(s, a) + γmaxa′Qθ−(s
′, a′)

At every update iteration, the current parameters θ are updated
to minimize the mean-squared Bellman error w.r.t the old
parameters θ− by optimizing the following loss function:

Lθ = Es,a,r,s′,i∼D[(R(s, a)+γmaxa′Qθ−(s′, a′)−Qθ(s, a))2]

Every C steps, the parameters from the Q-network are copied
to the target Q-network. Generating the learning targets using
an old set of weights adds a delay between the time an update
to Q is made and the time the update affects the targets,
counteracting oscillations and divergence.
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3) Root Mean Squared Gradient (RMSProp): The most
common learning method is stochastic gradient descent (SGD).
SGD assumes that the learning rate is the same for each
parameter being learned, which works poorly when the gra-
dient values vary since for some components, it leads to
large changes and tiny changes for the others. RProp [22]
solves this problem by i) using only the sign of the gradient
and ii) adapting the step size separately for each weight.
Unfortunately, RProp does not work well with minibatches
[8].

RMSProp [8] is an extension to RProp and SGD, which
combines the robustness of RProp, efficiency of minibatches,
and effective averaging of gradients over minibatches (unlike
RProp). RMSProp keeps track of the previous gradients and
divide the updates by the average magnitude of the gradient
over the last several updates, which leads, in practice, to
maintaining separate learning rate ηi for each weight. This
allows modifying each parameter θi according to its previous
magnitudes, preventing from taking it into account with too
large or too small weight. RMSProp is] parametrized by
gradient moving average decay factor ρ (0.9 by default),
overall learning rate η and ε (10−6 by default) to maintain
the numerical stability. The learning rate ηi at time step t is
calculated as follows:

g
(t)
i = ρg

(t−1)
i + (1− ρ)( ∂L

∂θi

(t)

)2

η
(t)
i =

η√
g
(t)
i + ε

Mnih et al. [18] introduced a slightly different version of
the RMSProp algorithm, which, besides of using the squared
gradients from the past, keeps track of the regular gradients
as well:

h
(t)
i = ρh

(t−1)
i + (1− ρ) ∂L

∂θi

(t)

η
(t)
i =

η√
g
(t)
i − (h

(t)
i )2 + ε

V. EXPERIMENTS IN DEEP Q-NETWORK

In this section, we evaluate the components of the DQN
framework in the context of the Keepaway Soccer task.

A. Experimental Setup

In all experiments, we use the classical Keepaway setup with
3 vs. 2 players in a 20m× 20m region, with the hand-coded
policy for takers. Learning time has been limited to 20 000
episodes. The controller score denotes the time of a single
episode in simulator seconds. By controller performance we
mean the expected score, which we estimate by averaging the
duration of a number of episodes. To monitor the learning
progress, every 500 learning episodes, we play 100 testing
episodes. The performance of the final controller is evaluated
on 1000 testing episodes.

The learning time is the time of the learning process
measured in real-time units (minutes). The experiments were

Table I
THE PARAMETER VALUES TESTED IN THE PRELIMINARY EXPERIMENTS.

BEST FOUND VALUES WERE MARKED BOLD.

Parameter Tested values

Discount factor γ 0.99, 1.0
Learning rate η 0.001, 0.0005, 0.0001, 0.00005, 0.00001
Exploration time K 5000, 10000, 15000, 20000
Final exploration ef 0.01, 0.1, 0.05

Table II
INFLUENCE OF EXPERIENCE REPLAY AND MINIBATCH SIZE ON AGENT’S

FINAL PERFORMANCE

Memory size Minibatch size Mean score [s] Learning time [min]

1 1 8.3± 1.5 192± 17
10000 1 6.2± 0.7 154± 12
10000 4 14.2± 3.3 293± 6
10000 8 14.3± 3.0 344± 14
10000 16 15.4± 1.5 405± 10
10000 32 17.8± 1.8 500± 15
10000 64 18.1± 1.3 750± 31
10000 128 17.7± 1.0 620± 21

conducted with Intel® Core™ i7-950 3.7GHz. The Keepaway
simulator is quite sophisticated thus it is the computational
bottleneck of the experiment (the time required for evaluating
the network or updating its weights is negligible).

Each experimental run was repeated 6 times unless stated
otherwise.

B. Preliminary Parameter Search

In preliminary trial-and-error experiments, we evaluated
several numerical parameters of the learning framework using
a 13-30-100-50-3 (three full-connected hidden layers) net-
work. The network’s weights were uniformly initialized by the
He’s method [9]. The tested and best-found parameter values
are shown in Table I. These values are used in subsequent
experiments.

In addition, we also have verified that increasing the number
of learning episodes over 20 000 does not improve the score.
Also, although decreasing the learning rate η over time is a
common choice in Q-learning, we found out that this does not
improve the results for this task.

C. Experience Replay and Minibatches

In the first experiment, we investigated whether learning
with experience replay and minibatches is more effective than
on-line learning (with no experience replay and minibatch size
equal to 1), how the size of the minibatch affects the overall
performance, and whether the claims made in Section IV-D1
that using experience replay with minibatches increase the
stability of the learning process are correct.

The results of the experiment are shown in Table II and
Fig. 3. The baseline algorithm did not use experience memory

2016 IEEE Conference on Computational Intelligence and Games (CIG’16) 204



 0

 5

 10

 15

 20

 0  5000  10000  15000  20000

P
er

fo
rm

an
ce

 (
ep

is
od

e 
du

ra
tio

n 
in

 s
ec

on
ds

)

Learning episodes

random

always-hold

hand-coded

1, 1

1, 10000

4, 10000

8, 10000

16, 10000

32, 10000

64, 10000

128, 10000

Figure 3. Influence of the experience replay and minibatches on the average
episode duration.

(and thus experience replay). We can see that experience
replay alone makes the learning process significantly slower.
However, coupled with learning from minibatches, the results
improve considerably. Already for minibatches of size 4, we
observe a 70% performance improvement over the baseline.
The larger the minibatch, the higher is the controller score,
however, increasing the minibatch size from 64 to 128 does
not help further. The difference in the learning time are mostly
due to the episode durations of the experiments.

Importantly, except the minibatch of size 1, increasing the
size of the minibatch decreases the standard deviation of the
performance. It indicates that the minibatches stabilize the
learning process.

Since the difference between the results with 32 and 64
sizes of the minibatch is minor while, at the same time, the
experiments with minibatch size of 64 take approximately 1.5
times longer to run, in the subsequent experiments minibatch
of size 32 with memory of size 10000 will be used (the
minibatch of size 64 will be used only to learn champion
policy).

D. Backpropagation Algorithms

The Deep Q-Learning used by the DeepMind team used its
version of the Hinton’s RMSProp. Does this backpropagation
algorithm also pay off in our settings? Fig. 4 shows the
results of the experiment conducted to answer this question.
The experiment was performed using experience replay with
minibatch of size 32 and the replay memory of size 10000.
The results are not conclusive. The DeepMind’s version seems
slightly better and it is also characterized by a slightly smaller
variance, but we found no statistically significant difference
between the two versions of the RMSProp.

We will use the DeepMind’s version of RMSProp in further
experiments.

E. Target Network Freezing

In this experiment, different target network update fre-
quencies were compared: every 100, 1000, and 10000 steps.
Earlier research has shown (see Section IV-D2) that freezing
weights of the target Q-network leads to higher stability of the
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Figure 4. Comparison of backpropagation algorithms.

Table III
TARGET NETWORK FREEZING.

Target network update frequency Mean score [s]

no freezing (baseline) 17.9± 2.1
100 14.5± 2.6
1000 16.9± 3.7

10000 16.1± 1.4

learning process and lower divergence between the consecutive
results returned by the neural network. The experiments were
performed with minibatch of size 32, the replay memory of
size 10000 and used DeepMind’s RMSProp.

The results of the experiment are shown in Table III and
Fig. 5. Contrary to the expectations, the results indicate that
target network freezing does not provide any improvement
over the baseline version, for which only one neural network is
maintained. The differences between different update schemes
are statistically insignificant. Moreover, as shown in Fig. 5, the
neural network with the update frequency of 10 000 steps is
learning significantly slower than the other ones. That is why
this experiment was extended over 20 000 episodes.
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Table IV
NEURAL NETWORK ARCHITECTURES FOR KEEPAWAY SOCCER.

Neural network architecture Mean score [s]

13-400-200-100-50-25-3 16.2± 5.0
13-200-100-50-3 15.8± 0.5
13-200-100-50-3 17.1± 1.0
13-100-200-50-3 16.9± 2.0
13-30-100-30-3 17.9± 2.1
13-200-30-3 17.8± 1.6
13-200-50-3 18.1± 2.2

F. Neural Network Architectures

The goal of this experiment was to choose the best neu-
ral networks architecture for the Keepaway Soccer problem.
During this experiment, six neural networks with two to five
hidden layers with different numbers of nodes in the hidden
layers were tested. All of these networks have the rectifier
activation function in hidden layers and no activation function
in the output layer. The input layer of the neural network
always has 13 units (the size of Keepaway’s state) while
the output layer consists of 3 neurons, each corresponds to
the number of possible actions available to the keeper that
currently possesses the ball.

All experiments were performed with experience replay
with minibatch of size 32, the replay memory of size 10000,
DeepMind’s RMSProp and no target network freezing.

The results of this experiment are shown in Table IV.
The differences between the architectures of neural networks
are relatively small. We also have found that in the initial
phase of learning, deep neural networks have slightly better
performance than the shallow ones, but the overall trend shows
no advantage of using deep architectures. The best result
was obtained by the smallest neural network 13-200-50-3
consisting of only two hidden layers.

No advantage of deep architectures caused by the low
dimensionality of the input state. The results suggest that there
is no need to model complex non-linear relationships in a
problem with such simple input as Keepaway Soccer or the
learning algorithms used are not able to effectively make use
of it.

G. Meta-State Learning

Since the Keepaway Soccer is partially observable, in
the next experiment, we check whether combining multiple
consecutive states into a single meta-state leads to better
performance. A similar technique was effective for deep
reinforcement learning in the video game playing domain [18].

To this aim, consecutive states are merged into a single
vector of size 13n, where n is the number of recent states
(meta-state size). This should, theoretically, provide the agent
more information about the actual state of the environment.
For example, the agent could reason whether the takers are
moving towards him.

Meta-states of sizes 2 and 4 were tested. All trials were
performed with minibatch of size 32, the memory of size

Table V
META-STATE LEARNING

Meta-state size Mean score [s]

1 (baseline) 18.1± 2.2
2 12.0± 2.2
4 9.4± 2.1

Table VI
HOMOGENEOUS AND HETEROGENEOUS TEAM LEARNING (THE FINAL

EVALUATION OF 25 RUNS).

Team learning Mean score [s] Median score [s]

homogeneous 18.48± 1.30 18.23
heterogeneous 19.6 ± 1.1 19.49

10000, DeepMind’s RMSProp, no target network freezing and
with the 13-200-50-3 neural network architecture.

The results of the experiment are shown in Table V.
Unexpectedly, combining the consecutive states into a single
meta-state, significantly decreases the agent’s performance
compared to the baseline. This might be caused by the agent’s
inability to either extract valuable information from the meta-
state, or relate consecutive values of variables.

VI. TEAM LEARNING

In the previous experiments, we learned a single policy for
the three keepers (homogeneous team learning). They were
using the same experience replay memory and were modifying
weights of the single neural network. In the final experiment,
we ask the question whether it pays off to learn a separate
policy for each agent, which is often called heterogeneous
team learning [20]. In such settings, each agent has its
own experience replay memory and its own neural network.
Theoretically, the results should be the same as when using
homogeneous team, since the optimal policy is the same
for each agent. Nevertheless, when function approximation
is used, the theoretical optimal policy is, in general, not
achievable, thus learning three neural networks might, in
practice, improve the performance of the team. Note that the
agents have no possibility of (direct) communication except
observing the behavior of the other keepers.

For the experiment, we use the best settings found in the
previous sections, that is, the minibatch of size 64, the replay
memory of size 10000, DeepMind’s RMSProp backpropa-
gation, no target network freezing, no meta-state, and the
13-200-30-3 network architecture. To more precisely evaluate
the learning method, this time, 25 individual learning runs
were performed.

The results of the experiment are shown in Fig. 6, and
Table VI. As expected, the final results of both approaches are
close to each other, but statistically, the heterogeneous team
learning is performing significantly better than homogeneous
team learning (t-test, α = 0.05). What is worth noticing is
the learning speed (see Fig. 6). The heterogenous learning
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Figure 6. Dynamics of the team learning.

Table VII
COMPARISON OF THE APPROACHES TO KEEPAWAY SOCCER. THE “±”

SIGN PRECEDES THE STANDARD DEVIATION.

Method Mean score [s] Learning hours

Always Hold [31] 2.9± 1.0 -
Random [31] 5.3± 1.8 -
SARSA with Neural Network [31] 10.1± 0.3 30
Hand-coded [31] 13.3± 8.3 -
NEAT [39] 14.1± 1.8 800
SARSA with RBF [31] 14.2± 3.1 30
EANT [17] 14.9± 1.3 200
HyperNEAT [42] 15.4± 1.3 50-200
SARSA with CMAC [31] 15.7± 2.8 30
SBB with diversity [11] 18.5± 1.9 1739
(heterogeneous) Deep Q-Learning 19.6± 1.1 56.5

is significantly slower than in the homogeneous one. This
is because heterogenous teams need to learn 3 times more
parameters.

VII. COMPARISON WITH OTHER APPROACHES

The comparison of all the previous results in the Keepaway
soccer domain together with our Deep Q-Learning approach is
shown in Table VII. It indicates that our method outperforms
all of the previously published results in terms of the average
keepers’ possession time (the mean score). Notice that our
method is also characterized by relatively a low variance.

Comparing Deep Q-Learning to the runner up, the best
published to date method (SBB with diversity [11]), we
observe that, although the presented approach is only slightly
better in terms of the mean score, importantly, it needed 30
times less learning time (the simulator’s hours) to achieve this
score. What is more, SBB is conceptually more sophisticated
than the deep reinforcement learning and, unlike the deep Q-
Learning, it requires providing some domain knowledge, i.e.,
designing the genetic programming operators.

VIII. SUMMARY AND CONCLUSIONS

In this paper, we evaluated the components of Deep Q-
Learning on a challenging multi-agent task of the Keepaway
soccer, which involves, in contrast to the original general

video game playing application of Deep Q-Learning, low-
dimensional states.

The results of the experiments showed that some of the deep
learning techniques, indeed, increase the performance of the
agent, while the others have negative effect. In particular, expe-
rience replay and minibatch learning significantly improve the
results. RMSProp makes Q-learning for this problem possible
since SGD did not converge at all. However, the DeepMind’s
RMSProp was found not better than the classical one. Target
network freezing did not improve the results. On the contrary,
when the target network update is rare, the learning process
slows down considerably. Also, composing several subsequent
states into a single meta-state (to alleviate the effect of partial
observability) does not pay of for Keepaway. Finally, we found
out that shallow, two-hidden-layer neural networks are enough
for this task. Deep architectures do not improve the results.
We speculate that it is due to the low-dimensionality of the
Keepaway’s state space.

In addition, for the Keepaway soccer it is profitable to
use heterogeneous team learning. Despite making the learning
initially slower than the homogeneous one, it lead to better
results, eventually.

The results of the experiments demonstrate that Deep Q-
Learning applied for Keepaway soccer performs better than
any other previously published method. Not only it is better
in terms of the average score but it also uses significantly less
computation effort to learn its policy. Compared to the best
to date result, achieved by genetic programming (SBB) agent
[11], the Deep Q-Learning agent outperforms it using only
1/30 computation time required by SBB.

The experiments confirmed that deep reinforcement learn-
ing is a suitable and effective method not only for highly-
dimensional problems (that need to utilize convolutional neural
networks) but also for low-dimensional problems such as
Keepaway soccer.

There are many aspects of the proposed approach that are
worth further investigation. First, experience replay is limited
in some respects — the memory does not differentiate the
important transitions from the unimportant ones. A more
sophisticated sampling strategy such as prioritized experience
replay might be considered [24]. Second, the presented agent
is trained to play on the 20m× 20m region and it is evaluated
in the same environment. Further research can investigate
how well does the learned agent generalize to other sizes
of the playing field [11]. Finally, some of the plots shown
in Section V contain traces of unstable or cycling dynamics
around 12000-16000 learning episodes. This effect requires
further research.
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Abstract—Several studies on cross-domain users’ behaviour
revealed generic personality trails and behavioural patterns.
This paper, proposes quantitative approaches to use the knowl-
edge of player behaviour in one game to seed the process of
building player experience models in another. We investigate
two settings: in the supervised feature mapping method, we use
labeled datasets about players’ behaviour in two games. The
goal is to establish a mapping between the features so that
the models build on one dataset could be used on the other
by simple feature replacement. For the unsupervised transfer
learning scenario, our goal is to find a shared space of correlated
features based on unlabelled data. The features in the shared
space are then used to construct models for one game that
directly work on the transferred features of the other game.
We implemented and analysed the two approaches and we show
that transferring the knowledge of player experience between
domains is indeed possible and ultimately useful when studying
players’ behaviour and when designing user studies.

I. INTRODUCTION

The game market has witnessed a drastic change over the
past few years especially with the raise of mobiles as a new
platform. This naturally led to more data about players which
in turn attracted the attention of data analytics experts. Their
goal is to benefit from the wealth of the data available to
build tools and knowledge that could potentially help game
companies make better games and decisions.

The wealth of data has also gathered interest from re-
searchers working on analysing and modelling players’ be-
haviours. While some advances have been made through
existing work on modelling and understanding players, there
is one important limitation of current player experience
modelling approaches: it is heavily context dependent, i.e.
to understand how players react and play in a new game,
most models need to be rebuilt from scratch, using freshly
collected data for the new game. Labelled data is what is
usually important for modelling player behaviour. Obtaining
labels is usually labour and time consuming and in many
cases it is expensive, if not impossible, to gather the needed
data and train the models with every new game. Conse-
quently, machine leaning methods can be utilised to reduce
the amount of new data needed, and/or to facilitate ways in
which knowledge learned from previous data in one game
can be transformed to another. This would ultimately lead
to reusable models and faster learning. We argue that this
should be feasible as previous studies have shown that there

indeed exists generic behaviours that transform across games
and genres [1], [2], [3].

The notion of generic users’ behaviour has seeded many
studies on Generic User Modeling systems [1], [4]. So far,
this field has attracted limited attention from researchers
within the computer games domain. In this paper, we use
the term Generic Models of Player Experience (GMPE) to
describe models that can be efficiently used to model player
experience in more than one game. The goal is to utilise
knowledge about players’ behaviour in one domain to seed
the process of understanding players’ experience in another.
We refer to this process as transfer learning.

In our preliminary work [5], generic models of player ex-
perience are build by manually selecting behavioural features
that works well when predicting experience in two games.
Infinite Mario Bros. (IMB) and a First-Person Shooter (FPS)
game were used as testbeds. A subset of the behavioural
features collected was carefully chosen by game design
experts. The goal was to create a new set of abstract features
that contains only those applicable in both games (the feature
indicating the number of enemies killed is a classical example
of an abstract feature). Models of player experience were
then built from the resultant set. The approach was promising
in terms of the accuracies obtained but one of its main limita-
tions is that it is labour-intensive requiring human experts to
go through all the collected features and to identify rational
mapping from one game space to another. Our goal in this
work is to overcome this limitation by automatically building
models that perform well in modelling player experience in
more than one game.

More specifically, we are trying to answer the two follow-
ing questions:

• Are there features that are generally important to model
player experience across game genres? And if so,

• can machine learning methods be used to identify such
features? and

• how can we implement methods that use the knowledge
about one domain to learn about a similar other?

To the best of our knowledge, our work is novel in two
ways: 1) It is the first time transfer learning methods are
employed to predict player experience in two games; and (2)
it is the first time data-driven mapping of behaviour features
is implemented and used for predicting player experience.2016 IEEE Conference on Computational Intelligence and Games (CIG’16) 209



To achieve our goals, we experimented with two settings.
In the supervised feature mapping approach, we train the
models to automatically learn a mapping from the features
of the one game dataset (called the source) to another (the
target). The goal is to identify relationships between the
features so that the same models can be used to predict PE
in both datasets simply by substituting one feature set with
the other. The approach is supervised as it requires labeled
datasets for training. In the second method, unsupervised
transfer learning, we assume we have labels for the source
dataset and only behaviour information for the target (no
labels). We first project the features of the source and the
target into a shared space by identifying correlations between
the features. The resultant shared features are then used to
optimise PE models on both datasets.

The first setting is useful when we have labels available
for both datasets, and we are interested in preserving the
meaning of the features and understanding the similarity
between the games. In the unsupervised scenario, we assume
we have labeled instances for one dataset and we rely on the
correlation between the features to establish a transformation.
This setting is interesting when we want to minimise the need
of collecting labels for a new game.

We would like to note that in this paper, we are mainly
concerned about establishing an accurate mapping among
the features and less about whether the mapped features are
semantically related. For instance, the method might discover
that the number of deaths in Super Mario Bros. and the
shooting accuracy in a FPS game are similarly correlation
with frustration although they are semantically different.

II. RELATED WORK

A. Player Experience Modelling

There is an abundance of studies presented in the literature
on constructing computational models of emotion [6], [7],
[8], [9]. There are also theories about user emotion applied
specifically in the games domain [3], [2]. Estimating affective
and cognitive states in conditions of rich human-computer
interaction, such as in games, is a field of growing academic
and commercial interest. Several studies with varying success
can be found on constructing models of Player Experience
(PE) in different game genres independently [10], [11]. While
the PE Models (PEMs) constructed in some of these studies
achieved reasonable rates of accuracy (70-90%), they are still
confined to predicting PE of a specific game and they have
not yet put to use or investigated in cross-games studies.

Different studies on how people play games revealed a
number of behavioural playing patterns and generic per-
sonality traits [2], [3]. These studies support our argument
that knowledge about player behaviour in one game can be
transferred to another. This in turn suggests that there exists
features that can be used to model PE across games. If we
are to identify such features, the process of collecting new
data for each new game and designing new user studies will
be drastically improved. The process could be optimised
so that previously construct models could be utilised to

inform the process of new data collection. There will also
be no need to reinitiate the process for every new game.
Alternatively, knowledge gained from previous experiments
could be transferred to the new domain and ultimately boosts
new experiments.

B. Transfer Learning
Individuals from academia and the games industry have

invested in collecting and understanding gameplay data. The
majority of research on player behaviour analysis however
has been confined to individual games. This is in part due
to the lack of publicly available datasets that cover more
than one game, with only a few exceptions [12], [13].
Moreover, although access to behavioural data can sometimes
be granted, obtaining clean and labelled instances is usually a
tedious process. Therefore, most cross-games studies rely on
clustering, pattern extractions and other unsupervised learn-
ing approaches that do not require users’ annotation [12],
[14], [15].

Approaches to understanding players’ behaviour across
games have so far been limited to analysing play traces, i.e.
sequences of player actions corresponding to one play of the
game [16]. This is done through the use of an edit distance
metric and its application is limited to cases where the full
trace of player action is recorded. In other studies [17], [18],
the authors used features that are generic by definition, such
as play time, session frequency and session length, to predict
player departure. Although this direction is interesting, the
input space used is rather limited (as the method only applies
to scalable features) and consequently, the method does not
allow thorough insights about more in-depth relashionships
between behavioural features. One natural extension to the
aforementioned approach is to identify other features that
might not be intuitively generic, but can be empirically
extracted through data-driven approaches. This could be
done through defining a fitness measure that captures the
significance of the relationship between the features. The
fitness measure we use in this paper is how well the features
work together when predicting players’ experience.

III. DOMAIN AND DATA DESCRIPTION

In the following we give a brief description of both games
used in our study and the data collected.

A. Infinite Mario Bros.
SMB is a very popular 2D platform game published by

Nintendo. An open source clone of the game, called Infinite
Mario Bros (IMB) is used in this study as well as in many
other previous ones [11], [19], [20]. The clone is modified to
permit control over level generation and thereafter provide
different variations of content for players to experience
and compare. In this study, we created variations through
differing the values of six chosen content features including
the number of gaps, enemies, coins etc. The process of
parametrising content generation lead to 40 different levels
that vary in at least one aspect of the chosen features.
More information about game parametrisation and content
generation can be found in [11].2016 IEEE Conference on Computational Intelligence and Games (CIG’16) 210



B. First-Person Shooter: Sauerbraten

A second dataset from a FPS game is used. The game is
from a different game genre and is built on the 3D game
engine Cube. The game in our experiments is played in the
single player mode and the goal is to collect the highest
score possible by traversing the arena for two minutes,
killing as many of the enemies as possible and avoid being
hit. The player is equipped with a weapon and she can
collect other types of weapons and resources. Every time
the player is killed, she looses one point and she is re-
spawned again as long as she still has time left to play. The
same procedure for generating content variations as in IMB
is followed: important content features expected to impact
the game experience are identified by game experts. Each
identified feature is given two possible values that allow
clear distinction between game variants. The combinations
of all possible values assigned for all chosen features are
then used to create the game levels used for data collection.
We chose four features for content generation, which results
in 16 different game variations.

C. Study Procedure

Using the content generated for both games, two inde-
pendent datasets were collected containing different number
of participants. Game surveys were conducted to collect
information about players’ demographics as well as their
interaction with the games along with their reported affective
states. The same protocol is followed for data collection
in both datasets. According to this protocol, players are
presented with a pair of two levels that differ along one or
more aspects of game content. While playing, detailed infor-
mation about player behaviour and actions were recorded.
After playing each pair, players were asked to report their
emotional/behavioural states following the four-alternative
forced choice protocol: Pairwise preferences were adopted
where the questionnaires presented are of the form: “Which
game was more E?” where E can be on of the three states:
engagement, frustration and challenge . The possible answers
are: (1) game A [B] was more/less E than game B [A] (2)
both equally or (3) neither. Full details about the procedure
followed can be found in [11], [21]

In what follows, we describe the procedure followed to
collect the data and the characteristics of each dataset.

1) Dataset 1: Super Mario Bros: An executable version
of the software was uploaded online and participants were
invited to play the game and answer the questionnaire.
The final dataset consists of a total of 273 unique players
who played 780 game pairs (1560 game levels). The data
was preprocessed to remove the pairs in which players
reported unclear preferences (their answers were neither
or both equally), and after this step, the number of pairs
remained were 597, 531 and 629 for engagement, frustration
and challenge, respectively. Several representative features of
player behaviour were extracted and Table I presents a subset
of these features. The full set contains 30 features which can
be found in [11].

2) Dataset 2: First-Person Shooter: A data collection
event was organised and advertised over social networks
were people are invited to participate. The event was held
at the university over two days and a total number of 62
students participated. Each player was asked to play at least
one pair (two game sessions, each last for two minutes)
and she can play as many pairs as she wants. The final
dataset consists of 124 pairs and after removing the pairs
with unclear preferences 115, 111 and 112 pairs remained for
engagement, frustration and challenge, respectively. Players’
behavioural features were extracted as indicators of players’
style. Table I presents a subset of these features (the total
set contains 23 features). The context features presented are
the ones used to design the variations of the game content
presented to the players (full details of the procedure can be
found in [21]).

Notice that although the games are from two different
genre, they share some characteristics that might help the
search for generalised features. In other settings, where the
similarities between the games are less obvious (such as
when comparing a game like Civilization to SMB.), the meth-
ods we propose might help discover correlations between the
features that are unexpected. This however requires further
future investigations.

IV. PREFERENCE LEARNING WITH MULTIVARIATE
ADAPTIVE REGRESSION SPLINE MODEL

Multivariate adaptive regression spline (MARS) is a pop-
ular nonparametric model proposed by Friedman to solve
regression problems [22]. The key idea is to segment the
space of inputs into regions of varying sizes that can be fit
with linear or cubic splines. Each of the regions has its own
regression submodel and the size of the regions is learned by
the model given the layout of the input. During the learning
process, MARS attempts to fit adaptive non-linear regres-
sions to define relationships between a response variable and
some set of predictors through a forward/backward iterative
approach. The adaptive non-linear regression uses piecewise
basis functions (also known as terms) that are defined in
pairs, using a knot or value of a variable that defines an
inflection point along the range of a predictor. These knots
(parameters) are also empirically learned.

Practically speaking, suppose we have the input data X =
[x1....xn] where n is the size of the input space, MARS is
defined as:

y = f(X) = β0 +
M∑
i=1

βifi(X) (1)

The model is a weighted (by βi) sum of basis functions
fi(X) where M is the number of the basis functions. The
function f(X) is defined as:

fi(X) =
K∏

k=1

hXv,k(Xv) (2)

where Xv is the variable with index v and K is the number
of terms in the function (k ∈ [1..Kmax]). Setting Kmax = 12016 IEEE Conference on Computational Intelligence and Games (CIG’16) 211



TABLE I
FEATURES EXTRACTED FROM SUPER MARIO BROS AND FIRST PERSON SHOOTER DATA RECORDED.

Category Feature Description
Infinite Mario Bros

Time tcomp Completion time
tplay Playing duration of last life over total time spent on the level
tjump Time spent jumping (%)
tleft Time spent moving left (%)
tright Time spent moving right (%)
trun Time spent running (%)
tsmall Time spent in Small Mario mode (%)
tbig Time spent in Big Mario mode (%)

Interaction ncoin Free coins collected (%)
with items ncoinBlock Coin blocks pressed or coin rocks destroyed (%)
Interaction kgoomba Times the player kills a goomba or a koopa (%)

with enemies kstomp Opponents died from stomping (%)
Death dtotal Total number of deaths

dcause Cause of the last death
Miscellaneous nmode Number of times the player shifted the mode (Small, Big, Fire)

njump Number of times the jump button was pressed
Context E Number of enemies
features G Number of gaps

Gw Average width of gaps
Ep Placement of enemies

First Person Shooter
Time tlife Duration of play

tweapon Time spent using weapons (%)
tshoot Time spent shooting (%)
tstill Time spent not moving (%)
tjump Time spent jumping (%)
texp Time spent using explosive weapons(%)

Interaction nhealth Health items collected (%)
with items narmour Armours collected (%)
Interaction ekill Number of times the player kills an enemy (%)

with enemies phit Number of times the player receives a hit from an enemy (%)
ehit Number of times the player hits an enemy (%)

Miscellaneous ndeath Number of times the player died
sacc Shooting accuracy

Context E Number of enemies
features Eskill Skill level of enemies

Wtype Type of weapons including explosive and non-explosive weapons
H Number of health items
R Number of resources such as bullets and armors

makes the model is additive only, and for Kmax = 2 the
model allows a maximum of two variables multiplication.
hXv,k(Xv) represents the basis function used to build the
model. There are a number of basis functions that are usually
defined. The most used are the hinge function and product
of a set of hinge functions which are defined as:

hx,k(x) = max(0, x− tx,k) or max(0, tx,k − x) (3)

where tx,k is a constant called knot. The knot value defines
the ”pieces” of the piecewise linear regression which is also
determined from the data of variable x.

The method works in two main steps: in the forward
stage, an increasingly larger number of basis functions are
added to the model so that least squares goodness-of-fit
criterion is maximised. As this might yield over-fitting, a
backward procedure is then applied; the model is pruned by
removing those basis functions that are associated with the
smallest increase in the goodness-of-fit. This is done using
the Generalised Cross Validation (GCV) error which is a

measure of the goodness of fit that takes into account both
the residual error and the model complexity:

GCV =

∑n
i=1 (yi − f(xi))2

(1− ĉ
n )

2
(4)

where n is the number of samples in the training data and ĉ
is the effective number of parameters and is calculated as:

ĉ = c+
p ∗ (c− 1)

2
(5)

where c is the number of independent basis function, and p
is the penalty of adding a basis function.

V. EVOLVING MARS MODELS

Grammatical Evolution (GE) is an evolutionary algorithm
based on Grammatical Programming (GP) [23]. GE relies
on a linear genome representation. The population of the
evolutionary algorithm is initialised randomly consisting of
variable-length integer vectors; the syntax of possible solu-
tion is specified through a context-free grammar. GE uses2016 IEEE Conference on Computational Intelligence and Games (CIG’16) 212



<Tree> := <Constant> + <Exp>
<Exp> := <Constant> * <BasisFunction> + <Exp>

| <Constant> * <BasisFunction>
<BasisFunction> := <HingeFunction> * <BasisFunction>

| <HingeFunction>
| <Empty>

<HingeFunction> := max(0,<Feature> - <Knot>)
| max(0,<Knot> - <Feature>)

<Feature> := feature1 | feature2 | ...
<Constant> := [min, max]
<Knot> := [0,1]
<Empty> := []

Fig. 1. The grammar employed to specify the structure of MARS model.

the grammar (usually written in Backus Naur Form (BNF))
to guide the construction of the phenotype output.

Each chromosome in GE is a vector of codons. Each codon
is an integer number used to select a production rule from
the BNF grammar in the genotype-to-phenotype mapping. A
complete program is generated by selecting production rules
from the grammar until all non-terminal rules are mapped.
The resultant string is evaluated with a fitness function to
give a score to the genome.

In this paper, a Design Grammar (DG) is defined to specify
the structure of possible solutions (MARS models in our
case) as can be seen in Fig. 1. The DG is defined in a
way that allows the construction of model’s trees where each
node represents a possible basis function. A MARS model is
constructed by creating a basis function and adding it to the
model. According to the grammar, the basis function can be a
hinge function or a multiplication of two or more functions.
An option of adding an empty node is also added to the
grammar to facilitate model simplification by deleting some
of the already added functions through the mutation operator.

A. The Fitness Function

The goodness of the models evolved is evaluated with a
fitness function. The GCV measure (described in Section IV)
is usually used for this purpose. However, as we are dealing
with pairwise preference data, and since our target values
are defined on pairs of instances rather than individuals, we
need to revise the definition of GCV. The measure we define,
named Pairwise Generalised Cross Validation (PGCV), uses
the notion of agreement between the model’s outputs of a pair
of instances and the actual pairwise preference expressed by
the users, i.e. the output given to the preferred instance in
a pair should be higher than that given to the unpreferred
instance. For this purpose, instead of using the residual
sum of squares to calculate the error, we used Kendall tau
distance. Practically speaking, the PGCV is calculated as:

PGCV =

∑n
i=1 u(yi.A, yi.B)

(1− ĉ
n )

2
(6)

u(a, b) =

{
1 if f(a) <= f(b)

0 otherwise
(7)

where n is the number of pairs in the dataset and f(.) is the
model output.

y= C0 + C1 * <HingeFunction1>
+ C2 * <HingeFunction2>
+ C3 * <HingeFunction3> +..

<HingeFunction1> := max(0,<Feature> - K0)
<HingeFunction2> := max(0,K1 - <Feature>)
<HingeFunction3> := max(0,K2 - <Feature>)

.....
<Feature> := f1 | f2 | ... | fn

Fig. 2. Example model evolved with the design grammar where Ki is the
knot in function i, Ci is the weight of the function i and Feature is the
set of input features.

VI. TRANSFER LEARNING

We experimented with two settings to build generic models
of PE. In what follows, we describe each in details.

A. Supervised Feature Mapping

Since we are interested in building models that are accu-
rate on both datasets, we adopt ideas from previous work
on transfer learning [24], [25]. In the Supervised Feature
Mapping (SFM) setting, models are configured to learn two
tasks by training them on one and testing on another. In
our implementation, we start from models optimised on one
dataset and search for the best mapping of features from
the second dataset that yields minimum lose in prediction
accuracy. The process allows evolution to handle the transfer
learning problem in two independent phases: (1) optimise
models of PE on one task, and (2) use the constructed
models as templates to find the mapping of features that
works well on both tasks. This allows the approach to focus
on optimising for an individual task while the pre-trained
parameters seed the search and optimisation for the second
task. Naturally, the method relies on the significance of the
similarity between the behaviour of the features (according
to reported PE).

More specifically, we use one of the datasets as a
source, Ds, and we train MARS models, Ms, to predict
PE from S. The results are models where the features,
Fs = fs1|, fs1, ..., fsn, are chosen from the source dataset. In
the next stage, we fine tune the models by fixing the models’
knots, weights, number and shape of the basis functions,
and optimise for the feature mapping: we select a set of
features Ft = ft1|, ft1, ..., ftn from the target dataset, Dt,
that substitutes Fs with minimal loss in accuracy.

Practically, this is achieved by GE through evolving the
grammar. Fig. 2 shows a generalisation of and example
grammar evolved from a source task. We then apply a second
evolution process where all parameters in the grammar are
set as constants (the ones shown in capital letters) except for
the features (denoted in bold in the figure). Evolution in this
stage fixates on finding the optimal mapping of features given
the learned parameters by validating the model performance
on the target dataset.

B. Unsupervised Transfer Learning

While using models built on one task and fine-tuned on
another is a valid and fast approach for the problem of2016 IEEE Conference on Computational Intelligence and Games (CIG’16) 213



transfer learning [26], the previous approach assumes that
the problem is fully supervised, i.e. labels are available for
both the source and the target datasets. Unlike unlabelled
data which is usually available and relatively easy to collect,
labels are usually sparse and hard to gather. We there-
after investigated another unsupervised approach for building
transfer learning.

In the UnSupervised Transfer Learning (USTL) setting,
we project the features of our domains on a common space
that we use later as input to our modelling approach. This
is achieved by applying an unsupervised domain adaptation
method which attempts to establish a relationship between
two domains. The traditional approach is to learn a new
domain-invariant feature representation by looking for a new
projection space. Naturally, Principle Component Analysis-
(PCA) based methods have been investigated for this pur-
pose [27], [28], [29].

In our implementation, we follow the same procedure
suggested in [30] for unsupervised model adaptation. The
idea is to generate intermediate representations of the source
and target datasets in the form of subspaces (composed of d
eigenvectors inferred by a PCA). The next step would be to
find a transformation function that moves the source subspace
closer to the target subspace through a subspace alignment.

Formally speaking, for Ds and Dt, and to perform the
subspace alignment model adaptation, we first apply PCA,
with d number of components, on Ds and Dt (note that d is
constant in both dataset). This results in two projection ma-
trices, Xs and Xt for the source and the target, respectively.
The next step is to learn a linear transformation function
that align the source subspace coordinate system to the one
of the target. To achieve this, we need to learn an alignment
metric Xa = XsX

′
sXt. Multiplying Ds and Dt with their

corresponding projection matrices, Xa and Xt, results in a
transformation from the original feature space to the shared
one. Once Ds and Dt are both in the same feature space
(D′s and D′t), we can run machine learning methods to build
models that can be trained on D′s and tested on D′t.

This approach is unsupervised in the sense that it does
not require target label information. We assume we only
have the labels for Ds and the models can be constructed
on the source data while relying on the correlations among
the features of the source and the target. Once constructed,
models can be employed to provide prediction on the target.

VII. EXPERIMENTS

We conducted experiments to evaluate the two proposed
strategies. in the following sections we present the setup used
and the results obtained.

A. Experimental Setup

As previously mentioned, IMB and a FPS games were
used to evaluate the approach. The open source GEVA
software [31] is used as a core to implement the needed
functionalities. The experimental parameters used are the
following: 10 runs each ran for 100 generations with a
population size of 100 individuals, the ramped half-and-half

initialisation method. Tournament selection of size 5, int-
flip mutation with probability 0.1, one point crossover with
probability 0.9, and 0 maximum wraps were allowed. All
parameters were assigned experimentally.

For model generation, the number of basis functions is
bounded between 6 and 30. The penalty value of the PGCV
is set to one. To simplify the process of finding and analysing
the mapping of features, we set K = 1 of evolved MARS
models, meaning that we do not permit multiplications of
basis functions.

To evaluate the supervised approach, we evolve MARS
models on a source dataset and calculate the accuracy on
the other using 10-fold cross validation. The best model
obtained from this step is then used to optimise the feature
mapping. Fine-tuning the model for feature mapping is done
through another step of evolution on the target dataset while
measuring the accuracy through 10-fold cross validation.

For unsupervised transfer learning, and since we have
a shared space of features, the models are trained on the
transformed features of the source dataset (which we assume
is labeled) using 10-fold cross validation. We then calculate
the accuracy of the models on the transformed version of the
target dataset. We used 10 components for PCA.

All experiments are repeated twice where we switch the
source and the target to study order effect. Significance effect
is observed through the t-test with p−value <= 0.05. All the
results are significantly different unless otherwise mentioned.

B. Analysis

In order to evaluate both approaches to construct models
that are accurate across two datasets, we conducted a number
of experiments where we use one of the dataset as a source
for constructing the models while we use the other as a target.
To accommodate for order effect, we repeat the experiments
while switching the order of the datasets so that the source
becomes the target and vice versa. The results obtained from
the possible combinations are presented in Table II.

1) General Observations: All models are built to pre-
dict pairwise preferences of engagement, frustration and
challenge as reported by players. Most models achieved
reliable performance with accuracies above 60% (models
with random guess in our case would achieve 50% accuracy).
The model performance depends on the predicted affected
state and the dataset used to train and evaluate the model.
When models are trained and evaluated on the same dataset
(the cells with shade in the table), the best performing models
were those for predicting frustration and challenge from the
FPS dataset. In general, it appears that predicting affective
states in the IMB dataset is harder than predicting them from
the FPS dataset. When predicting challenge, for instance,
models trained and evaluate on the IMB dataset achieved
around 61% accuracy compared to 85% for the ones trained
and tested on the FPS dataset.

While the model performance and generalisation capabil-
ities vary, it appears that both methods work quite well.
The accuracies obtained from the generalised models are
all above 58% for the supervised feature mapping case and2016 IEEE Conference on Computational Intelligence and Games (CIG’16) 214



above 55% for the unsupervised transfer learning scenario.
In the best cases, models of accuracies as high as 83% are
built for predicting challenge in the FPS dataset by models
trained on IMB data.

2) Supervised Feature Mapping: In the supervised feature
mapping scenario, one would expect the models to per-
form better on the source dataset. This is mainly because
the models’ parameters and shape are optimised for that
particular dataset. While this assumption holds for most
cases, it is not always true. The models trained on IMB
for predicting challenge, for instance, and then used to find
the optimal feature mapping from the FPS dataset achieved
higher accuracies than those trained and tested solely on IMB
(83% for FPS vs. 71% for IMB). It appears that in these
cases, testing the models on the target dataset allows them
to generalise well and steers them away from overfitting.

The best models to generalise when searching for the best
mapping are those for predicting frustration. These models
are the best after comparing their accuracies against those for
predicting other affective states (their performance is usually
comparable) and by observing the difference in the their
reported accuracies when trained and evaluated on the same
dataset vs. when trained on a source and generalised for a
target (the combined difference is minimal).

3) Unsupervised Transfer Learning: For the unsupervised
transfer learning task, the results are more consistent and the
behaviour is more predictable: all models perform better on
the source dataset than on the target. In this case, however,
it seems that models that perform well on the source dataset
does not necessarily generalise as well. Most models trained
on FPS as a source are of high accuracies, yet they perform
relatively poor when the transformed features taken from the
IMB dataset are set as input. We anticipate that overfitting
has a greater effect in this case and we expect further
investigation of methods that overcome this issue to bring
more insights on this matter.

What is interesting to note is that models trained on a
transformed version of the feature achieved higher accuracies
than those trained on the original feature set (for single-
domain modelling). When reducing the dimensionality of
the feature space with PCA and training the models on the
transformed features, the accuracies obtained on the FPS
data are 86%, 87% and 87% which are significantly better
than those obtained from the original features set when
predicting engagement, frustration and challenge (83%, 85%
and 73%). These findings, however, applies only on the FPS
as we did not observed the same consistency in behaviour
when predicting the affective states from the IMB dataset.
We anticipate that the better performance observed by the
unsupervised method is due to the advantage gained from
reducing the dimensionality of the feature space by PCA.
We therefore expect future comparison where PCA is also
applied in the supervised case to highlight more insights on
the effect of the input space on the performance.

We also looked at the methods’ sensitivity to the order of
using the datasets. Both for the supervised and unsupervised

TABLE II
AVERAGE AND STANDARD DEVIATION ERRORS OF THE MODELS WHEN

TRAINED AND TESTED ON DIFFERENT CONFIGURATIONS OF THE
INFINITE MARIO BROS AND FIRST PERSON SHOOTER DATASETS

FOLLOWING THE SUPERVISED FEATURE MAPPING (SFM) AND THE
UNSUPERVISED TRANSFER LEARNING (USTL) METHODS.

SFM USTL
aaaaaa

Source
Target IMB FPS IMB FPS

Engagment
IMB 0.38±0.04 0.31±0.11 0.35±0.06 0.35±0.07
FPS 0.42± 0.04 0.17±0.11 0.46±0.04 0.14±0.17

Challenge
IMB 0.29±0.06 0.17±0.08 0.33±0.07 0.45±0.05
FPS 0.32± 0.04 0.15±0.09 0.47±0.04 0.13±0.10

Frustration
IMB 0.28±0.07 0.31±0.08 0.28± 0.06 0.35±0.07
FPS 0.28± 0.04 0.27±0.09 0.42±0.05 0.13±0.10

scenarios, we observed that IMB dataset serves a better
starting point for model construction: most of the models first
trained on this dataset and then generalised achieved better
accuracies than when the reverse order is used. The only
exception is when predicting frustration in the supervised
case: the models constructed on FPS and then generalised
are 3% better than those first trained on IMB and optimised
for FPS. We hypothesise that this effect might be related
to the nature of features: features collected for IMB convey
rich information about players’ behaviour that makes them
better descriptors of the experience. The findings revealed
that feature transformation is a good approach for modelling
PE in a specific domain but it does not perform as well
when the goal is to create generic models. Supervised feature
mapping, on the other hand, yield models that are more
consistent across domains although less accurate.

C. Comparison with Manual Feature Abstraction

We mentioned in the introduction that we previously con-
ducted a preliminary experiment where generic models of PE
in the same two games are constructed [5]. The input feature
set in that study included generic features manually selected
by game experts. The same evolutionary-based approach is
used to construct model on the combined feature set. As the
goal of this paper is to automatically build accurate models
on more than one game, we believe comparing the results
could give some insights on the success of the proposed
methods. The results obtained in the previous study showed
that generic models of 70.88%, 79.81% and 76.89% could be
built for engagement, frustration and challenge. Compared to
the results in this paper, it seems that automatic discovery
of generic transformable knowledge is an efficient and viable
alternative. The results obtained are in most cases comparable
(the results obtained by the best configurations are 69%, 83%
and 72% for the same affective states) indicating a promise
for the current approach.

VIII. CONCLUSIONS

The paper presents an approach to construct models of
PE that could work well on more than one game. We2016 IEEE Conference on Computational Intelligence and Games (CIG’16) 215



collected rich information of players’ behaviour in two quite
dissimilar games and we proposed two methods for building
cross-domain experience models. In the supervised feature
mapping setting, our goal is to establish a mapping between
the features of a source and a target dataset that permits
using the same models in both games simply by switching the
input space. In the unsupervised transfer learning scenario,
we assume that only one of our dataset is labeled and our
goal is to transfer the knowledge we learned from labelled
data by establishing a new shared space of correlated features
in both datasets.

The results obtained showed promising results for both
approaches. The performance appears to be related to the
affective state being modelled, to the order in which the
data is used for model construction and to the type of
the method used. In general, it appears that starting with
models built on rich information is more promising for
knowledge transformation. Naturally, there seems to be a
tradeoff between the performance on a specific dataset and
the cross-domain performance: the more generalised the
model, the less accurate it is on a specific dataset. Further
investigations should be performed to find the best tradeoff
between overfitting and generalisation.

This paper provides initial results towards building generic
models of PE. There is a wide window for future investiga-
tions: the features used in this study are purely statistical
indicators of frequencies of actions and content, other type
of features could be included that provide richer information
such as patterns of behaviour or sequences of actions. Our
study and results are limited with the specific games used.

The domains in which we applied the methods are rather
representative and by no means inclusive of other game types
or genres. Further investigations should be undertaken to
explore the applicability of the method to the wider space
of possible games.
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Abstract—In this paper, we demonstrate the feasibility of
a competitive player using statistical learning methods to
gain an edge while playing a collectible card game (CCG)
online. We showcase how our attacks work in practice against
the most popular online CCG, Hearthstone: Heroes of World
of Warcraft, which had over 50 million players as of April
2016. Like online poker, the large and regular cash prizes of
Hearthstone’s online tournaments make it a prime target for
cheaters in search of a quick score. As of 2016, over $3,000,000
in prize money has been distributed in tournaments, and the
best players earned over $10,000 from purely online tournaments.

In this paper, we present the first algorithm that is able to
learn and exploit the structure of card decks to predict with
very high accuracy which cards an opponent will play in future
turns. We evaluate it on real Hearthstone games and show that at
its peak, between turns three and five of a game, this algorithm
is able to predict the most probable future card with an accuracy
above 95%. This attack was called “game breaking” by Blizzard,
the creator of Hearthstone.

I . I N T R O D U C T I O N

Over the last 20 years, since the inception of Magic the
Gathering [34], collectible card games (CCGs) have emerged
as one of the most pervasive forms of contemporary game
play. In North America alone, sales were estimated to be
above $800 million in 2008 [9]. Given the popularity of
CCGs, it is not surprising that in the last few years, with the
rise of mobile devices and tablets, computer-based CCGs have
emerged as one of the largest parts of the e-sport scene. In
particular, the most popular online CCG, Hearthstone: Heroes
of World of Warcraft [11], which had over 50 million players
as of April 2016 [26], is one of the most profitable games for
e-sport players. As of 2016, over $3,000,000 in prize money
has been distributed in Hearthstone tournaments since its
creation in 2014 [12]. The ranking shows that the best players
earned over $10,000 from purely online tournaments and
over $200,000 in total [12]. Given Hearthstone’s popularity,
the amount of money at stake in an online tournament and
that most offline tournaments with prizes have an online
qualification phase, it is important to understand how players
can attack Hearthstone to gain an unfair edge.

Contribution. To address this need, this paper, to the best
of our knowledge, describes the first security analysis of an
online CCG and it is the first to develop statistical learning
attacks [17] against CCG games. This paper presents the first
algorithm that is able to learn and exploit the structure of

card decks to predict with very high accuracy which cards an
opponent will play in future turns. Using a dataset of 50,000
game replays collected in May 2014, we demonstrate that our
statistical learning attack works in practice by successfully
using it against Hearthstone. At its peak, between turns
three and five of a game, our algorithm is able to predict the
most probable future card with an accuracy above 95%. As
recounted in the ethics section later in the introduction, the
effectiveness of this attack was validated by the creator of
Hearthstone, Blizzard Entertainment, which deemed it “game
breaking.”

Ethics. We reached out to Blizzard Entertainment to disclose
our findings prior to publication but we did not get any
response. However, after we presented some of the findings
reported in this paper at a famous hacking conference, Blizzard
reached out to us. During the conversation, one of the main
game designers acknowledged that the deck prediction attack
demonstrated was indeed game breaking and asked us to not
publish our prediction tool or dataset. Following Blizzard’s
request, we agreed not to release the code for our prediction
tool or the full dataset.

Outline. The remainder of the paper is organized as follows.
In Section II, we provide the background needed to understand
the state of game security research, what a CCG is and how a
Hearthstone game is played out in particular. In this section, we
also discuss our threat model and how our dataset was created.
In Section III, we focus on predicting which cards the opposing
player will play in future turns. We describe how our prediction
attack works and report the results of our evaluation against
our dataset. In Section IV, we briefly evaluate the game’s most
predictive metrics using a decision tree to shed light on the
most important factors that players need to consider while
playing Hearthstone. Finally, we conclude in Section V.
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I I . B A C K G R O U N D

In this section, we provide the necessary background. We
start by discussing the state of game security research. Then
we briefly explain what collectible card games (CCGs) are.
Next, we describe how a Hearthstone game is played, its win
conditions and where the game complexity stems from. Next,
we discuss the threat model and attack types considered in this
paper. Finally, we explain how the dataset used in this paper
was collected.

Security research, machine learning and games. Research-
ing how to exploit games and detecting cheaters using machine
learning has the long-standing tradition of being a very prolific
security research topic. Detecting MMORPG bots, including
World of Warcraft ones, was studied in [16], [22]. A technique
to build a map hack and defend against them was presented
in [5]. Using machine learning to detect aim bots for Unreal
3 was presented in [15]. The research presented in [35], [1]
extended the use of machine learning for aim-bot detection
to other FPSs (First Person Shooters). Applying fuzzing to
attack online games and in particular League of Legends was
presented in [6].

Collectible Cards Games. Also known as trading card games
(TCGs),1 CCGs are broadly defined as turn-based strategy
games that use a pool of cards (usually hundreds) that are
collected by players. These games rose in popularity in 1993
with the release of Magic The Gathering [34] even though
the origin of the genre can be traced back to a baseball card
game published in 1904 [9]. What makes CCG different
from traditional card games is that players cannot buy all the
cards at once; they need to collect them by buying boosters
to expand their collection. Cards have different rarity and a
booster randomly includes a few common cards (the less rare
ones) and at least one card that is rare or “better”. Hearthstone
has five levels of rarity: sets cards (which are given for
free to players), common cards, rare cards, epic cards and
legendary cards. Each Hearthstone booster comprises five
cards selected at random with at least one card that is rare
or better. Hearthstone is considered a “live” CCG, which
means that its creator, Blizzard, keeps adding new cards to
it in expansion sets, which are released regularly. During a
game, players play with decks that they constructed from
their personal collection of cards. The construction of a deck
is strictly regulated. The number of cards a deck contains
is usually restricted (30 exactly for Hearthstone) as is the
number of copies of a given card that can be played (two of
the same kind for Hearthstone, except for legendary cards,
which are restricted to a single copy).

Beyond their recreational and competitive purposes, CCGs
are also used for education, including teaching kids about
diseases [28] or professionals about computer security [10].

1The acronyms CCG and TCG are used interchangeably and they co-exist
due to licensing issues. In this paper, we will exclusively use the CCG acronym
as Hearthstone is marketed as an online CCG by Blizzard.

From a theoretical standpoint, CCG games are viewed
as imperfect information games with randomness. Previous
research on CCGs focused on either optimizing how to collect
cards [3] or taking a theoretical approach to determining the
best way to play the game [8].

To the best of our knowledge, no prior work exists on
predicting what cards the opposing player will play in future
turns, on finding over-powered cards or on using machine
learning to predict a game’s outcome. However while there is
no formal research on it, we note the existence of bots [2]
that are designed to play the game instead of humans for
leveling purposes. Those bots work by analyzing the current
board state and attempting to make the best play possible.
The only documented attempt to exploit a game design flaw
using statistical learning to gain a competitive edge was the
use of a genetic algorithm to find an optimal build order in
Starcraft 2. This led to the discovery of a very efficient and
yet counterintuitive build order called the “7 roach timing-
attack” [4].

Hearthstone. Hearthstone: Heroes of Warcraft is a free-
to-play digital CCG that was initially released in early
2014 by Blizzard entertainment [11]. As of May 2016,
Hearthstone has more than 50 million player accounts
registered worldwide [26], making it the most popular online
CCG. As of 2016, over $3,000,000 in prize money has been
distributed in Hearthstone tournaments since its creation [12].
The ranking shows that the best player earned over $10,000
from purely online tournaments and over $200,000 in
total [12]. This makes Hearthstone one of the top ten most
profitable games for pro-players and a target of choice for
cheaters, given the large online cash prizes and that most
offline tournaments will financially reward each player who
qualifies to the offline phase through the online qualification
phase.

Fig. 1. Screenshot of the Hearthstone game board with the most important
features illustrated

A Hearthstone game, as other CCGs, is a turn-based match
between two opponents represented by their chosen “hero,” an
important character from Warcraft lore that has 30 health points,
as depicted in Figure 1.
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At the start of the game, each player draws three cards
from their deck, which comprises 30 cards selected by the
player from their card collection before the game started.At
the start of their turn, the player draws a new card from their
deck. While most cards are available to heroes of any class, a
substantial portion is limited to a specific class, giving each
hero its own strengths and unique possibilities. Each card or
hero power requires the player to spend a specific amount of
mana to play it, strategically limiting the player’s options.

At the beginning of turns one through to ten, the player’s
mana pool is replenished and increased by one, allowing
them to play more powerful cards as turns pass. After turn
ten, the player’s mana pool is replenished and capped to
ten mana points. We note that for game balancing reasons,
the player who starts second gets an extra card from their
deck to equalize the draw count and a “bonus” card, called
the coin, which gives them a free mana point when played.
A Hearthstone match ends when one or both players have
reached zero health, or choose to concede.

Building the best deck possible is an essential skill and
many archetypes of decks exists. Deck archetypes are
characterized by the distribution of the mana cost of the cards
they contain, which is referred to as the mana curve. A low
mana curve (having many cheap cards) is called an aggro
deck and is usually very good early in a game. A balanced
curve is referred to as a mid-range deck and a deck that
contains mostly powerful cards with high mana cost is known
as a control deck. Last but not least, the combo deck refers to
a deck that leverages very powerful synergy between specific
cards to kill the opposing player, usually in a single turn.
Blizzard aggressively balances the game by nerfing decks
(which means making them less efficient) that exhibit a too
high win rate or “make the game not fun,” which usually
means combo decks that can kill an opponent in a single
turn [31].

Hearthstone offers four types of card: minions, which are
creatures that exist on the board as visible in Figure 1. A
minion has a set of attack and health points and sometimes
special abilities, which are described in the text of the card. A
minion’s current attack points are displayed in a yellow circle
located on the bottom left of the card, whereas a minion’s
current health is represented as a red drop located on the
bottom right of the card. The second type of card comprises
spells, which are abilities directly played from the player’s
hand. The third type of card comprises weapons, which can
be equipped one at a time by the player’s hero to give it the
ability to attack for a defined amount of attack points and
time. Finally, secrets are cards that are played on the board
but are hidden behind a question mark. They are triggered by
specific conditions including if the opponent plays a minion
or an opponent’s creature tries to attack the player’s hero.

Threat model. The threat model considered in this paper is
the passive attacker model, which assumes that the attacker
has access to the state of the game and the ability to observe
all its network traffic. We also assume that the attacker has
access to a vast set of previous game replays, which can be
used to apply various statistical learning methods. This attacker
model was chosen over the active attacker model because it
matches what a cheater can realistically do during competitive
Hearthstone games that are observed by referees, casters and a
crowd that will immediately spot any kind of active tampering.
In an online tournament, the referees see only the game screen
via the in-game interface and the players’ faces through their
webcam, which leaves players full latitude to run the tools of
their choice before and during games. Such passive attacks
are far from being theoretic: for example, some players, due
to screen reflections on the webcam feed, have been caught
watching a casting video stream during a tournament to know
their opponent hands [24].

Attack types. In this paper, we focus on how an attacker can
use a machine-learning algorithm during the game to predict
the most likely cards that the opponent will play in future turns.
As in any strategy game, anticipating the other player’s moves
is essential for winning, as it informs the player’s decision-
making process. For example, a player routinely has to decide
between playing an extra creature to further a tempo advantage
or given the likelihood that the opponent will play a board-
clear, to hold off to reduce the value that the opponent will
gain from their board-clear. Such decisions made under time (a
turn is 75 seconds) and tournament pressure are very difficult.
This is even more true when the opponent plays secrets, which
are cards that are in play but not revealed, as the type of
secret played and its trigger condition need to be evaluated
carefully. As recounted in the introduction, the effectiveness
of our attacks was validated by Hearthstone game designers
themselves to the point where they called the predicting attack
“game breaking” and asked us to not publish our prediction
tool.

Attack generality. In this paper, we analyze Hearthstone as
it was in April and May 2014. Since then, many cards have
been added and some cards have been changed (nerfed). While
those changes affect the ranking of the most powerful cards
currently available and the most popular decklists, our attacks
and methods remain equally applicable, as they target the core
mechanics of the game not specific cards or bugs. For the same
reasons, our attacks work against any CCG.

Dataset. For the paper, we use a dataset of 50,000 anonymous
replays that came from hundreds of players who used a game-
recording tool. Players use this tool to keep track of and
analyze their performance. As Blizzard does not provide a
replay features, game replays were recorded from the game
logs. As a result, our replays contain only partial information
regarding the opposing player’s deck: we only get a log when a
card is drawn, played, activated or killed. If a card is drawn but
never played, we know only that the opponent had an unknown
card in their hand.
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However, this is not an issue because we are interested only
in predicting the opponent’s next move based on what the
player knows. Replays were collected between April and May
2014.

I I I . P R E D I C T I N G A N O P P O N E N T ’ S F U T U R E P L AY S

Fig. 2. Our prediction tool in action. Predicted cards are displayed on the
bottom left.

In this section, we demonstrate how we built a tool, as
illustrated in Figure 2, that can predict what the opposing
player will play in future turns based on the previous cards
they played. These predictions give the player an edge because
anticipating the other player’s moves is essential for winning
in Hearthstone, since this guesswork informs the player’s
decision-making process. For example, players routinely
wonder if they should play an extra creature to further a
tempo advantage or given the likelihood that the opponent
will play a board-clear, whether they should hold off to reduce
the value that the opponent will gain from their board-clear.
Being able to figure out under time (a turn is 75 seconds)
and tournament pressure the optimal play in these complex
situations is what separates the best players from the rest.

The average win rate on the online ladder for the best decks
for good players is around 53% while pro-players commonly
reach 70% with the same decks [20]. One may think that a
drawback of this attack is that it requires observing quite a
few played cards before making good predictions. However,
our evaluation shows that that is not the case: by turn two,
our algorithm already makes accurate predictions and is
able, for instance, to predict two cards that the opponent
will play in the future with a success rate over 50%: 66.3%
for the best prediction and 44.1% for the seond best prediction.

This section is structured as follows: first we discuss the
underlying reasons that make Hearthstone predictable, then we
explain how we are able to read game events programmati-
cally. Next, we present our machine-learned ranking algorithm.
Finally, we evaluate our tool on a dataset of 50,000 replays
and show that it has up to a 96.2% success rate at predicting
a card that will be played by the opponent in the future when
its accuracy peaks between turns three and five.

A. Why is Hearthstone predictable?

Hearthstone in its original release, the one considered in
this paper, had 465 cards that players could choose from to
build their deck of 30 cards. It has a limit of two copies
of a given card (see Section II for more background). This
hypergeometric distribution [33] of choosing 30 cards out of
930 leads theoretically to a space of potential decks that is
extremely large: roughly 4.72358 possible decks. However, in
practice the decks played have a lot of predictable structure
due to the following reasons: First, some cards are restricted
to a specific hero class. Second, by design many cards are
meant to work best when played with other very specific
cards. Third, a significant number of cards are just bad or
under-powered, which means that they are almost never played
in competitive games. Last but not least, a huge fraction of
players rely on netdecking [25], which is the act of using a deck
made by someone else (usually a pro-player) and found online.

As of 2015, the netdecking phenomenon has become so
mainstream that weekly blog posts provide and rank the top
decks currently played [30]. As a result, the distribution of
cards that are used by players is heavily skewed. For example,
the site HearthPwn, which has a very large set of decklists
supplied by players, reports that the card Keeper of the Groove
is used in 76.89% of druid decks [18]. Similarly, the Northshire
Cleric is used in 84.16% of priest decks [19]. While self-
reported decks may not accurately reflect the real distribution
of what cards are played, the aforementioned statistics still
convey that there is broad agreement among players on what
are the must played cards. Our tool exploits this underlying
structure by learning from game replays which cards are played
significantly more often than others and which cards are often
played together.

B. How to read the game state

Before delving into how our prediction algorithm works, it is
worth explaining how our tool gets access to a player’s actions,
including which cards were played and how many cards were
drawn. As Blizzard does not provide an API for this, over
time, four main ways have been devised by the Hearthstone
community. The first relies on DLL injection [13] and hooks
the main functions of the game. This approach allows one
not only to get a player’s actions but also generates them
(e.g., play a card). This makes it the method of choice for
Hearthstone bots [2] that automate game playing for leveling
purposes. Unsurprisingly, this method is also the one that
Blizzard actively looks for and bans using its Warden [32],
as it is used for these forbidden automation and map hacks [5].
Two alternative approaches were developed in the early days of
Hearthstone to track games: the first relies on network traffic
sniffing to capture players’ actions at the network level. The
second one uses image recognition techniques and continually
takes game screenshots. Both approaches were deprecated in
May 2014 when reverse engineering of the game client revealed
it was possible to turn on debug logs that would provide enough
information to track game actions [14].
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Since then, every game tracker, including our prediction tool,
moved to this method as it does not violate Blizzard’s terms of
service, like network sniffing, and is more reliable than image
recognition. After setting Hearthstone in debug mode, our tool
continually reads the logs and parses the entries to recreate an
internal representation of the game state.

C. Machine-learned ranking algorithm

As outlined earlier, the goal of our tool is to provide a ranked
list of cards that are in the opponent’s deck and are yet to be
played, based on cards previously played. To achieve this goal,
we built a machine-learned ranking system [7] that given a
set of previous cards returns a ranked list of cards by their
likelihood of being played. An example of our tool output is
visible on the bottom left of Figure 2.

Fig. 3. Hearthstone card sequence as a bag of bigrams

Our machine-learned ranking system uses a modified version
of Markov chains [23], where card co-occurrences are modeled
as a bag of bigrams [27]. As illustrated in Figure 3, extracting
a bag of bigrams from a card sequence involves extracting
all possible combinations of card pairs regardless of the
order they were played. While experimenting with various
data models, we found that using a model requiring more
memory (e.g., trigrams, 4-grams, . . . ) or even adding more
structure to the model (e.g., using regular bigrams to learn
the exact card sequence) yielded worse results. We provide an
analysis of the reasons behind this counterintuitive result and a
comparison between the performance of bigrams and trigrams
in the evaluation part of this section. Until then, we focus on
describing the approach that performs the best: modeling card
sequences as a bag of bigrams.

Learning phase. To learn its model, our tool extracts for each
game replay the sequence of cards played by the opponent and
constructs a bag of bigrams. Those bags of bigrams are then
used to construct the occurrence table, which for a given card
returns the list of co-occurred cards with the number of times
this co-occurrence happened. At prediction time, this allows
it to find the popular pair/combos efficiently, as they are the
ones that have the largest number of co-occurrences.

Fig. 4. Prediction phase example

Prediction phase. During a game, as depicted in Figure 2,
each time the opponent plays a card, the algorithm outputs
a list of potential next cards ordered by their probability of
being played. Under the hood, as exemplified in Figure 4, the
tool leverages the occurrence table constructed in the learning
phase to construct a ranked list of cards as follows: First, the
algorithm uses the occurrence table to retrieve all cards that
were co-played with the cards already played and the frequency
of those co-occurrences. In our example, depicted in Figure 4,
the algorithm looks up the cards that were co-played with
Deadly Poison and Shiv. These lookups led it to retrieve the
Blade Flurry card, which was co-played 350 times with Deadly
Poison and 400 times with Shiv. It also retrieves the Fan
of Knives card, which was co-played 500 times with Deadly
Poison, and Amani Berserker, which was played 400 times with
Shiv. Next, the algorithm sums up card appearances, removes
cards already played and reverse sorts the remaining potential
cards based on the frequency of their co-occurrences. In our
example, Blade Flurry ends up being the most seen/probable
card with a count of 750, Fan of Knives is second with a count
of 500, and Amani Berserker is last with a count of 400. Cards
with a frequency below a certain threshold, Amani Berserker in
our example, are cut off to remove improbable or noisy cards.
While not depicted in the example for clarity, before returning
the list, the algorithm normalizes the card count by the total
count, such that the returned list has a percentage associated
with each card and not the raw count.

D. Evaluation

For the evaluation, we used 45,000 games from our dataset
for training and 5000 games for testing. See Section II
for the dataset collection methodology. For each test game,
the algorithm was asked at the end of each turn to predict
what would be the top ten cards that would be played in
future turns. We then compared each prediction with the
cards that were effectively played in the upcoming turns and
marked a prediction as correct if the card was effectively
played. The result of our evaluation is summarized in Figure 5.
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Fig. 5. Success rate for top ten prediction bucketed by turn

To evaluate if our ranking algorithm is successful at ranking
the cards with the highest chance of being played higher,
we evaluated the success rate of each rank independently.
Additionally, in our evaluation, to account for the fact that
as turns pass, the amount of information (number of cards
played) available to the algorithm increases and that the
number of cards yet to be played decreases, we bucketed the
result by turn. This allows us to understand how the tradeoff
between more information and having a smaller set to predict
from plays out.

The first observation we can make is that the ranking
function performs as intended. In every case, the highest
ranked prediction is the one with the highest success rate, as
visible in Figure 5. Similarly, the prediction ranked number
two always has a better success rate than the one ranked
below it and so forth. The only misranking happens for the
lowest prediction (rank tenth) at turn 2, where the prediction
ranked tenth has a higher success rate than the one ranked
ninth. This is likely due to the fact that the algorithm has
seen very few cards at that stage (likely one) and, therefore,
cannot separate the predictions.

Secondly, we observe that the algorithm is very successful
at predicting what the opponent will play, with the best
prediction having a 96.2% success rate for turns three and
five. Throughout the first ten turns of the game, the best
prediction has a success rate above 56.9%, which shows that
the algorithm successfully learned the hidden correlations
between cards and is able to use it to make accurate to very
accurate predictions reliably throughout the game.

Thirdly, we see that indeed the tradeoff between having
more information and a smaller set of cards yet to play to
predict from does affect the algorithm’s performance. In the
first seven turns, the average prediction success rate steadily
climbs from 23.5% to 63.2%. Then as the game progresses
and the number of turns left and, therefore, the number of
cards the opponent will play are both getting smaller and
smaller, the accuracy drops back and reaches 47.5% by turn ten.

This shows that past a certain point, more information
cannot counterbalance the fact that the pool of cards yet to be
played is getting too small.

Finally, we note that the delta between the best prediction
success rate and the worst one decreases steadily as the turns
pass. This is again expected because the amount of mana the
player has has increased, which leads to a greater number of
valid plays as turns pass.
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Fig. 6. Bigram versus trigram success rate

During our experimentation, we attempted to use a model
requiring more memory by using longer n-grams. However,
none of these alternative models yielded better results than
bigrams. Similarly, every attempt to use a more constrained
model, such as strict bigrams, in the hope of exploiting
further the relations between cards, yielded worse results than
our bag of bigrams. This negative result is best illustrated
by comparing the success rate of the algorithm when using
bigrams and trigrams. As visible in Figure 6, the best
trigram-based prediction is significantly worse for turns one
to five and marginally better for turns six to ten. However, the
average prediction success rate is worse for every turn and by
quite a huge margin for the early turns.

This is a counterintuitive result because in other cases,
including predicting words typed, spell-checking and predicting
almost any type of sequence [21], using a model requiring more
memory leads to increased accuracy. This result is partially
explained because players draw cards at random, which adds
baseline noise to each game. Also the order in which a player
plays cards during a given turn may not influence the outcome,
which makes all sequence permutations likely to see some play.
Another potential reason that favors having a “laxer” model is
that players run decks with slight variations, such as including
one or two copies of a given card. That being said, it may
be possible that a model requiring even more memory, such
as LSTM/RNN [29], and using significantly more data, could
outperform the current approach. Given that our tool is already
good enough at helping an attacker figure what their opponent
will play in future turns, this investigation is left as an open
question.

2016 IEEE Conference on Computational Intelligence and Games (CIG’16) 222



I V. P R E D I C T I V E F E AT U R E S

In this section, we briefly explore the use of machine learning
to predict the outcome of a Hearthstone game. Understanding
the most predictive metrics sheds light on what are the optimal
strategies for playing Hearthstone and can help players to make
better decisions. Over the years, the Hearthstone community
has come up with a few metrics that are routinely used to
predict who will win a game. However, until this work, there
was no formal analysis of how good those metrics are at
predicting game outcomes. Drawing on our experience, forum
discussions and game analysis by pro-players, we compiled
and a formalized the following list of metrics:

• Mana efficiency: The mana efficiency metric is the dif-
ference between how much mana the player spent versus
how much their opponent spent. So, if the player has spent
4 mana and their opponent has spent 2, then the mana
efficiency will be 4 − 2 = 2. Conversely, if the opponent
spent 6 mana and the player spent only 2 mana, the mana
advantage is 2− 6 = −4. Given that according to our card
model (Section III), the power of a card is (almost) perfectly
reflected by its mana price, we were expecting that this metric
would be the most predictive. As reported earlier, this is the
case, which supports even further the validity of our model
and its assumptions.

• Board mana advantage: The board mana advantage is
computed as the difference between the sum of the mana
for the cards that the player has on the board versus the
sum of the mana for the cards the opponent has on the
board. According to our model, this metric should be a better
predictor than the sheer number of creatures on the board, as
our model implies that a 3-mana creature is more powerful
than two creatures that cost 1 mana.

• Board advantage: The board advantage measures the dif-
ference between how many minions the player has versus
how many minions the opponent has in play.

• Draw advantage: The draw advantage measures who drew
the most cards by calculating the difference between how
many cards the player has drawn so far and how many cards
their opponent has drawn. For instance, if the player has
drawn four cards and their opponent has drawn two, then
the draw advantage is 4 − 2 = 2. Our model predicts that
the value of having a card is a fraction of the card’s mana
cost, so this metric should be a weak indicator.

• Hand size advantage: This metric refers to how many cards
the player has in hand versus how many cards the opponent
has. It is a somewhat strange metric, but many casters and
players refers to it, so it was included. If the player has two
cards in their hand and the opponent has three cards, then
the hand size advantage is 2− 3 = −1.

To evaluate which metric has the most predictive power, we
used the standard random forest feature selection algorithm,
as it outputs a ranked list of features with their predictive
power. To do this, we modeled games as a binary classification
problem and used our metrics as features.
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Fig. 7. Various algorithms accuracy at predicting the winner

The feature vectors are constructed by outputting the value
of each metric at the end of each turn for the first 14 turns,
the cumulative value of the features at the end of each turn for
the first 14 turns of the game, and the value and cumulative
value of the metrics at the end of the game. We then trained a
random forest on our dataset using 45,000 games and tested it
on 5000 games. To be thorough, on top of training a random
forest algorithm, we also trained several classifiers, namely a
naive Bayes, an extra tree, a support vector machine (SVM)
with a linear kernel, and a SVM sigmoid kernel grid search.
The accuracy of the various algorithms on our dataset is
reported in Figure 7. All classifiers got better as turns passed,
and the accuracy of each classifier is above the baseline of
50%. The accuracy of the random forest is very close to
the best classifiers, which are based on SVM. This gave us
confidence that using it to rank features will give meaningful
results.

Fig. 8. Feature prediction power

The results for the feature selection algorithm are reported
in Figure 8. As visible in this chart, the cumulative metrics
that track mana usage (mana advantage and board mana) are
the most predictive. We expected that the mana advantage
metric would be the best, instead of the board advantage,
but with hindsight this makes sense. A player’s minions
that are still in play after a turn gives them a lasting advantage.
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While the board size advantage, draw advantage and hand
advantage are significantly less predictive, the results confirm
the community’s intuition that those metrics are important. We
note that the metric selected by the algorithm as most relevant,
was the metric at the end of the game not the metric at a
particular turn, which suggests that there is no turn that is more
important than another, unlike what some of the Hearthstone
community believes, which is that turns two and three are
critical.

V. C O N C L U S I O N

In this paper, we demonstrated the feasibility for a competi-
tive player to use statistical learning methods to gain an edge
while playing collectible card games online. We showcased
how our attacks work in practice against the most popular
online CCG Hearthstone: Heroes of World of Warcraft, which
had over 30 million players as of May 2015. We devised a
statistical learning algorithm to attack Hearthstone. It learns
and exploits the structure of card decks to predict with very
high accuracy what an opponent will play in future turns. At its
peak, between turns three and five of the game, this algorithm
is able to predict the most probable next card with an accuracy
above 95%.
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Abstract—Inventory-Aware Pathfinding is concerned with find-
ing paths while taking into account that picking up items, e.g.,
keys, allow the character to unlock blocked pathways, e.g., locked
doors. In this work we present a pruning method and a prepro-
cessing method that can improve significantly the scalability of
such approaches. We apply our methods to the recent approach
of Inventory-Driven Jump-Point Search (InvJPS). First, we
introduce InvJPS+ that allows to prune large parts of the search
space by favoring short detours to pick up items, offering a
trade-off between efficiency and optimality. Second, we propose
a preprocessing step that allows to decide on runtime which items,
e.g., keys, are worth using thus pruning potentially unnecessary
items before the search starts. We show results for combinations
of the pruning and preprocessing methods illustrating the best
choices over various scenarios.

I. INTRODUCTION

Pathfinding is a common search-based technique that allows
a character to move from one location to another within a game
world in a reasonable way, e.g., avoiding obstacles and using
the fastest way to go. Pathfinding is central in many game
genres and significant work is carried out in the commercial
videogames industry toward improving the believability of the
navigation of characters such as making the resulting paths
smoother and more realistic, e.g., [1], [2], [3].

Nonetheless, there are certain aspects related to character
navigation that have been studied in academic artificial intel-
ligence (AI) which have not been explored much in the game
industry. In particular, some recent work investigates how
existing pathfinding approaches can be extended to account
for additional capabilities of the character beyond moving [4]
so as to be able to answer questions of the form: “What is
the fastest way for a character to go from A to B when they
can also pick up items that open blocked pathways?”. From a
theoretical perspective this is a special case of AI planning that
merges navigational pathfinding with task-based deliberation.
Certainly, such questions could be handled as a special case of
STRIPS-like planning [5], a well-studied AI approach,1 but the
challenge for us is to identify practical restricted AI solutions
that fit well in the videogame requirements.

1E.g., the International Conference on Automated Planning and Scheduling
(ICAPS) is an established forum for researchers and practitioners in planning
and scheduling: www.icaps-conference.org.

Our starting point then is the Inventory JPS (InvJPS)
pathfinding algorithm [4], which extended the award-winning
Jump-Point Search (JPS) technique [6], [7] to search over the
space of paths that are feasible when the character is also
able to collect (and use) objects that can open up blocked
pathways. For simplicity, the analysis in [4] focused on the use
of keys that may open locked doors. The experimental results
over maps from the “Moving AI” benchmark [8] showed that
InvJPS (i) adds little overhead in the cases where keys are
not needed for finding a path, and (ii) has a runtime that is
still practical, provided there are a small number of keys and
a feasible path (with some of such keys).

Nonetheless, the results in [4] also demonstrated that the
worst case scenario is in fact one that is not uncommon in
practice, namely, when there is no path from the start location
to the the destination. The reason is that, because InvJPS seeks
an optimal path, it ought to take into account all possible ways
of moving and collecting/using keys. Intuitively, this can be
seen as searching over many different “versions” of the map,
one per possible combination of keys available. So, when there
is no path whatsoever, the algorithm goes through all those
maps before deeming the destination unreachable.

In this work we propose, then, two optimization techniques
to address this issue. First, we develop a pruning mechanism
to discard some of the map “variations” with the price of
giving up optimality. The idea is to favor picking up a key
that are close-by, even if they may not be useful after all,
and give up searching for a faster path without such key. The
resulting algorithm, which we shall refer as InvJPS+, provides
the necessary parameters for exploring the trade-off between
optimal paths and this type of “detours.” Our results show that,
in the cases that no path exists, InvJPS+ is yields an answer
much faster than InvJPS, while in the cases that a path does
exist, the overhead in the path length is reasonable.

The second technique involves a preprocessing method to
speed up runtime performance even more. Concretely, the
method assesses the door locations offline and generates a con-
nectivity graph, which supports the identification, at runtime,
of subsets of keys that are sufficient to find a path. In this way,
by looking only into combinations of such key sets, InvJPS+
can be constrained to search over a fixed small upperbound
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Fig. 1. An inventory-aware pathfinding example.

of keys. Different strategies on selecting such sets offer then
an additional trade-off, between runtime performance and
completeness. We investigate how these strategies work with
InvJPS+, and under which conditions they offer an inventory-
aware pathfinding solution that is practical over all cases.

II. INVENTORY-AWARE PATHFINDING

In this paper we deal with Inventory-Aware Pathfinding
according to which the character may acquire capabilities that
allow them to open blocked pathways and use them to find
paths in order to move from one location to the map to another.
We follow the assumptions of [4] and also focus on locked
doors and keys as a convenient way to talk about blocked
pathways and capabilities that can be acquired.

In particular, the inventory-aware pathfinding problem is an
one-shot search problem as follows. Given:
• a grid-based map M as a set of locations {m11,m12, . . .};
• a set O ⊆ M of locations that are blocked (and cannot

be traversed by the agent);
• a function adj :M 7→ 2M denoting the adjacency relation

among locations (adj(x) denotes the set of locations that
adjacent to location x);

• a set of items I (e.g., objects or capabilities) that may be
scattered in the map (and that the agent is able to acquire
when co-located);

• a function obj : M 7→ 2I stating the items present in
each location (obj(x) = ∅ denotes no items at node x);

• a function req : M 7→ 2I stating which items (in
combination) are required to traverse a location; and

• a start location S and destination location G,
Find an optimal (i.e., shortest) path σ = x1, x2, . . . , xn, with
n ≥ 1, such that:
• x1 = S and xn = G;
• xi+1 ∈ adj(xi) and xi 6∈ O, for every i ∈ {1, . . . , n−1};
•

⋃
j<i obj(xj) ⊆ req(xi), for every i ∈ {1, . . . , n}.

That is, we are interested in finding the shortest path from
start to destination under the constraint that some locations
along the path may require the agent to have previously visited
other special locations (last point above).

Note that the map may be dynamic but the algorithm
considers a static snapshot of the map with the location of keys
and doors known. Also, all keys are assumed to be acquired
immediately upon reaching a location that has keys, and we
do not take into account any cost for picking up or carrying

them (essentially an inventory of unbounded size is assumed).
Finally, one key can open multiple doors and one door can be
opened by a single key (or a single combination of keys).

For example in Fig. 1 the character wants to get from A to
B, there is one key, and one door. The character can go around
to reach the destination or pick up the key and go through the
door; the optimal (shortest) path depends on the position of
the character, the key, the door, and the destination. In the
example, the cost for the two paths is the same but a change
in the position of the key can make one of the two shorter.

A. Jump-Point Search (JPS)

JPS [6], [7] is a search type pathfinding approach designed
for uniform cost grid-based domains. Its key insight is that
when searching a grid there is a great deal of symmetry: if
paths have the same start and end location, then what occurs in
between is basically the same set of moves (vectors) but in a
different order. Thus, instead of expanding all reachable nodes,
JPS “jumps” from a potential turning point to another turning
point, expanding only those nodes that might require a change
of direction, essentially searching over an abstracted map
consisting of these so-called jump-points. There are formal
rules that specify which nodes qualify as jump-points and a
proof that guarantees that this abstraction maintains optimality.

As explained in [9], JPS operates, technically, like A* by
working through the grid systematically, maintaining an open
list, and selecting and opening nodes from that list using the
same best-first evaluation function as A*. When a node n
in the open list is expanded, A* retrieves all its unblocked
adjacent nodes and adds them to the open list. Instead, JPS
generates on-the-fly a vector of travel from n through the
adjacent nodes that follow the direction of the search and
adds in the open list the resulting nodes in which the traveling
direction in the optimal path may change.

B. Inventory-aware Jump-Point Search (InvJPS)

As seen in [4], JPS can be further elaborated in a principled
way to accommodate inventory-driven path planning. The new
algorithm, called inventory-driven JPS (InvJPS) is obtained by
modifying JPS in three simple ways.

First, InvJPS extends the node representation so that it
includes also the inventory that the character is carrying along
with the current location. So, for a map M a node for InvJPS
is a pair 〈x, I〉 where x is a location in M and I is a subset of
elements from set I of all possible items. During search when
an agent is at a location that has items, these are placed all in
the inventory instantly. The items that a character carries allow
them to traverse also nodes that are marked as blocked but are
labeled by req with a set of items included in the inventory I .

Second, InvJPS treats any location containing a key as an
“intermediate goal”. During the search over jump-points when
a location is found that contains a key, the corresponding node
is considered an inventory jump-point and is added to the open
list along with the other jump-points.

Third, when an inventory jump-point is expanded, InvJPS
considers vectors to all possible directions, including also
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Fig. 2. A key “teleports” the character to a different version of the map.

going back undoing the path traversed so far. The fact is that,
with the new inventory acquired, nodes that looked “blocked”
before may have now become traversable.

III. INVJPS+: A PRUNING-BASED VARIANT FOR
INVENTORY-AWARE PATHFINDING

We introduce InvJPS+, a variant of InvJPS that can be fine-
tuned with two parameters, θ and r, to be practical in many of
the cases that original InvJPS suffers. The main idea is to give
up optimality in the sense of forcing the search to do short
detours in order to pick up and carry keys, and disregard the
search alternatives that do not get to acquire these keys.

A central idea behind original InvJPS is the concept of
key-levels (or item-levels in the general case that we consider
items that unlock capabilities). The idea is that searching in
the extended space of inventory-aware nodes can be seen as
searching over multiple instances of the original map, one per
key combination that can be acquired: for each set of keys
K, there is a copy of the original map in which doors opened
by keys in K is replaced by a free tile and the rest of the
doors are replaced by a blocked tile. Locations in the map that
contain keys act then as if they “teleport” the character from
one instance of the map to the other. For example, Fig. 2 shows
the same map in Fig. 1 as viewed by the InvJPS algorithm
in terms two key-levels defined by the only key in the map.
Technically, a key-level LK is the set of nodes 〈x, I〉 in the
search space which have an inventory I = K.

InvJPS+ exploits the fact that the number of reachable loca-
tions is monotonically increasing as more keys are acquired,
e.g., obtaining a key can allow the character to visit locations
that lie behind a closed door. As a consequence, if we have
two nodes n and m with N and M keys respectively, both
in the same location x but on different key-levels LN and
LM , and if M is a superset of the keys in LN , then node n
subsumes m, in the sense that from n one can reach at least
all those nodes that can be reached from m.

Of course, the cost of getting to n may be different than m,
and this is where a trade-off arises. We choose to quantify with
θ the amount of extra cost we allow for such nodes like n to
suffer while being able to subsume a node like m and filter it
out of the search procedure. This θ essentially quantifies how
long can a detour be for going to location x but with getting
some keys that may be nearby. Moreover it may be reasonable
for a node n to subsume a node m that is not in the same
location x, but nearby at a short distance. A second radius

Algorithm 1 n Is Better Than m
function ISBETTERTHAN(nodeA, nodeB, θ)

moreKeys← nodeB.keys ⊂ nodeA.keys
costLess← nodeA.g ≤ nodeB.g + θ
return moreKeys and costLess

parameter r is therefore considered in InvJPS+ that allows to
relax the location conditions of filtering.

We first discuss the details of these parameters and then,
considering also the implementation effort required, we fo-
cus on three variants: (i) “optimal InvJPS+” that preserves
optimality, (ii) “local InvJPS+ with θ” that performs “local”
filtering with respect to the r parameter, and (iii) “global
InvJPS+ with θ” that performs “global” filtering. Then we
look into indicative values for θ and report on the effort and
precision of the approaches over benchmark maps. Finally, we
summarize some concluding points at the end of the section.

A. Parameter θ: Filtering nodes to favor short detours

The basis for our extensions of InvJPS is the idea that
whenever there are nodes in the open list over the same
location x, we want to look into the cost and the inventory of
each one and decide whether one should subsume the other.
InvJPS+ with threshold θ looks for cases where inv(n1) is a
superset of inv(n2) and g(n1)− g(n2) < θ, in which case n2
is filtered and removed from the open list. InvJPS+ performs
this check, as shown in Algorithms 1,2, every time a new node
n is inserted in the open list. If the check is positive, the new
node is directly discarded (and put in the closed list).

InvJPS+ with θ is a simple extension that can be easily
implemented over InvJPS (or any inventory-aware pathfining
approach), and when θ = 0 it also maintains optimality. As the
search procedure needs to access nodes in the open and closed
list based on their position, a hash table or similar structure is
required to allow this lookup to be performed efficiently.

Proposition 1: InvJPS+ with θ = 0 returns optimal paths in
terms of path length.

So far we looked into InvJPS+ with θ that may filter a node
in favor of another at the same location x. Nonetheless, there
are cases in which we would like the search to also consider
comparing nodes that are not exactly on the same location x.
We describe first a case that is specifically related to the way
InvJPS works over jump-points, and then a case that applies
to all inventory-aware search algorithms.

B. Parameter r: Relaxing filtered jump-point location

Looking at the different key-levels of the map it is often the
case that jump-points are not aligned with each other among
different levels, e.g, when going to a room and coming back
the jump-points of entering and leaving the room may not be
on the same location x. A simpler case can be seen in Fig. 3,
where going around an obstacle in fact is through jump-points
at different locations, depending whether a nearby key has
been picked up first. This can be easily verified following the
rules for generating jump-points of JPS (hence InvJPS), and
has to do with the fact that keys introduce new starting points
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Algorithm 2 Filtering on Push
. ThereIsABetterNodeThan(n) looks in open and closed list for a
node m such that IsBetterThan(m,n) is True.
if ThereIsABetterNodeThan(n) then

closedlist.append(n)
else

subsumed← FindSubsumedBy(n,openlist)
SetAllVisited(subsumed)
if DescendantPruningIsActive then

subsumed← FindSubsumedBy(n,closedlist)
for cNode ∈ subsumed do

DescendantPruning(cNode)
openlist.push(n)

for vectors that are considered only in the key-level when the
corresponding node is introduced in search.

Therefore, in order to find good filtering candidates we may
need to look “around” the node in question over a radius r.
This allows to fine-tune the behavior of InvJPS+. For practical
purposes related to implementation we distinguish between
two extreme cases: when r is a small number of nodes, e.g.,
0-3, we refer to the resulting approach as local InvJPS+ (with
θ), otherwise, when r is infinite allowing to look for filter
candidates in all of the open and closed list we refer to the
resulting approach as global InvJPS+ (with θ). It will become
more clear in the next part why global filtering is useful; for
now note that the conditions of the θ parameter ensure that
we only filter out nodes that are subsumed by other nodes
representing appropriate (short wrt θ) detours.

As for the implementation, when adding a node n in the
open list essentially we need to call Algorithm 1 and compare
with every node in the open and closed list that is within a
radius distance r from the position of n. In local InvJPS+ this
requires a number of calls for all positions around n, while
in the global InvJPS+ this requires traversing the lists and
comparing with all nodes there.

C. Retrospective pruning

We now note an additional pruning mechanism for removing
nodes that are not captured by the previous approach. InvJPS+
with threshold θ and radius r removes all nodes in the open
list that are “worse” than a current node in question. But what
if there is a node in the closed list that is worse in this sense?
In this case we cannot filter the subsumed node (as it is already
in the closed list), however, we should in fact remove all nodes
that are descendants of this node and are currently in the open
list. Another way to look at it, is that part of the fringe of the
search that needs to be pruned may not be still exactly at the
location x of the new node that is pushed in the open list.

About implementation, a simple way to handle it is to extend
the search nodes with two other fields: a list of all the children
of n, and a “pruned” flag. When a node n in the closed list is
subsumed by a new node, we simply set the flag as true for
n and recursively for each children node of n until we reach
nodes in the open list or we found other pruned nodes. Every
node flagged as pruned is then filtered immediately when taken
out from the open list.

Not Overlapping

Fig. 3. Jump-points not overlapping over different key-levels.

D. Experiments

Now we proceed to show some experimental results for
InvJPS+ with threshold θ for local and global filtering. To that
end, we developed a benchmark on top of python-based P42

path planing simulator [9]. In local InvJPS+ we chose r = 2,
as preliminary experiments showed this is able to handle
well the case of non-overlapping jump-points we identified
in part B, and in global InvJPS+ we also employed the
retrospective pruning mechanism in order to account for the
case of non-overlapping jump-points we identified in part C.
As the scenario that (regular) InvJPS suffers is when no path
can be found, we focus on this so as to see the worst case for
the effort needed. Based on our analysis, it is illustrative to see
thresholds of 0, 50, 100 and 200 nodes. We tested this scenario
using 4 indicative maps taken from the Moving AI Benchmark
[8], namely “AR0011SR”, “AR0012SR”, “AR0602SR”, and
“AR0013SR”. In each map we ran several pathfinding queries
from a random starting position to an unreachable destination.
We focus on expanded nodes to highlight the benefit of
filtering in pruning the search space.3

In Fig. 4 we see that (regular) InvJPS is exponential in the
number of keys, because, when there is no path the algorithm
is forced to search the full search space. The optimal version
of InvJPS+ is still exponential with a small improvement.
Allowing for suboptimal solutions, though, provides a wide
range of speedup factors. The two groups of suboptimal
algorithms, namely local InvJPS+ and global InvJPS+, perform
much better with a much slower exponential behavior, that is
almost linear in the range of 0-10 keys for global InvJPS+.

It is important, however, to measure the degree of subopti-
mality of the algorithms. In order to do this we used regular
maps in which we added unnecessary keys, in which case the
optimal path can be found without picking up and using keys.
Regular InvJPS would be able to find the shortest paths that
do not use keys. On the other hand, InvJPS+ with threshold θ
greater than zero favors detours for picking up keys, and the
paths found are expected to be suboptimal (i.e., longer) due to
these detours. As in this case the whole search space would
not be explored, for higher variety on the results we used 20

2P4 path planing simulator: https://bitbucket.org/ssardina/soft-p4-sim-core.
3A runtime comparison between InvJPS and InvJPS+ should take into

account that the filtering function takes 7% of the total search time on average.
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Fig. 4. InvJPS+ over scenarios that no path exists.

maps from the MovingAI benchmark [8], along with a subset
of the queries that come along with the maps.

The results show an evident increase in the path length
for global InvJPS+ with a maximum of a 30% longer path
when there are 50 unnecessary keys on the map, compared to
optimal InvJPS+. On the other hand, the local variant shows
a negligible 3-5% increase. This is reflected in the expanded
nodes, shown in Fig. 5. Note also that the increase of expanded
nodes for the suboptimal variants compared to the optimal
InvJPS+ is very small in actual numbers over the cases when
paths exist. This is because the challenging cases with high
complexity are those that no path exists. In particular, note
that in Fig. 5 the expanded nodes are in the order of hundreds
while in Fig. 4 are in the order of tens of thousands.

Another way to assess InvJPS+ is to compare the expanded
nodes with those expanded by regular JPS in the same cases,
as a way to understand the runtime effort. Note that InvJPS+
for the case of 0 keys expands exactly the same nodes as
regular JPS. Observing then the two graphs we see that for
a small number of keys InvJPS+ is comparable to JPS, hence
having a practical runtime for use in a real videogame setting.
Nonetheless, in general there may be many keys on the map
that are not useful for a particular pathfinding query but bring
the complexity up anyway. With the preprocessing step we
introduce next, we can address this by identifying a small
subset of keys that are useful for each pathfinding query, and
offer InvJPS+ approaches that are practical over all scenarios.

IV. A PREPROCESSING METHOD FOR INVENTORY-AWARE
PATHFINDING

In this section we introduce a preprocessing method that
aims to help the inventory-aware search procedure focus on
a promising subset of keys in the map and disregard the
rest. As the search complexity is intrinsically exponential to
the number of keys on the map, disregarding even a small
amount of keys can significantly improve overall performance.
However, except for some trivial case such as when keys are
not linked to any door, it is not easy to identify which key
is useful and which is not during search. We have developed
a preprocessing method for this task that is divided in two
steps: (i) an offline preprocessing step that generates a logical
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Fig. 5. InvJPS+ over scenarios that keys are not necessary for the path.

description of the connections between regions and doors on
the map and (ii) an online pre-search step that, given the
starting and destination position and the position of every
key, can generate a subset of necessary (but, in general, not
sufficient) keys for the specific path in question.

As we will see there are different strategies for generating
such key-sets offering a trade-off between completeness (to
be able to find a path if one exists) and efficiency. Also, the
preprocessing method is independent from the actual search
method and can be used with any inventory-aware pathfinding
approach. Here we will show results with the InvJPS+ variants.

A. Offline preprocessing step

The goal of the offline preprocessing step is to analyze the
game map and extract information on the different regions that
are connected with doors. The algorithm takes as input the
map representation annotated with the location of every door
and generates two outputs. The first one is the connected area
labeling map (LM ), a copy of the map in which every location
is labeled with an integer number and with the property that
label(x) is equal to label(x′) if and only if it is possible to find
a path between locations x and x′ without using any door. The
second output is a doors connectivity graph G in which each
vertex is a label in LM and each edge is a door connecting li
with lj annotated with the connecting door d.

The labeling map is constructed assuming that all doors
are closed and running a binary connected area labeling
algorithm, a fast parallelizable algorithm originally designed
for image segmentation [10]. The connectivity graph, instead,
is generated by searching for doors along the perimeter of
each area and adding a connection edge for each one. This
algorithm depends only on the topology of the map and on the
position of the doors (i.e., the position of keys is not required),
so it is possible to generate the pair 〈LM ,G〉 for every map at
design phase and serialize the output on disk as appropriate.

B. Online pre-search step: 4 strategies for promising keys

This step is intended to be performed at the beginning of
every pathfinding query. It takes as input the starting and goal
location, the map, and the preprocessing pair 〈LM ,G〉 for the
given map. The output is a set K̂ of keys that act as hints so
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Algorithm 3 Compute the Necessary-Doors-Sets
Precondition: s starting location, g goal, labels the preprocessed

label map, cGraph the connectivity graph.

startLabel← labels[s]
endLabel← labels[g]
paths← []
if startLabel = endLabel then

add(paths,[])
currentLabel← endLabel
openPaths = [(null, currentLabel)]
while openPaths is not empty do

currentPath← pop(openPaths)
currentLabel← currentPath.label
if currentLabel == startLabel then

append(paths,curentPath)
continue

adjacentLabels← adjacent(cGraph, currentLabel)
for label, door ∈ adjacentLabels do

if label /∈ currentPath then
newPath← insert(currentPath,(label,door))
append(openPaths,newPath)

return PathToNDS(paths)

Algorithm 4 The Recursive Iteration
Precondition: s starting location, g goal, map the map, labels the

preprocessed label map, cGraph the connectivity graph.

K ← NecessaryKeys(s,g,labels,cGraph,map)
for i← {0, n− 1} do

newK ← K
for k ∈ K do

tmp← NecessaryKeys(s,k,labels,cGraph,map)
newK ← union (newK,tmp)

if K = newK then
break

else
K ← newK

return K

that the inventory-aware search method can restrict the search
to consider only keys in K̂ and ignore the rest. Depending on
the strategy adopted, K̂ may be a “best bet” small set that has
high probability to be sufficient, or a larger “complete” set of
keys in the sense that if a path exists then it is guaranteed that
the destination can be reached with this subset of keys.

We now specify some strategies for generating K̂. First we
use the connectivity graph in order to compute the so-called
necessary doors sets (NDS): a set of door-sets each of which
corresponds to an acyclic path in G from the area of the starting
position to the area of destination. Algorithm 3 shows how
NDS can be computed. NDS contains high-level plans in terms
of which doors the character need to pass in order to reach
the destination. This set of doors-sets is necessary in the sense
that if a path exists then one of the doors-set is necessary to be
in the path. However, as the NDS does not take into account
the positions of the keys, it is easy to see that such a doors-
set may be not sufficient. For example, reaching door d in the
doors-set {d} option may in reality require that the character
passes through another door to pick up the key for d. This can
be computed at runtime using the keys location by expanding

the high-level plan that a doors-set represents.
From NDS we can easily compute the corresponding nec-

essary keys sets (NKS) by substituting each door in every
set in NDS with a key that is required to open it. From the
NKS we can generate the set K̂ to be used in the inventory-
aware pathfinding search. This set is a candidate set that we
can specify with different strategies. Similar to the previous
discussion for doors, under conditions we can also show that
such set is “complete” in the sense that, using K̂, InvJPS+ can
always find a solution if a path exists. We study the behavior
of some variants based on the following two simple strategies.

a) FirstNKS-n: A simple approach is to take the smallest
set in NKS ignoring all the others. This solution is greedy in
the sense that it picks the option that looks most promising in
terms of efficiency as it uses the minimal amount of keys. It is
expected to have fast runtime as well as to produce suboptimal
paths because in general the location of the keys matters for
finding optimal paths (e.g., a path with more keys may be
optimal because they are near the character).

b) AllNKS-n: A more cautious approach is to define
K̂ as the union of all the sets in NKS. It is expected to
have slower runtime as it will use more keys but a better
performance with respect to optimality as all options (and the
corresponding keys) are considered in the search.

Both approaches are incomplete in general: the generated K̂
may not be sufficient for reaching the destination because a
key may be behind a closed door, as we discussed earlier.
Nonetheless, at runtime the locations of keys is available,
therefore we can identify which keys are behind doors and
which are the required extra keys, and add them to the set K̂.
This can be done with a recursive procedure that starts with
the set K0 generated directly by the NDS as before and at each
step generates a set Ki+1 that enlarges Ki with keys that allow
to reach keys in Ki. Algorithm 4 describes this recursive step.
Then FirstNKS-n and AllNKS-n operate in this manner with
the n parameter denoting the number of recursion steps.

We identify two border cases for each approach: one when
n = 1 which we call “optimistic” and one when the recursion
step is repeated until a fixed point is reach which we call
“recursive”. This leads to four variants, namely FirstNKS-
Optimistic, FirstNKS-Recursive, AllNKS-Optimstic, AllNKS-
Recursive. The last one is complete in the following sense.

Proposition 2: If there exists a path for an inventory-aware
pathfinding instance, then it can be reached using a subset of
the keys generated by AllNKS-Recursive.

C. Experiments

We now proceed to evaluate the preprocessing method, in
particular the four variants FirstNKS-Optimistic, FirstNKS-
Recursive, AllNKS-Optimstic, AllNKS-Recursive, in combi-
nation with two filtering methods from the previous section,
namely optimal InvJPS+, and local InvJPS+ with θ = 100 that
are representative of the space of behaviors.

We used a map from Baldur’s Gate II (“AR0602SR” of the
Moving AI benchmark [8]) and implemented the following
setting. We used 14 doors which divide the map in 13 different
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that optimistic approaches are complete (and coincide with the recursive).

areas. We manually distributed 14 keys on the map (one for
each door) in such a way that every key is reachable starting
from the central area. This is ensured by avoiding cyclic
requirements, e.g., a two-step cycle is when reaching key k1
requires to get k2 and reaching k2 requires to get k1. Then
we specified 300 random paths that start from the central area,
which guarantees that there exists a solution for every path.
In Fig. 6 we see the average expanded nodes over the set of
paths for each combination of approaches.

As expected, optimistic approaches expand the least amount
of nodes due to being incomplete: FirstNKS-Optimistic and
AllNKS-Optimistic show an average of 61% completeness
(with small differences in the combined search approach), that
is, they return a solution for 61% of the solvable pathfinding
instances. There are a few additional interesting outcomes.
First, AllNKS-Optimistic performs similarly to FirstNKS-
Recursive in terms of expanded nodes, and the latter is com-
plete in this scenario even though not complete in general. Sec-
ond, the average performance of the preprocessing approaches
is almost unaffected by the suboptimal nature of the combined
search approach. As the suboptimal behavior in InvJPS+ is
mostly caused by detours for picking up unnecessary keys,
with the preprocessing step such detours are avoided since
most of the unnecessary keys are removed in advance.

In Fig.6 we average over different scenarios, e.g., cases
where paths exist or not, and over different behaviors, e.g.
with respect to completeness. In Fig.7 we look closer on the
subset of paths where the approaches are complete, in order to
compare the same search behavior, and report on the average
expanded nodes over the path length. In this way it is also
more clear to see how the performance scales in terms of
detours that typically happen in longer paths.

Finally, we verify that the following common border cases
are handled by our preprocessing method with a similar (or
better) performance as regular pathfinding: (i) when there
are only unnecessary keys the preprocessing method allows
to disregard all keys (e.g., InvJPS+ would work exactly as
JPS), (ii) in the case in which there is no path from start to
destination by a fixed obstacle (e.g., a wall or door that cannot
be opened), the preprocessing method will identify this cases
and return with an answer in the pre-search step.

V. RELATED AND FUTURE WORK

There are several works for improving A* in path planning,
e.g., RWA* [11], RTA* [12], and DAS [13], and preliminary
efforts to extend JPS to non-uniform have been reported
in [9]. All these approaches can be extended to deal with
inventory-aware pathfinding, for instance, by extending the
search state with inventory information. However, because
the exponential nature of inventory-aware search lies in the
exponential increase of the search space with every additional
key, they are all expected to suffer the same degradation as
the original InvJPS or Inventory A*. At the same time, they
are also expected to enjoy the benefits from our filtering and
preprocessing methods.

Other works try to address the pathfinding problem by
using hierarchical abstraction, e.g., Near-Optimal Hierarchical
Pathfinding (HPA*), by state-space pruning, e.g.,[14], Swamps
[15], or a combination of the former by exploiting path
symmetry, e.g., Rectangular Symmetry Reduction (RSR) [16].
In their current form, none of these existing approaches ad-
dress inventory-driven path planning, but can also be extended
in a similar way. Hierarchical approaches can benefit from
the partial decoupling between the planning and pathfinding
problem by considering the inventory only on the higher level
of abstraction. Moreover, we think hierarchical approaches
can obtain potential greater benefits from the preprocessing
approaches presented in the previous sections.

Another promising direction is to use the NKS information
to obtain more informed heuristics. As InvJPS+ uses regular
heuristics, the search is attracted towards the goal even in those
key-levels in which it is impossible to find a solution. In these
levels, the heuristic should instead move the search horizon
away from the goal and toward promising keys as sub-goals.
As each path must have one of the keys-set in NKS as a subset
of the used keys, this can identify those key-levels where we
should avoid using the goal heuristic.

Inventory-aware pathfinding is essentially a special case of
the so-called classical planning problem. There is work that
analyzes the parametrized complexity of planning, such as [17]
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TABLE I
BEST APPROACHES FOR VARIOUS PRACTICAL SCENARIOS

Scenario Suggested Algorithm for Runtime Suggested Algorithm for Optimality

Small static map with low keys complexity
No Preprocessing
Optimal InvJPS+

No preprocessing
Optimal InvJPS+

Large static map with low keys complexity
No Preprocessing

Local InvJPS+ θ = 100

No Preprocessing
Local InvJPS+ θ = 100

Map rapidly changing with high keys complexity
No Preprocessing

Global InvJPS+ θ = 100

No Preprocessing
Local InvJPS+ θ = 100

Static map with high keys complexity
FirstNKS-Recursive Preprocessing

Local InvJPS+ θ = 100

AllNKS-Recursive Preprocessing
Local InvJPS+ θ = 100

Static map with high keys complexity
(without completeness constraints)

FirstNKS-Optimistic Preprocessing
Local InvJPS+ θ = 100

AllNKS-Optimistic Preprocessing
Local InvJPS+ θ = 100

Overall
AllNKS-Optimistic Preprocessing

Local InvJPS+ θ = 100

AllNKS-Recursive Preprocessing
Local InvJPS+ θ = 100

which summarizes the existing results and the connections be-
tween them. Nonetheless, the existing results for parametrized
complexity of classical planning e.g., in terms of the number
of propositional actions, maximum number of occurrences of a
variable, etc, are not appropriate for characterizing inventory-
pathfinding classes. This is because when bounded the studied
parameters do not allow for expressing interesting inventory-
aware pathfinding problems. On a different direction, perhaps
a practical way to characterize the difficulty of inventory-
aware pathfinding instances can be investigated by means of
the number of recursion steps needed to achieve completeness
for the FirstNKS-n and AllNKS-n preprocessing approaches.

VI. CONCLUSION

In this work we look into the problem of inventory-aware
pathfinding and present a pruning and a preprocessing method
for improving the performance of search approaches in this
domain. Inventory-aware pathfinding solutions can be useful
to better support characters (players or non-players), so that
when the game narrative engine (or player) directs a character
to navigate to a certain location, the underlying path planner
can figure out how to achieve this also by collecting and
using objects if necessary. Observe that, when using a regular
(not inventory-aware) navigational approach this task may fail
despite the fact that an actual solution may exist.

We evaluated these methods over the only related approach
in the literature (to the best of our knowledge), namely the
so-called Inventory-Driven Jump-Point Search (InvJPS). Our
results show that with these methods we remedy the problem
of InvJPS that shows exponential, hence not useful in practice,
behavior in the common scenario that no path exist for a
given pathfinding instance. Moreover, our methods provide a
space for fine-tuning the intended behavior in terms of trade-
offs between performance on the one side and optimality and
completeness on the other side. The choice of which method
to implement depends on the requirements of the videogame
application. In Table I we summarize the best approach for
some common scenarios in terms of runtime and optimality.
Finally, we note that the proposed methods are independent of

the search algorithm used and can be applied to any inventory-
aware pathfinding solution.
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Abstract—The key to the development of adaptive gameplay is
the capability to monitor and predict in real time the players
experience (or, herein, fun factor). To achieve this goal, we
rely on biometrics and machine learning algorithms to capture
a physiological signature that reflects the player’s affective
state during the game. In this paper, we report research and
development effort into the real time monitoring of the player’s
level of fun during a commercially available video game session
using physiological signals. The use of a triple-classifier system
allows the transformation of players’ physiological responses and
their fluctuation into a single yet multifaceted measure of fun,
using a non-linear gameplay. Our results suggest that cardiac
and respiratory activities provide the best predictive power.
Moreover, the level of performance reached when classifying
the level of fun (70% accuracy) shows that the use of machine
learning approaches with physiological measures can contribute
to predicting players experience in an objective manner.

I. INTRODUCTION

The video game industry has seen in the past decades
an exponential market growth. Only in the last 10 years
in the United States the revenues coming from computer
and video games increased imposingly, from 7.3 in 2004
to 15.4 bn $ in 2014. If the money spent on accessories
and hardware is also considered, the figure grows to 22.41
bn $ [1]. Players value that their money are more cleverly
spent with videogames compared to movies or music [2]. One
reason for the preference of videogames over other means of
entertainment is that having an immediate feedback keeps the
engagement high. One factor of retention of players is whether
their gameplay experience is positive [1].

Quantifying the extent to which a players experience is
positive throughout his or her gameplay remains a challenge.
Efforts have been made by numerous playtest laboratories in
the gaming industry but there are still shortcomings to the
objective evaluation of the player’s fun. Most experiments
are conducted using empirical and subjective methods (i.e.
interviews, focus groups questionnaires). In the academia,
systematic methods have been explored, in particular the use of
affective computing technologies [3], [4] and machine learning
algorithms, but with limited combinations of physiological
measures and its weak association with the fun-factor. In this
context, the field of automated affective states computation
has grown with the aim of creating affective video games.

Most of the work has focused on the comprehension of simple
parameters of emotions and cognitive states studied in the
affective Brain Computer Interface field [3], such as valence
and arousal. Some authors also suggest that fun is not a unitary
concept, which might add to the challenge of quantifying it.
Lazzaros [5] model proposes 4 types of fun (e.g.: players
seeking hard fun enjoy challenges, but players seeking people
fun play for the social interaction). Poels, Kort and IJsselsteijn
[6] suggest up to 9 dimensions to describe the video game
experience. Evidence suggests that the different dimensions
of fun are associated with distinct neurophysiological patterns
[7]. These various reactions might increase the difficulty of
using physiological measures to assess fun. Additionally, some
authors suggest that fun is not directly measurable. Sweetser
and Wyeth [8] suggest a model of enjoyment based on the
flow theory [9] while others (e.g.: Calleja [10]) center their
models on incorporation (i.e.: assimilation in the game while
giving a sense of embodiment to the player). In a first effort
to capture the relationship between several physiological and
behavioral markers with the players experience, we chose to
conceptualize fun as unidimensional since it is the easiest
way for players to report their experience in relation to a
videogame.

In the gaming literature, fun has been related to positive
player reactions during a gameplay session. It has been linked
to emotional experience but it is not considered as an emotion
itself [11]. It is generally linked to different affective states, but
as described in Pagulayan et al. [12], since games are intended
to be fun, assessing fun implies assessing the overall quality
of the game. The same authors [12] also point out that there
might be a need to consider fun as being different in every user,
thereby attributing a high contribution of individual influences
to its assessment. Moreover, the work of Nacke et al. [13]
mentions that when studying video games with physiological
signals, there is a need to connect also other affective measures
(e.g. behavioral responses) to establish relationships between
the players experience and physiological responses (here we
used a continuous measure of fun that will be described in Sec.
II-B3). Thus, the fun-factor can potentially be analyzed in a
study that combines objective measures such as physiological
responses with subjective components qualifying the player’s
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experience [14], [15].
Computational models of fun have been designed in the

past with the purpose of generating personalized game levels.
For instance, in the work of Pedersen et al. [16], the authors
were able to predict player emotions (e.g. fun, challenge
and frustration) using preference learning and neuroevolu-
tion and the well known console game Super Mario Bros.
A weighted non-linear computational model (e.g. artificial
neural network) for reported emotions was constructed and
the authors concluded that fun is the hardest dimention to
model with a nonlinear perceptron and the least correlated
with the features they extracted. Moreover, Shaker et al. [17]
modeled player’s fun value in platform games using a Multi
Layer Perceptron Model. The authors obtained 69.66% of
accuracy when modeling fun (using 58 features), but they also
highlighted the limitation of post-experience analysis. For this
reason they propose the use of physiological measures for
further investigation, together with an increased number of
features.

Several studies used physiological signals to quantify af-
fective states during video game play ([18], [19], [14]). For
instance, in the work of [15], the authors quantified emo-
tional experience under the two dimensions of valence and
arousal, to determine real-time emotional states. The latter
were estimated using physiological signals such as Elec-
trodermal Activity (EDA), Electrocardiography (ECG) and
Electromyography (EMG). From the data of the two affective
dimensions (i.e. valence and arousal), the authors were able
to determine five distinct states during gameplay: boredom,
challenge, excitement, frustration and fun. The problem that
the authors revealed was that there are no guidelines for
transforming assessments of arousal and valence into levels
of fun in a continuous scale. Moreover, several affective states
(i.e. boredom, frustration, challenge, anxiety, excitement) have
been shown to correlate with ECG, EDA and EMG [20], but
not a lot of effort has been made on the evaluation of the
fun-factor itself.

Furthermore, using only signal processing techniques re-
duces a meaningful and natural interaction with the game.
The introduction of a machine with automated emotional
intelligence based on physiological responses would be able
to learn negative and positive inputs and take care of player’s
need. Many studies have focused on detecting and learning
emotional states, combining biometric signals and machine
learning algorithms. In the work presented by Liu et al. [21],
the authors studied different machine learning techniques for
affective computing tasks. The authors used anxiety, engage-
ment, boredom, frustration and anger as affective states and
a questionnaire for self-reporting. The best performance was
obtained using the Support Vector Machine (SVM) classifier
in comparison with K-Nearest Neighbor, Regression Tree,
Bayesian Networks. But developing video game affective
systems, however, is a challenging task and many open prob-
lems and questions persist. For example, which physiological
signal modalities should be combined to measure an affective
dimension directly related to the level of player’s level of

fun? Which features convey such task effectively? Which
characteristics of the classifier are better adapted to the task
at hand? Is it really relevant to address the detection of fun as
an individual factor?

In recent years, effort has been made for real time adaptation
of video games using biometrics. For instance in the work of
Rani et al. [22], the authors classified three level of intensity
(low, medium and high) for different emotions (engagement,
anxiety, boredom, frustration and anger) using a Pong game
and anagram puzzle. Parameters of the game were manipulated
to elicit the required affective response. Cardiac activity, EDA,
EMG and skin temperature were used along with four different
classification methods. The best accuracy result was reached
with the SVM classifier and 86% of accuracy. The results
are promising but the work focused on the study of affective
dimensions that only give an idea of a general fun level.
Another example of work that used a more complex and
dynamic system, designed to adjust several parameters in the
game over time based on the player’s physiological signals,
was conducted by Chanel et al. [23]. In this case the authors
reached 53% of accuracy using an SVM classifier when dis-
criminating three emotional states (boredom, engagement and
anxiety) using peripheral signals as EDA, blood pressure, heart
rate, Respiration (RESP), temperature and self reported labels.
The number of features extracted might be determinant for the
final result. In this last example there is a few features (only
14 features were computed from the signals). The extraction
of a large number of features allows the machine learning
algorithm to have access to a larger amount of information,
otherwise not detectable in the case of a limited number of
features.

The purpose of this paper is the design of a predictive model
that is able to discriminate the fun experience of players, based
on theirs physiological responses, as measured by indicators of
ECG, EMG, EDA and RESP, together with a self-reported con-
tinuous measure of fun and the best classification system. Our
main goal is to identify a physiological signature of the fun-
factor associated with positive gaming experiences, together
with the best classifier traits in order to create an adaptive
video game according to prediction of players’ affective and
cognitive states. To achieve this, we used an innovative method
that allows for continuous rating of fun during gameplay. This
method provides an advantage over subjective measures by
providing a high-temporal resolution of the fun rating instead
of a single value for a given time period. Furthermore, fun
ratings are converted to trends (i.e.: ordinal scales), which is
considered to reduce biases associated with human self-rating
of emotions [24]. Finally, the present study uses an off-the-
shelf and modern video game, thus increasing its ecological
validity and application to future work.

II. METHODS AND MATERIALS

A. Participants

Sixty-two participants (5 women and 57 men) aged between
18 and 35 years (M = 25.9, SD = 4.9) were recruited
from Université Laval and from Ubisoft Québec’s volunteer
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database to participate in a single two-hour experiment session.
They all had prior game experience with the Assassin’s Creed
series, but had never played the specific title used in the current
study. They all had normal or corrected-to normal vision and
audition, and reported having no cognitive or neurological
impairment. Participants received 20$ for their participation
at the end of the experiment.

B. Apparatus and procedure

1) Computer game: Participants were asked to play
the computer version of Assassin’s Creed Unity -an ac-
tion/adventure game developed by Ubisoft in 2014 (see a
screenshot of the game at the top of Fig. 1)- with an Xbox 360
Controller. Two missions were specifically selected for this
experiment: ‘The prophet’ and ‘The escape’. The objective
of this action-adventure game taking place in Paris during
the French Revolution, played from a third-person view, is
to complete pre-determined objectives to progress through the
story. It is a non-liner gameplay, meaning that outside of the
prefixed quests, the player can freely roam in the open world;
thus giving the player more degrees of freedom compared to
a linear gameplay.

2) Procedure: Participants read through a tutorial displayed
on the computer screen describing the gameplay mechanics
and explaining the procedure required to perform the different
possible actions with the Xbox Controller. Participants were
then familiarized with the game environment during a period
of 5 minutes in which they had to complete seven objectives,
all associated with the gameplay mechanics described in
the tutorial (e.g., use a smoke bomb, climb up a building,
assassinate an enemy while using a firearm). After successful
completion of the objectives, a physiological resting baseline
was recorded during a 3-minute period. Participants were in-
structed to remain calm and to refrain from moving while they
were looking at a black fixation cross on a white screen and
heard white noise via their headphones. Participants were then
asked to play the first mission (presented in a counterbalanced
order). The mission ended either when it was completed or
after 15 minutes if participants failed completing it. The same
procedure was repeated for the second mission.

Fig. 1: Graphic interface developed in order to give players a
visual feedback of their fun ratings.

Fig. 2: USB controller (PowerMate, Griffin Technology) used
to rate the level of fun.

3) Continuous measure of fun: After each mission, partici-
pants were required to watch a playback of their game session
and to rate continuously the fun they felt during the game using
a USB controller (PowerMate, Griffin Technology) shown in
Fig. 2. This USB controller was an infinite control knob with
no feedback (clicks) on the knob position. This controller was
linked to a custom-made visual interface that allowed online
graphic representation of the participant’s evaluation of fun in
real-time. As shown at the bottom of Fig. 1, the green areas
correspond to positive levels of fun, while negative levels were
depicted in the red areas. The level of fun was sampled at 30
Hz. Fun ratings were then transposed to a -100 to 100 scale
for analysis.

4) Psychophysiological measurement: The player’s physi-
ological signals were collected during the two missions and
during the replays (data from the replay were not used in
this study). Electrodermal, cardiac, electromyographic and
respiratory activities were recorded using a MP150 Biopac sys-
tem (Biopac System Inc., Santa Barbara, CA). Electrodermal
activity was measured using two pre-gelled electrodes placed
on the palm of the left hand (the site was chosen in order
not to have interferences with the controller). Cardiac activity
was measured with three thoracic electrocardiogram electrodes
placed in a Lead II configuration. The electromyographic
signal was detected from the long abductor muscle of the
right thumb with three pre-gelled electrodes placed on the
right forearm. A respiration belt transducer placed around the
player’s chest measured respiratory activity (see Fig. 3 for the
system’s design). Cardiac activity was sampled at 1000 Hz
whereas respiratory and electrodermal activities were sampled
at 125 Hz using the Acqknowledge 4.3 data acquisition
software. All psychophysiological signals were up-sampled to
1000 Hz (for synchronization purpose) and bandpass filtered
(EDA 0-1 Hz, ECG 1-20 Hz, EMG 10-500 Hz and RESP
0-0.7 Hz). No further preprocessing has been conducted on
the physiological signals since this study was designed as a
prequel to a real time application. The signals and the self-
assessment measure of fun were divided into epochs. The
epochs were designed to last five seconds and an overlapping
window of 2.5 seconds.
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C. Analysis of fun

Three different situations of the self-reported measure of fun
were identified. The first two corresponded to an increasing
and a decreasing trend in the fun rating, respectively. For
classification purposes, they were identified as the first two
classes and labeled fun ‘increasing’ or ‘decreasing’ (+1 and -1
respectively). The third possible situation arose when studying
a stable segment of fun rating, which provided two additional
classes. We considered as high-stable fun the ratings that were
stable but at a level above the average fun value of the whole
mission, and low-stable fun at levels below the average level.
These two other classes were labeled as fun ‘above-average’ or
‘below-average’ (+0 and -0 respectively). To summarize, out
of each epoch, the classification analysis will output one of the
four classes described above (see Sec. II-F below). Depending
of the sign of the class (positive or negative) the software
will then apply the modification in the game. In particular,
with a positive output (+1 and +0), fun was either increasing
or stable but over the average, thus in a adaptive scenario
the game would not need any adjustment because the player
is categorized as satisfied. However, in the case of negative
classes (-1 and -0), a real time adjustment of the game would
become essential to increase the fun.

D. Feature Extraction

A total number of 488 features were extracted from the four
physiological signals as follows:

ECG The largest number of features is obtained from each
electrocardiographic signal, such as 90 extracted fea-
tures categorized into four different groups: spectral
power with the fast Fourier transform (FFT) in
multiple subbands, statistical components (average,
min, max etc.), statistical features extracted from
the analysis of separated parts of the QRS complex
[25], and, finally, from the analysis of the Heart Rate
Variability (HRV). Moreover, normalized versions of

Fig. 3: Experiment set-up for dataset collection.

these 90 features were also computed. Normalization
was performed based on the three minute baseline
resting period, using:

ratioξnorm,i = 10 log
(
ξepochi /ξbaselinei

)
, (1)

with ξnorm,i being the ‘i’-th feature. As such, a total
of 180 ECG features were extracted.

EMG The electromyographic signal provided 53 features,
that can be divided into three groups containing
spectral, statistical evaluation and the sensitivity to
change (first and second derivative) features. As
with the ECG features, normalization was performed
using baseline data, thus totaling 106 EMG features.

RESP From the Respiration signal, 74 features were ob-
tained. These can be grouped into 3 different classes:
rate of change, statistical and spectral analysis.
Seventy-four additional features derived from the
baseline normalization technique yielded a total of
148 features.

EDA Lastly, EDA provided 27 features (statistical, spectral
and rate of change groups) from the band-passed
signal. A total of 54 features were extracted including
the baseline-normalized versions.

E. Feature Selection
Due to the large number of features extracted (i.e., 488), and

particularly in cases of feature fusion techniques, such large
number of features may result in classifier overfitting. As such,
the so-called mRMR [26] feature selection algorithm is used.
mRMR is a mutual information based algorithm that finds
near-optimal features using forward selection with the chosen
features maximizing the combined max-min criteria. Two
criteria are applied as one: the maximum-relevance criterion
(maximization of the average of mutual information between
features and labels) and the minimum-redundancy criterion
(minimization of the average mutual information between two
chosen features). In the present work, 20% of the available data
was set aside for feature ranking. The remaining 80% was used
for classifier training and testing in a cross-validation scheme.
Such partitioning corresponds to having 10 samples per class
for testing and 40 samples per class for training. More details
can be found in Section II-F.

The features were grouped into three separate sets. The
first one included the non-normalized features coming from
the four physiological signals, the second set consisted in
the normalized ones, and the last group was constituted from
a fusion of the first two. Feature ranking was conducted
for the non-normalized feature set alone, for the normalized
feature set alone and the combined feature set on a per-subject
basis. Then, the first ten selected features were further ranked
based on the number of times they were selected across all
participants.

F. Classification
Support Vector Machine (SVM) classifiers have been used

in the present work. Given its widespread use, a description
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Fig. 4: Classification scheme designed to detect the level of
fun and decide if the game needs real-time adjustment.

of the support vector machine approach is not included here
and the interest reader is referred to [27] for more details.
SVM classifiers are trained on three different (cascaded)
binary classification problems, as depicted by Fig. 4, namely
i.e. detecting fun changing/non-changing (classifier A), in-
creasing/decreasing (classifier B) and above/below average
(classifier C). The first, termed classifier A, discriminates
between fun ‘changing’ or ‘non-changing’. Based on this
output, the second classifier to be used is decided. If the output
of classifier A is fun ‘changing’, classifier B will successively
discriminate between fun ‘increasing’ or ‘decreasing’. If the
output of classifier A is fun ‘non-changing’, then classifier C
will discern between fun ‘above-average’ or ‘below-average’.

In order to discover the best classification modality, two
feature- and one decision-level fusion strategies are tested with
the remaining 80% of the data. Regarding feature fusion strate-
gies, the first one aims at testing the capacity to predict the
output using the entire dataset within a 10-fold cross-validation
scheme, whereas in the second case a per-subject classification
with a Leave-one-sample-out (LOSO) cross validation scheme
has been tested for comparison. In both cases, default SVM
parameters have been used throughout our analyses (i.e., λ = 1
and γRBF = 0.01); moreover, a Radial Basis Function kernel
was used and implemented with the Scikit-learn library in
Python [28]. Lastly an optimally weighted decision fusion
scheme has been tested [29]. First, the training data of the
normalized feature sets for each physiological signal modality
have been treated separately for both feature ranking and
per-subject classification. Next, based on the performance
achieved, a weight has been determined for the four signal
modalities. According to the decision fusion technique used,
the parameter ti is the achieved performance for a particular
modality, on the training dataset, such that the sum across all
modalities equals unity [29]. The ti parameter is calculated as
follows:

ti =
Ai∑N

i=1 αiAi

(2)

where, Ai is the accuracy obtained training the dataset be-

TABLE I: Percentage of participation of each physiological
signal (ECG, EMG, EDA and RESP) for the classification
schemes (classifiers A, B and C), as well as for the three
methods together.

Classifier A Classifier B Classifier C Total

ECG 39 % 33 % 23 % 32 %

EMG 14 % 21 % 25 % 20 %

RESP 28 % 31 % 36 % 31 %

EDA 19 % 15 % 16 % 17 %

longing to a particular modality, N is the number of modali-
ties and αi are the weights corresponding to each modality
(
∑N

i=1 αi = 1). Optimally weighted decision fusion relies
on optimal weights for each of the four modalities which
are obtained calculating the αi values that result in the best
performance on the training set.

III. RESULTS AND DISCUSSION

A. Feature Ranking

Here, only the feature ranking analysis conducted on the
normalized feature set is reported as it resulted in the highest
accuracy. Table I shows the percentage of features used to
reach the best accuracy from each of the four signals (EDA,
ECG, EMG and RESP) for each of the three classifiers
separately and for the total. As can be seen, ECG and RESP
play a relevant role, representing almost two thirds of the total
amount of top-ranked features.

An in-depth analysis on the features ranked by the mRMR
algorithm has been conducted in order to understand the
most relevant signals and the top-ranked features. Across all
physiological signals, two thirds of the contribution comes
from ECG and RESP, with a peak of 67% in the case of
classifier A. Moderate importance can be attributed to EMG

Fig. 5: Different contribution of the groups of features ex-
tracted (see Sec. II-D) for each signal: ECG (spectral, statisti-
cal, HRV and QRS complex), EMG, EDA and RESP (spectral,
statistical and sensitivity to change).
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and EDA, contributing on average one third of the top features.
One potential reason for EMG playing a secondary role could
be due to arm movement artifacts, as well as fatigue, which
has been shown to affect EMG characteristics [30]. The low
temporal resolution of EDA could also be a factor limiting the
contribution of this signal. On the contrary, ECG and RESP
have been previously connected to emotional expressivity, and
their contribution is relevant to understanding inter-individual
differences regarding players’ physiological responses [31].

Fig. 5 shows the type of features more frequently selected
by the feature ranking algorithm, for each of the four signal
modalities. As previously explained, three groups of features
can be differentiated for RESP, EDA and EMG (statistical,
spectral and sensitivity to change), whereas for ECG four
groups are identified (statistical, spectral, QRS analysis and
HRV test). As can be seen, the analysis conducted on the first
and second derivative of the signal is predominant for EMG
and EDA. Whereas for the ECG, the study of QRS complex
prevails over the other three groups. RESP, in turn, had the
same number of features coming from the rate of change and
statistical measures. This situation could be due to its low
temporal resolution and its relationship with the ECG signal
[32].

In order to give a better sense of the most used features,
for each signal and for each classifier, the top-10 components
have been analyzed. Within the ECG class, one third of the
investigated top-features represent information about S and T
waves, whereas another 20% is attributed to information mea-
sured from the segment between the P and Q waves. Moreover,
two out of three classifiers had as their top-10 features the
root-mean-square of the band-passed signal. Regarding EMG,
40% of the first 10 selected features were chosen from the
analysis of the first derivative of the signal. Furthermore, by
analyzing the repetition of the components, the presence of
the power spectrum between 50 and 100 Hz has been ranked
as top-feature for all the three classifiers. For RESP and EDA
the most significant features (respectively 40% and 37%) were
spectral related features. In particular, the power spectrum in
the range of 0-0.7 Hz for RESP and 0-0.4 Hz for EDA.

B. Classification

Table II reports the highest accuracies and F1 scores [33]
achieved with the individual and fused feature sets, for both
all-dataset (10-fold validation) and per-subject (LOSO) classi-
fication schemes, as well as the number of features required to
achieve such results. Values followed by an asterisk indicate
significantly higher than chance according to an independent
one-sample t-test (p < 0.01). As can be seen, the normalized
feature sets achieves the best accuracy and F1 score results for
the three classifiers. The best performance is obtained with
a per-subject LOSO classification and in particular with the
classifier C, reaching 70% discrimination accuracy.

Three main concepts can be inferred from feature-fusion
classification results. First, fun is a dimension that can be
detected by physiological signals, and in particular it is easier
to measure the level of fun than its trend. When we compare

the performance between the three classifiers, the best per-
formance in accuracy is obtained when classifying the level
of fun (fun ‘above-average’ and ‘below-average’ for classifier
C), whereas performance is lower when using discriminating
tendencies (fun ‘increasing/decreasing’ in classifiers A and
B). Furthermore, a per-subject classification surpassed the
one conducted using the full dataset. This effect can be
related to the fun conceived as an individual factor [12]. A
support to this idea also comes from the evaluation of the
performances of the three feature sets. In fact, the normalized
set outperforms or balances the level reached by the fusion
set, thus showing the importance of per-subject normalization
for automated fun assessment. Additionally, when comparing
the number of features in a per-subject classification, two out
of three classifiers (A and C) reached the best results with
the normalized feature sets while using the minimum number
of features. Classifier B with the fused feature set, on the
other hand, required only one third of the components needed
by the normalized set. For what concerns the all-dataset 10-
fold cross validation classification, the best accuracy result
was always reached with fewer features compared to the other
classification schemes, but at the same time resulting in lower
classification performance.

In turn, Table III shows the performances achieved with the
decision level fusion scheme for the three classifiers. While
decision level fusion of classifiers A and C did not lead
to gains over simple feature fusion, decision level fusion of
classifier B did improve the accuracy with a gain over the
feature level fusion of 6 % for the normalized feature set and
4 % for the non-normalized set.

While decision level fusion with classifiers trained on these
four separate modalities (ECG/EMG/EDA/RESP) resulted in
an improvement only for classifier B, decision level fusion
did result in further improvements, particularly when dis-
criminating the increasing/decreasing dimension, thus suggest-
ing the complementarity of the four physiological responses.
Higher contribution rate is attributed to ECG (classifiers B
and C). RESP holds more decision fusion weight in classifier
A, whereas EDA contributed with the third highest weight.
Decision level fusion was previously shown to be a useful
tool for affective state recognition [33].

IV. CONCLUSION AND FUTURE WORK

In this work, a triple-classifier system was tested for auto-
mated fun-level state recognition during video game sessions.
Experimental results showed relevant performances in terms
of accuracy. Feature level fusion has been proved to work
better when detecting the level of fun, whereas decision level
fusion when discriminating trends (70% and 57% respec-
tively). Moreover, the importance of attributing an individual
component to the players’ fun-factor was demonstrated and
essential physiological features are detected. Such findings
suggest the importance of a robust adaptive video game based
on personal characteristics of player’s physiological signals,
and capable of maintaining a high level of fun.
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TABLE II: Performance comparison of SVM classifiers for different feature sets and feature-level fusion along with the required
number of features needed to achieve such results. Asterisks indicate whether the accuracy or the F1-score distribution over
subjects is significantly higher than chance according to an independent one-sample t-test (p < 0.01). ‘Per-subj’ corresponds
to per-subject LOSO results, whereas ‘All-dataset’ to 10-fold cross-validation on the entire dataset.

Classifier A

Non-Normalized Features Normalized Features Feature Fusion

Accuracy F1 Score No. Features Accuracy F1 Score No. Features Accuracy F1 Score No. Features
Per-Subj 0.59∗ 0.59∗ 87 0.60∗ 0.60∗ 69 0.59∗ 0.60∗ 70

All-dataset 0.55 0.55 35 0.54 0.54 35 0.55 0.55 32

Classifier B

Non-Normalized Features Normalized Features Feature Fusion

Accuracy F1 Score No. Features Accuracy F1 Score No. Features Accuracy F1 Score No. Features
Per-Subj 0.54∗ 0.53∗ 53 0.54∗ 0.53∗ 91 0.54∗ 0.53∗ 36

All-dataset 0.51 0.50 18 0.50 0.53 22 0.50 0.51 4

Classifier C

Non-Normalized Features Normalized Features Feature Fusion

Accuracy F1 Score No. Features Accuracy F1 Score No. Features Accuracy F1 Score No. Features
Per-Subj 0.69∗ 0.68∗ 54 0.70∗ 0.70∗ 69 0.70∗ 0.69∗ 101

All-dataset 0.55 0.52 30 0.55 0.52 40 0.54 0.52 20

TABLE III: Performance comparison of SVM classifiers for
different decision-level fusion schemes. Asterisks indicate
whether the accuracy or the F1-score distribution over subjects
is significantly higher than chance according to an independent
one-sample t-test (p < 0.01).

Non-Norm. Feats Norm. Feats Feature Fusion

Acc. F1 Score Acc. F1 Score Acc. F1 Score

Class. A 0.57∗ 0.57 ∗ 0.56 ∗ 0.56∗ 0.57 ∗ 0.57∗

Class. B 0.56∗ 0.55 ∗ 0.57∗ 0.57∗ 0.56∗ 0.55∗

Class. C 0.68∗ 0.69∗ 0.70∗ 0.70∗ 0.69∗ 0.69∗

Game design can be significantly improved when conduct-
ing analysis of cognitive and affective neuro-ergonomics. To
improve the performance of the proposed classifier system and
automated game affective tasks, supplementary steps could
be undertaken. First, the binary classification tasks performed
here could be replaced by a regression task where the actual
continuous value of the fun could be predicted. A second
improvement would be to introduce a personalized calibration
before starting the game, in order to train the classifiers based
on personal traits of the subject. Third, classification perfor-
mance could be improved by selecting optimal classification
models by tuning hyperparameters (based on the individual
signature) and explore different fusion strategies. Despite
being innovative, the continuous rating of fun performed after
the videogame session does have its drawbacks: it might
not represent the actual fun that was perceived during the
play and it relies on participants memory of their enjoyment

which could have been forgotten and/or biased. Furthermore,
participants did not have the possibility to rate fun on more
than one dimension. Still, the outcomes of the present work
can be applied to the development of a real-time adaptable
intelligent game with application in console as well as online
gaming. As a matter of fact, the present work is part of the
FUNii (interactive intelligent) project [31] that aims at the
development of an intelligent and interactive system capable
of predicting the player’s level of fun and adjusting the game
to maximize that value.
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Abstract—Pursuit-evasion games encompass a wide range of
planning problems with a variety of constraints on the motion of
agents. We study the visibility-based variant where a pursuer is
required to keep an evader in sight, while the evader is assumed to
attempt to hide as soon as possible. This is particularly relevant
in the context of video games where non-player characters of
varying skill levels frequently chase after and attack the player.

In this paper, we show that a simple dual formulation of
the problem can be integrated into the traditional model to
derive optimal strategies that tolerate interruptions in visibility
resulting from motion among obstacles. Furthermore, using the
enhanced model we propose a competitive procedure to maintain
the optimal strategies in a dynamic environment where obstacles
can change both shape and location. We prove the correctness
of our algorithms and present results for different maps.

I. INTRODUCTION

Pursuit-evasion games have received considerable attention
in both the AI planning and robotics communities which re-
sulted in a wealth of results. In the visibility-based variant, the
problem of deciding whether the evader possesses an escape
strategy is known to be NP-hard [10]. Analytical solutions to
the problem for limited obstacle geometries have been derived
by appealing to differential game theory [2]. Other variants
of the problem has been studied under complete information
[7], imperfect information [13] and partially-observable spaces
[12]. More realistic models of agents with a limited range of
vision have also been considered [4].

The solution method we are interested in is based on
backward induction. Starting from terminal states, where the
outcome of the game is known, the outcome for earlier states
can be determined recursively by considering the actions
available at each state. It may be viewed as a discrete ana-
logue to integrating a system of differential equations from
a set of initial conditions. This intuitive recursive formulation
easily lends itself to dynamic programming which provides an
efficient solution to a variety of problems.

In the same spirit, backward induction can also be used for
optimization problems like cost-to-go Bellman formulations to
path planning problems, e.g., [17]. To bound the number of
states that need to be explored, sampling approaches are typi-
cally used as in Rapidly-exploring Random Trees (RRTs) [9]
or adaptively refined meshes [16]. More traditionally, uniform
grids continue to be a standard tool to model domains for
planning problems. Recent works on any-angle path planning,

e.g., [3], have made it possible to overcome the unrealistic
trajectories generated by such grid techniques.

Alternatively, precomputation has been considered to stay
close to optimality at the cost of higher storage. Scalable
precomputed search trees (SPST) is one recent example where
RRT type trees are computed to provide uniform coverage of a
domain [8]. Similar approaches utilizing roadmaps have been
reported for the problem of pursuit-evasion [14]. Roadmap
based techniques have been applied to the visibility-based
variant as well, e.g., [6].

In this paper, we develop an enhanced model for visibility-
based pursuit-evasion that allows us to compute optimal
strategies for two interesting scenarios particularly relevant
to video games. In the first scenario, a tolerance parameter
is specified to allow interruptions in visibility of bounded
duration. In the second scenario, the map is allowed to change,
i.e., obstacles can change both shape and location. We reuse
the algorithmic framework we presented earlier for computing
a strategy matrix by backward induction [1]. To the best
of our knowledge, these are the first algorithms to compute
optimal pursuit-evasion strategies in these scenarios and only
heuristic-based or suboptimal limited-depth approaches were
known. This enables the design of more intelligent computer
players and also helps with level design to assess the difficulty
of different layouts and choose entry points for respawning.

The rest of the paper is organized as follows. In Section 2,
we define the visibility-based pursuit-evasion game and recall
the solution method we will be using in this study. Section III
introduces the dual formulation, which is key to the remainder
of the paper, and studies the first scenario where we relax the
hard visibility constraints with a tolerance parameter. Then in
Sections IV and V, we continue to demonstrate how similar
techniques can be used to extend this solution method to
dynamic environments where obstacles can change both shape
and location. Finally, we conclude in Section VI.

II. THE VISIBILITY-BASED PURSUIT-EVASION GAME

The pursuit-evasion game studied here can be defined as
follows. We are given two agents: a pursuer (p) and an evader
(e) at known initial positions in an environment with obstacles
that block both motion and visibility. The pursuer is required to
keep the evader in sight, while the evader is assumed to attempt
to break the pursuer’s line of sight in the shortest amount of
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time possible. Both players have complete information about
the other’s location and move at bounded speeds. Hence, the
first natural question is to decide for a given environment,
initial positions, and maximum speeds of both players, whether
the evader has an escape strategy.

The solution method we presented earlier [1] uses a grid
map discretization of the environment and assumes both
players take turns to move between cells of this grid, which
bears similarity to cop-robber games on graphs [5]. Per the
description of the game, the game state can be completely
determined by the locations of both players, denoted by the
ordered pair (p, e), and which of the two players moves next.

This method is summarized in Algorithm 1. Given a grid
map of dimensions w × h, computation is performed on a
(w × h) × (w × h) boolean matrix that stores for each pair
of locations whether or not the evader has an escape strategy.
Starting at terminal states, which are pairs (p, e) where e is not
visible to p, the game can be decided for these states (Line 3).
This is implemented by a simple procedure, M.vis(p, e), that
checks whether the line connecting e to p passes through any
of the obstacles. To decide the game for earlier states, standard
backward induction is performed (Line 4) as described in more
details in procedure InductionLoop. Note that we set S[p, e] =
1 iff the pursuer starting at position p cannot keep the evader
starting at position e in sight, with the evader moving first.

Algorithm 1: Decides the game for a given map.
Input : A (w × h) grid map of the environment M .
Output: The strategy matrix S.

1 begin
2 InitVisibility(M , S);
3 InductionLoop(S);
4 return S

The function InductionLoop repeatedly evaluates the escape
condition for each game state, which may only be available
after adjacent states have been determined. Once an escape
strategy is found, there is no need to process the state again.
The escape conditions can be expressed as the recurrence
relation of the form:

S[p, e] =
∨

e′∈N (e)

∧
p′∈N (p)

S[p′, e′]. (1)

We do not attempt to optimize the implementations here to
keep the presentation as simple as possible. More elaborate op-
timizations along with their theoretical analysis were discussed
in [1]. We use N to denote the neighborhood of locations the
player can reach in a single turn, which implicitly depends
on its speed. Letting N be the size of the map, i.e., w × h,
and κ be the largest size of a neighborhood N , we recall the
following result established in [1]:

Theorem 1. (Visibility Induction [1]) Algorithm 1 decides the
discretized game for a general environment in O(κ2N3).

Function InitVisibility(M , S)
Input : A grid map M and a strategy matrix S.
Output: The initialized strategy matrix S.

1 begin
2 S ← 0;
3 foreach p ∈ w × h do
4 foreach e ∈ w × h do
5 if ¬M.vis(p, e) then
6 S[p, e]← 1;
7 return S

Procedure InductionLoop(S)
Input : A strategy matrix S.
Data: A secondary (w × h)× (w × h) binary matrix S′.

1 begin
2 S′ ← 0;
3 iter ← 0;
4 while S′ 6= S do
5 S′ ← S;
6 foreach p ∈ w × h do
7 foreach e ∈ w × h do
8 foreach e′ ∈ N (e) do
9 isExit ← True;

10 foreach p′ ∈ N (p) do
11 if S′[p′, e′] = 0 then
12 isExit ← False;
13 if isExit = True then
14 S[p, e]← 1;
15 break;
16 iter ← iter + 1;
17 return S;

In the next section, we formulate the dual game and describe
the dual induction loop which is key to the algorithms in
Sections III and IV.

III. RECOVERING LOST VISIBILITY

In order to tolerate visibility interruptions, we do not
terminate the game and declare that the pursuer has lost as
soon as line of sight visibility is broken. Instead, we introduce
a parameter d that controls how long we allow the evader to
remain out of the evader’s sight in one streak. The pursuer
would then seek strategies that can recover visibility to the
evader if that is possible to achieve within d−1 steps, and the
evader only wins if it is able to hide for at least d consecutive
steps. The optimal strategy for the evader is still to find
the fastest way to win. As such, the evader does not favor
intermediate visibility interruptions if they do not lead to a
sooner victory.

We introduce the dual game to model the situation after
visibility is lost. In this phase, the evader attempts to remain
out of the pursuer’s sight as long as possible, while the pursuer
attempts to recover visibility to the evader as soon as possible.
Note that in the original game the evader’s objective was
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to minimize the visibility time, while in this phase it is to
maximize the occlusion time. Similarly, in the original game,
the pursuer’s objective was to maximize the visibility time,
while in this phase it is to minimize the occlusion time. In a
sense, the agents exchange their roles but the dynamics stay
the same.

For this reason, we refer to this situation as the dual game.
We obtain a corresponding recurrence relation for recovering
visibility as the logical negation of the escape conditions in
Equation 1:

S[p, e] =
∧

e′∈N (e)

∨
p′∈N (p)

¬S[p′, e′]. (2)

Observe that the dual game is only defined for pairs of
player positions that are not mutually visible. These are exactly
the pairs that defined the terminal states for the original game.
It is clear that in order to allow the game to proceed as long as
visibility can be recovered within d steps, we need to exclude
those pairs from the terminal states. With that, all that is
needed is to run a dual induction on the non-visible pairs
to get the relaxed terminal states. Then, running the original
induction backwards from the restricted set of terminal states
yields the desired strategies.

These steps are summarized in Algorithm 2. After initial-
izing the matrix by marking all pairs that are not mutually
visible, the procedure DualInductionLoop is invoked. Each
iteration in this procedure bears strong similarity to the original
induction loop. However, the result is that for certain pairs
initialized as terminal, with the evader winning and the pursuer
losing, this decision is simply undone (Line 16).

Algorithm 2: Tolerating interruptions in visibility.
Input : A strategy matrix S, grid map M , tolerance d.

1 begin
2 InitVisibility(M , S);
3 DualInductionLoop(S, M , d);
4 InductionLoop(S);
5 return S;

Using the updated terminal states, Algorithm 2 computes
the pursuit-evasion strategies for all pairs of initial positions
to maintain visibility as long as possible, while tolerating
interruptions in visibility within d steps. As we are essentially
reusing the induction loop studied in [1], we get the same
bound on the running time. In addition, the same optimizations
can be applied to speed up the computation.

The correctness of the DualInductionLoop procedure is
established in the next lemma.

Lemma 2. The DualInductionLoop correctly computes strate-
gies to recover visibility in less than d steps, if any.

Proof. For the base case, when iter = 0, S[p, e] = 0 iff (p, e)
are mutually visible, as initialized by InitVisibility. Then, when
iter = i, S[p, e] is assigned 0 (Line 16) iff e does not
have a neighbor e′ such that no neighbor p′ of p satisfies

Procedure DualInductionLoop(S, M , d)
Input : A strategy matrix S, grid map M , tolerance d.
Data: A secondary (w × h)× (w × h) binary matrix S′.

1 begin
2 iter ← 0;
3 while iter < d and S′ 6= S do
4 S′ ← S;
5 foreach p ∈ w × h do
6 foreach e ∈ w × h do
7 hasExit ← False;
8 foreach e′ ∈ N (e) do
9 isExit ← True;

10 foreach p′ ∈ N (p) do
11 if M.vis(p′, e′) or S′[p′, e′] = 0

then
12 isExit ← False;
13 if isExit = True then
14 hasExit ← True;
15 if hasExit = False then
16 S[p, e]← 0;
17 iter ← iter + 1;
18 return S;

M.vis(p′, e′) or S′[p′, e′] = 0. If M.vis(p′, e′) is true, then
p′ has direct visibility to e′. Otherwise, if S′[p′, e′] = 0, then
by the induction hypothesis, p′ has a strategy that guarantees
visibility to e′ is recovered within i− 1 steps.

Following with an invocation of the original induction loop
in procedure InductionLoop, the next theorem proves the
correctness of the whole scheme, which relaxes the result in
Theorem 1 to scenarios with less strict visibility requirements.

Theorem 3. Algorithm 2 decides the discretized game for a
general environment in O(κ2N3), tolerating arbitrary inter-
ruptions in visibility of d = O(N) steps.

Proof. By invoking the DualInductionLoop (Line 2), S[p, e] =
1 iff e has a strategy to hide out of sight for at least d
steps as established in Lemma 2. Then, the InductionLoop
is invoked (Line 3) starting at iter = 0 with S as returned
from DualInductionLoop. For iter = i in the InductionLoop,
S[p, e] is assigned 1 (Line 14) iff e has a neighbor e′ such that
for all neighbors p′ of p we have that S′[p′, e′] = 1. By the
induction hypothesis, it follows that for any such p′, it must be
the case that by iter = i− 1, e′ has found an escape strategy
to stay out of p′’s sight for at least d steps.

The bound on the running time follows by Theorem 1.
Observe that for large values of d, the overhead of running
the DualInductionLoop cannot be greater than the worst case
for running InductionLoop itself. Hence, the total running time
has the same bound.
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Figure 1 shows a pursuer with all evader locations it cannot
keep in sight colored in gray. We compare the traditional
scenario of zero tolerance against allowing broken visibility
for 5 turns. Beyond deciding which initial conditions enable
each player to win, the computed strategy matrix can be used
for trajectory planning as discussed in [1]. Figure 2 shows a
basic example of successful tracking although visibility was
initially broken.

Fig. 1. Pursuer view in the case with d = 0 (left) vs. d = 5 (right).

Fig. 2. A pursuer recovering visibility around an infinite corner.

IV. MOVING OBSTACLES BY ADD/REMOVE

The interplay between the classical game and its dual
as seen in Algorithm 2 yields new insights into computed
strategies as encoded in the matrix S. In the original game,
mutual visibility is established and the evader attempts to
hide altering an entry in the matrix from 0 to 1. In the dual
game, visibility is broken and the pursuer attempts to recover
it altering an entry in the matrix from 1 to 0.

Using this enhanced understanding, we study the visibility-
based pursuit-evasion game in a dynamic environment where
obstacles can change both shape and location. Naturally, in
a scenario like that, initially established visibility can get
broken by the changes in the environment, rather than the
actions of the agents. It follows that the agents need to update
their strategies to match the current environment. To keep
the presentation simple, we do not tolerate interruptions in
visibility in this section. However, the same method from
Section III can be applied to relax visibility tests.

In this section, we present a procedure to maintain the
optimality of precomputed strategies that can offer consid-
erable savings compared to recomputing a strategy matrix

from scratch. We use a slightly modified version of the dual
induction as listed in the ConservativeDualInductionLoop pro-
cedure. This ensures that dual updates do not enable pursuers
to chase after evaders they do not see directly.

Procedure ConservativeDualInductionLoop(S, M )
Input : A strategy matrix S, grid map M .
Data: A secondary (w × h)× (w × h) binary matrix S′.

1 begin
2 iter ← 0;
3 while S′ 6= S do
4 S′ ← S;
5 foreach p ∈ w × h do
6 foreach e ∈ w × h do
7 if ¬M.vis(p, e) then
8 continue;
9 hasExit ← False;

10 foreach e′ ∈ N (e) do
11 isExit ← True;
12 foreach p′ ∈ N (p) do
13 if S′[p′, e′] = 0 then
14 isExit ← False;
15 if isExit = True then
16 hasExit ← True;
17 if hasExit = False then
18 S[p, e]← 0;
19 iter ← iter + 1;
20 return S;

We use a simple diff model to capture the motion of
obstacles. We keep track of all grid cells that witness a change
in occupancy. It is clear that any change in the environment
resulting from a change in the shape or location of obstacles
can be expressed as introducing new obstacles at a subset of
grid cells and removing existing obstacles from another subset.

To remove obstacles, we first need to establish line-of-
sight visibility only between those pairs of positions that
were blocked by the removed obstacles. Eventually, some of
these pairs may terminate with the evader finding an escape
strategy. This means we need to run the original induction
loop to find such strategies, if any. The updated strategies
propagate to other pairs that may use the newly found routes to
improve their outcomes. Adding obstacles is slightly trickier
as the added obstacles block both visibility and mobility. For
example, an added obstacle may not necessarily help an evader
if it does not provide a shorter escape trajectory and instead
requires that the evader move around it to reach a more secure
exit while a faster pursuer is getting closer which makes it
harder for the evader to win.

Both adding and removing obstacles, can be performed in
one shot as shown in Algorithm 3. The algorithm simply
updates line-of-sight visibility to the limited set of player
positions dictated by the updates. Once these updates are
established, new strategies are computed and propagated by
consecutive invocation of the induction procedures.
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Algorithm 3: Updates strategies by a diff of the grid map.
Input : A strategy matrix S, grid map M , map diff

(M+,M−).
1 begin
2 M ←M +M+ −M−;
3 foreach p ∈ w × h do
4 foreach e ∈ w × h do
5 if M.vis(p, e) and ¬M−.vis(p, e) then
6 S[p, e]← 0;
7 else if ¬M+.vis(p, e) then
8 S[p, e]← 1;
9 InductionLoop(S);

10 ConservativeDualInductionLoop(S, M );
11 return S;

Note that some of the decisions applied by the first invo-
cation will need to be corrected by the second one. In fact,
the order of invocation does not matter in the correctness
of the result. Depending on the required updates, it can be
more efficient to start with one type of induction or the other.
The order shown here proved to be faster in our experiments
moving obstacles by small offsets. For larger shifts, it is more
efficient to compute a new matrix from scratch.

Figure 3 shows an initial map with two square obstacles.
In Figure 4, the two obstacles have moved diagonally in two
opposite directions. Figures 5 and 6 show the difference in
occupancy between the initial and final maps. Locations that
are no longer occupied by obstacles are denoted by M− and
those that receive new obstacles are denoted by M+.

Fig. 3. Initial map M . Fig. 4. Updated map M ′.

Fig. 5. Removed diff M−. Fig. 6. Added diff M+.

The correctness of Algorithm 3 is established in the next
theorem.

Theorem 4. Algorithm 3 correctly updates the strategy matrix
in a discretized game given a diff map of the environment.

Proof. We argue that the returned strategy matrix is correct,
i.e., for any pair (p, e) in the returned matrix, S[p, e] = 1 iff
the evader has an escape strategy.

Keeping in mind that the input strategy matrix S was
correct and that the visibility constraints of the updated map
were enforced (Lines 2-8), it follows that after invoking
InductionLoop (Line 9) any pair (p, e) where the evader has
an escape strategy will have S[p, e] = 1. By the assumption
that e has an escape strategy, there will eventually be neighbors
e′ ∈ N (e) with S[p′, e′] = 1∀p′ ∈ N (p) that satisfy the escape
conditions for e, which InductionLoop detects correctly.

It remains to show that for all pairs where the evader does
not have an escape strategy, S[p, e] = 0. This is achieved
by the invocation of ConservativeDualInductionLoop (Line
10). Similar to the preceding argument, by the assumption
that p can keep e in sight indefinitely, there will eventu-
ally be a neighbor p′ ∈ N (p) for each e′ ∈ N (e) with
S[p′, e′] = 0 that satisfies the recovery conditions for p, which
ConservativeDualInductionLoop detects correctly. Otherwise,
if e does have an escape strategy, the recovery conditions for
p must fail eventually.

V. CONTINUOUSLY MOVING OBSTACLES

Unlike the case in the previous section where obstacles
move unexpectedly, it might be the case that their motion
trajectories can be estimated in advance. In that case, line-of-
sight visibility between pairs of locations becomes a function
of time, and the players need to plan their motions taking this
into account.

In our discrete setting, assuming a time horizon of T steps,
we only need access to vis(p, e) at each step t. This can be
encoded as a sequences of matrices {Mt} with t = 1 . . . T .
This can be computed efficiently for obstacles with nice shapes
as in [15]. Working backwards from the last step T , we can
easily identify terminal states either directly by a visibility test.
Given these terminal states, we run backward induction on t.
We say that an evader wins at time t if line-of-sight visibility
is broken at t or if the evader is guaranteed an exit at a later
time step. Introducing a step index to capture the dependence
on time, the recurrence relation for this case can be written
as:

S[p, e, t] = ¬v(p, e, t) ∨
∨

e′∈N (e)

∧
p′∈N (p)

S[p′, e′, t+ 1]. (3)

Algorithm 4 implements the induction for this case. Next,
we establish its correctness.

Theorem 5. Algorithm 4 decides the discretized game for a
sequence of maps {Mt}, with t = 1 . . . T , in O(κ2N2T ).

Proof. For the base case, at t = T , we have that S′ = 0.
It follows that S[p, e, T ] = 1 only if ∃e′ ∈ N (e) such that
∀p′ ∈ N (p) we have ¬MT .vis(p

′, e′) and the condition in
(Line 11) is never satisfied for e′.
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Then, at iteration t = i, if S[p, e, t] is set to 1, it must be
the case that all pursuer actions p′ failed the test in (Line 11)
for at least one evader action e′, i.e., either visibility is already
broken and Mi.vis(p, e) is false or S[p′, e′, j+1] = 1, which
by the induction hypothesis means that an escape strategy for
e at a later step is available through e′.

Observing that the algorithm performs exactly T iterations,
the bound on the running time follows.

Algorithm 4: Decides the game for a dynamic map.
Input : A sequence of maps {Mt}, t = 1 . . . T .
Data: A secondary (w × h)× (w × h) binary matrix S′.

1 begin
2 S ← 0;
3 t← T ;
4 while t > 0 do
5 S′ ← S;
6 foreach p ∈ w × h do
7 foreach e ∈ w × h do
8 foreach e′ ∈ N (e) do
9 isExit ← True;

10 foreach p′ ∈ N (p) do
11 if Mt.vis(p, e) and S′[p′, e′] = 0

then
12 isExit ← False;
13 if isExit = True then
14 S[p, e]← 1;
15 break;
16 t← t− 1;
17 return S;

Assuming the environment does not change after the time
horizon T , we may wish to let the game proceed on this fixed
situation. This can easily be accommodated by replacing (Line
2) in Algorithm 4 with an invocation of Algorithm 1 on MT .
Looking at the proof for Theorem 5, this would only change
the base case in an obvious way.

It is also possible to tolerate limited interruptions in visi-
bility in this case as well. However, this requires the use of
counters rather than boolean values in the strategy matrices.
By incrementing the counter for each step the evader stays
out of the pursuer’s sight, we can detect when it completes d
steps or when the counter should be reset. A similar technique
was applied in [1] to compute the fastest escape trajectory and
the corresponding optimal pursuit trajectory, where the original
recurrence relation is written as a min-max over such counters,
rather than an or-and of booleans.

VI. CONCLUSION AND FUTURE WORK

We presented a novel dual formulation to the standard
visibility-based pursuit-evasion game that allows an easy way
to relax the visibility constraints. To the best of our knowledge,
this is the first algorithm to compute optimal pursuit-evasion
strategies that accommodate recovering visibility once it is
lost. Combined with the original formulation, we derived a

competitive update procedure to maintain the optimality of the
computed strategies in dynamic environments where obstacles
change both shape and location. We proved the correctness
of our algorithm and presented basic experimental results for
simple maps to demonstrate the contribution.

To make the discretized model more practical, it would be
interesting to consider state space reduction such that only
few game states are represented explicitly. For a fixed initial
position, the approach in [11] seems promising.
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Abstract—We describe a method used to build a practical AI 
system for a mobile game of tennis. The chosen approach had to 
support two goals: (1) provide a large number of believable and 
diverse AI characters, and (2) let the users train AI “ghost” 
characters able to substitute them. We achieve these goals by 
learning AI agents from collected behavior data of human-
controlled characters. The acquired knowledge is used by a case-
based reasoning algorithm to perform human-like decision 
making. Our experiments show that the resulting agents indeed 
exhibit a variety of recognizable play styles, resembling the play 
styles of their human trainers. The resulting AI system 
demonstrated stable decision making, adequate for use in a real 
commercial game project. 

Keywords—game AI; believability; case-based reasoning. 

I. INTRODUCTION 

The task of designing a game AI begins with a fundamental 
question: what is the purpose of AI in the given particular 
game? What kind of AI will contribute to the overall success of 
the game? Various aspects of “good game AI” are currently 
being discussed in the community, and include, in particular, 
believability, fun, and high skill level [1, 2]. The diversity of 
these aspects can be explained with the diversity of computer 
games and game genres. As Kevin Dill summarizes, “The one 
thing that is universally true is that games are about creating a 
particular experience for the player—whatever that experience 
may be. The purpose of Game AI… is to support that 
experience” [3]. 

In the present work, we will describe the AI system for the 
upcoming mobile free-to-play game World of Tennis [4]. Since 
free-to-play games are typically designed “for a (very) long 
duration of play” [5] to increase in-app spending (and World 
of Tennis is no exception), one of the principal goals of AI in 
this case is to provide a diverse and lasting experience, keeping 
player attention for prolonged time periods. Consequently, we 
decided to focus on the following game elements: 

• Believable, diverse AI characters. To ensure long-term 
player retention, AI characters have to be diverse, fun to 
play with, and exhibit distinct play styles. 

• Different AI characters for different player profiles. 
Like most free-to-play games, World of Tennis 
implements an extensive system of character upgrades, 
which encourage players to experiment with their play 
styles. For example, characters with low running speed 
skill values should generally stay close to the central 
axis of the court to maximize their chances of receiving 

opponents’ shots. However, faster characters encourage 
more experimental and risky play styles. The AI system 
should provide interesting and challenging opponents 
for all variations of game characters. 

• The ability to train your “ghost” character. Human-
trainable “ghost” characters provide additional elements 
of gameplay. We want the AI to be able to serve as a 
substitute for the user, and complete the game session 
automatically if the user has no time or wish to do it. 

These game elements are consistent with the goals of our 
previous research projects, dedicated to the AI of boxing and 
soccer [6, 7]. Thus, we decided to rely on the same method: 
learning AI play styles from real people, and using case-based 
decision making during the game. The ultimate goal of such an 
AI system is to replicate the actions of its human trainer. By 
accomplishing it, the AI will be able to support the 
aforementioned game elements, since the diversity of actual 
World of Tennis players will ensure the diversity of AI agents, 
and the players will be able to train their own “ghosts”. 

II. RELATED WORK 

While train your “ghost” character capability (similar to 
“creating your own ghost” function in Tekken 6 [8]) as a user-
end feature immediately suggests a method based on human 
behavior observation, in general the task of building diverse 
and believable agents can be accomplished in different ways. 
We should note that the problem of creating a large family of 
AI-controlled characters is rarely addressed. Among them we 
can mention the work [9] that proposes to use multiobjective 
evolutionary algorithms to create the whole populations of 
NPCs. Due to stochastic nature of evolutionary algorithms, 
they can produce any required number of distinct characters. 

When believability is explicitly stated as a goal, one of the 
following three general approaches is typically used: 

1. Rely on expert knowledge. Decision-making logic can 
be directly hand-coded according to an expert view of 
the given domain. In certain cases this solution can be 
adequate, and result in a solid AI system [10]. 

2. Mimic human decision making process. A system can 
be designed on the basis of contemporary 
psychological theories of human behavior [11]. 

3. Rely on actual logs of human behavior. In the most 
straightforward form, this approach can be reduced to 
replaying human decision-making logs verbatim [12], 
but usually it is implemented via machine learning: 
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agents are trained on human data to provide the same 
actions as human players in similar situations [13, 14]. 

Our approach falls into the third category. We use logs of 
actual human-controlled characters to train the AI system. 
When the AI agent performs decision making, it relies on the 
acquired knowledge for case-based reasoning. The most 
relevant predecessor of the present project is our earlier 
work [7], dedicated to the game of boxing. Tennis and boxing 
actually share several notable aspects: both games feature one 
vs. one gameplay in a closed rectangular-shaped space; neither 
game requires long-term strategical thinking, but allow enough 
room for exhibiting a variety of play styles. 

III. WORLD OF TENNIS: ENGINE AND GAMEPLAY 

Our previous experience shows that even minor changes in 
gameplay may require notable modifications of the AI learning 
and decision making procedures, so let us briefly discuss the 
game mechanics of World of Tennis, as it affects AI design. 

World of Tennis is a mobile version of a conventional one 
vs. one tennis sports game. The player sees the whole court 
shown with a fixed camera: there is no need of scrolling or 
camera adjustments. The player always controls the bottom 
character, while the top character is controlled by the AI 
system (see Fig. 1). 

There are only two possible action types available to the 
player. By tapping the screen area of the own side of the court, 
the player directs the character to the desired target point 
(SetMovePoint action). By tapping the screen area of the 
opponent side of the court, the player sets the target point for 
the next shot (SetHitPoint action). The game engine calculates 
the optimal shot parameters according to the current player 
skill values. For example, a player with a higher shot power 
value is able to hit the ball with higher speed. By tapping the 
opponent side of the court twice, the player forces the game 
engine to perform a high lob shot, typically used to loft the ball 
over the opponent. 

In Fig. 1, the bottom player’s active move point is shown 
with a cube (located near the center of the player side of the 
court), while the active hit point is represented with a sphere 
(located near the opponent). 

When the player performs a SetHitPoint action, the game 
engine displays a shot circle (shown as a white circle near the 
center of the opponent side of the court in the Fig. 1). This 
circle represents the accuracy of the next player shot, and starts 
shrinking over time as soon as the opponent returns the shot. 
The actual target of the shot will be randomly selected within 
the circle limits. This way, the game engine encourages the 
players to choose their hit points as early as possible to ensure 
higher accuracy. However, the shot circle shrinks much 
quicker for the players with high accuracy skill values, so they 
have more flexibility in tactics. 

The actual shot is performed as soon as the ball comes 
close to the player, and the next hit point is set. There are no 
actions required for making the shot: setting a hit point is 
sufficient. Furthermore, once the ball is shot towards the 
player, the system automatically starts steering the player to the 

optimal ball receive location (it also depends on character skill 
values). Hence, the game process is strictly divided into 
distinct phases. When the ball is moving towards the player, 
the player can only set the next hit point, since its movements 
are controlled automatically. When the ball is moving towards 
the opponent, the player can only move to the specified court 
location. While it is also possible to set the next hit point in this 
phase, the game engine will not process it until the opponent 
returns the shot. 

The general motivation of these design decisions is to 
facilitate tactical rather than pure arcade gameplay. The player 
is encouraged to select winning hit point and move point 
locations, while the game engine takes care of the rest.  

If the player has no time or desire to finish an ongoing 
game, it is possible to pass the control to the “ghost” character 
at any moment. Ideally, the “ghost” should be able to replicate 
the player behavior style as closely as possible. 

IV. AI AGENTS: IMPLEMENTATION DETAILS 

A. Learning Human Behavior 

The core element of our AI system is its knowledge 
representation mechanism. We rely on the somewhat extended 
notation of a finite-state machine (FSM), later referred as 
acting graph [15]. Acting graph consists of N independent 
automatically generated FSMs representing an individual 
agent’s knowledge with different levels of granularity (see 
Table I). Each state of the i-th machine incorporates Ai 
attributes representing a certain game situation. The states are 
connected with action-labeled edges. Unlike states, actions do 
not have levels of granularity, and are always represented with 
a complete set of attributes: 

• Action type (SetHitPoint or SetMovePoint). 

• Shot type (None for SetMovePoint actions, Auto or Lob 
for SetHitPoint actions). 

• Target point position (x and y coordinates on the court). 

 

 

Fig. 1. Actual screenshot of World of Tennis. 
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In addition, states and actions have auxiliary attributes, 
containing their usage frequency, timestamps, and other 
optional data fields. 

The number of independent FSMs (i.e., levels of 
granularity) as well as the choice of their attributes is currently 
done manually in accordance with expert knowledge. The 
present design of attribute sets is a trade-off between AI 
quality, pure business goals, and mobile platform restrictions. 
While the AI, in principle, should be tuned for the best 
accuracy, we also had to set reasonable limits for the expected 
knowledgebase size, CPU load and required learning time. One 
of the business decisions was to ensure that any given “ghost” 
is able to reproduce basic player style elements after 7-10 
minutes of realtime training. 

TABLE I.  ACTING GRAPH CONFIGURATION 

FSM 
Next level 

statusd 
Game Situation Attributes 

FSM0 

 Player phase (serve / hit / receive / etc.) 

 Player coordinatesa 

M Player move point coordinatesac 

M Player actual hit point coordinatesac 

M Opponent coordinatesa 

R Opponent move point coordinatesac 

R Opponent actual hit point coordinatesac  

R Player shot type (serve / top spin / lob / etc.)c 

R Opponent shot typec 

FSM1 

 Player phase (serve / hit / receive / etc.) 

M Player coordinatesa 

 Player move point coordinatesbc 

 Player actual hit point coordinatesbc 

 Opponent coordinatesb 

FSM2 

 Player phase (serve / hit / receive / etc.) 

 Player move point coordinatesbc 

 Player coordinatesb 

 Player actual hit point coordinatesbc 

 Opponent coordinatesb 

a. An integer value inside a 10×10 grid. 
b. An integer value inside a 5×5 grid. 

c. If exists. 
d. M: attribute will be modified on the next level; 

R: attribute will be removed on the next level. 

During the game, the AI system observes the actions of the 
human-controlled character and inserts into the FSMs the 
(state, action, state’) triplets, actually occurred in the tennis 
match [15]. As a result, we obtain a system of static FSMs that 
encode agent knowledge (this approach is similar to learning 
behavior trees from observation, discussed in [16]). The 
resulting structure can be also treated as a set of three Markov 
decision processes, representing human behavior. 

B. Decision Making Mechanism 

In the simplest case, an AI agent can choose the next action 
by finding a match for the current game situation in the acting 
graph. If the agent learned a triple (state, action, state’), it can 
decide that the best move in the game situation state is to 
perform action, and the anticipated outcome will be state’. In 
practice, however, it is improbable that the agent will be 
always able to retrieve actions from the FSM0 graph, most 
accurately representing user intentions. The procedure of case-
based reasoning requires approximate matching, based in 
World of Tennis on the following three instruments. 

1. If searching FSM0 yields no results, we can repeat the 
same operation with reduced attribute sets for FSM1 
and FSM2. The resulting matches will be less precise, 
as any state retrieved from FSM1 or FSM2 represents 
the actual game situation with fewer details. Therefore, 
the retrieved actions might not accurately reflect user 
intentions anymore. 

2. We can optionally turn off the requirement of action 
adjacency in decision making mode. For example, if 
the agent performed the action A1 in the state 1, it 
should then continue acting from the state 2 (see 
Fig. 2). However, if the perfect match for the current 
game situation is a state other than 2, we can ignore the 
current sequence of actions forming player strategy, 
and continue from the best matching state. This 
relaxation can greatly increase the number of relevant 
actions on higher levels of abstraction. Say, if the state 
(2, 4) of FSM1 corresponds to the states 2 and 4 of 
FSM0, and the previous agent action was A1, the only 
match in FSM1 that preserves action adjacency would 
be A3. By relaxing the adjacency requirement, we can 
retrieve both A3 and A4. 

3. Numerical attributes (such as player coordinates) can 
optionally be matched approximately with a specified 
range of error. In the current implementation we only 
allow errors within a range [-1, 1], i.e., for a given 
value V the values V – 1, V, and V + 1 will be treated as 
acceptable matches. 

The complete decision making procedure performs a 
sequence of queries until at least one matching action is found 
(see Table II). Each subsequent query implements further 
relaxations and thus can potentially retrieve more actions, 
albeit at the cost of reduced accuracy. 

C. Decision Making Points 

One of the surprisingly difficult tasks for the AI subsystem 
design is to decide when to act. The frequency of AI decisions 
should be carefully balanced. Short time intervals between 
decision making points help the AI to react to ongoing changes 
on the court. However, it may cause jolted movements of the 
AI agents, since subsequent calls to the AI system override 
previous move and hit points. Furthermore, they increase CPU 
load. The present solution is based on the following 
observations: 

1. The player moves to occupy a certain advantageous 
court location. It is unlikely that a reasonable game 
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strategy requires complex movements between the 
player shot and the subsequent opponent shot. The next 
move point can be set right after the player shot. 

2. The player can set a hit point right after opponent shot. 
It is unlikely that a reasonable game strategy will 
require more than one revision of a hit point (since it 
will reduce the accuracy of the shot). 

Hence, the interval between two consecutive player shots 
contains three decision making points: 1) right after the player 
shot (SetMovePoint expected), 2) right after the opponent shot 
(SetHitPoint expected), and 3) right after the ball covers a half 
of the distance between the players (SetHitPoint expected). 
One may notice that this algorithm actually shortens AI 
reaction time comparing to its human trainer. 

 

Fig. 2. Optional preservation of player strategy. 

D. Action Ranking 

When the decision making procedure has to rely on relaxed 
search conditions, it often returns a list containing a relatively 
large number (dozens) of actions, only approximately 
applicable in the current game situation. To improve agent 
behavior, we implemented the action ranking algorithm, based 
on the following simple rules. 

1. Initially, each action is assigned a numerical weight 
equals to freq × age, where freq is the number of 
occurrences of the given action in learning sessions, 
and age is the cardinal number of the current learning 
session. This way, both frequent and more recent 
actions are prioritized. The primary goal of age is to 
make the AI adjust to new patterns of player behavior 
that emerge due to character upgrades. 

2. If the resulting list of actions contains an action similar 
to the one currently being executed by the agent, the 
system aborts decision making, and lets the agent to 
continue. The rationale is to keep the ongoing player 
activity if the AI system can prove that the current 
action is still relevant (i.e., present in the action list). 
Two actions are considered similar if the Euclidean 

distance between their target points is less than 
MinDist value, currently set to one meter. This rule 
effectively suppresses unnecessary SetHitPoint actions 
set at the third decision making point. 

After ranking, a weighted random choice is used to select 
the action to be returned to the game engine. 

TABLE II.  CASE-BASED REASONING WITH QUERIES 

Query FSM
level 

Require 
action 

adjacency 

Range search on attributes 

1 0 Yes — 
2 0 No — 
3 1 Yes — 
4 1 No — 
5 1 Yes Player coordinates 
6 1 No Player coordinates 
7 2 Yes — 
8 2 No — 
9 2 Yes Player coordinates 

Player actual hit point coordinates
Opponent coordinates 

10 2 No Player coordinates 
Player actual hit point coordinates 

Opponent coordinates 

V. PLAY STYLE COMPARISON METHOD 

Since an AI-controlled character in the game is typically 
intended to serve as a “ghost” of a certain human player, it has 
to exhibit a similar play style and demonstrate a comparable 
skill level as its human trainer. Evaluating skill level of an AI 
agent is a rather straightforward task: we can play a series of 
matches between two agents and check the final scores. In 
contrast, comparing play styles of two agents is a far more 
complex problem. 

The task of play styles comparison is often discussed in 
connection with a more general task of evaluating character’s 
believability, i.e. its ability to provide the illusion of being 
controlled by a real human player. Since believable characters 
are not necessarily obtained by learning from human behavior, 
“gold standard” human behavior patterns might not be 
available. Consequently, believability assessment is often 
implemented in a form of a Turing test, where game observers 
have to evaluate believability of characters they see [17]. 

In our case, it is possible to evaluate human-likeness of an 
AI-controlled character via direct comparison of AI-generated 
and human-generated samples of game play. In its turn, there is 
no universal scheme of game style comparison, as relevant 
game style features highly depend on a particular game. For 
example, promising results for a first-person shooter game 
were obtained with player trajectories comparison [18], while 
in Super Mario Bros. a scalar performance score function 
incorporating various player achievements was shown to serve 
as a reasonable criterion of behavior similarity [13]. 

The discussion of features that constitute a play style for 
tennis deserves a separate study. For the current purposes, we 
decided to develop the simplest possible scheme that can 
separate human players reliably. Presumably, humans exhibit 
distinct play styles, while the same person keeps a consistent 
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play style across games. Therefore, the desired similarity 
function in most cases should produce higher similarity values 
for the same player in different games, and lower values for 
different human players. 

One of the approaches that turned out to be unreliable was 
based on plain heat map comparison. We represented the 
character side of the court with a two-dimensional table (10×10 
cells), then used actual game logs to calculate the probability of 
character presence in each court cell. Such probability tables 
(heat maps) were transformed into one-dimensional arrays 
(vectors), and compared using a dot product, yielding a 
similarity value within a range [0, 1]. However, the 
experiments showed that even pairs of completely unrelated 
characters often generate similar heat maps. 

Our current comparison algorithm uses a modified heat 
map approach, based on a presumption that a play style is 
defined with explicit player actions rather than character 
presence in certain court locations. The algorithm first builds 
an independent heat map for each character’s SetMovePoint 
and SetHitPoint actions found in a game log: 

For each SetMovePoint action a: 
    MoveF[a.x, a.y]++ 
    MoveCount++ 

For each SetHitPoint action a: 
    HitF[a.x, a.y]++ 
    HitCount++ 
 
For x = 0...9 and y = 0...9: 
    MoveP[x, y] = MoveF[x, y] / MoveCount 
    HitP[x, y] = HitF[x, y] / HitCount 

Action target coordinates a.x and a.y are here represented 
with scaled integer values lying in the range [0, 9]. Two 
resulting heat maps of each character are then converted into 
vectors and concatenated. The obtained vector serves as a 
character’s “behavior fingerprint”, and can be compared with 
other vectors with a dot product. 

VI. EXPERIMENTAL RESULTS 

To evaluate the quality of the resulting AI system we 
performed a series of experiments, answering the following 
research questions: 

Q1. Do human players exhibit distinguishable play styles? 

Q2. Do AI “ghost” characters exhibit distinguishable play 
styles, similar to the styles of their human trainers? 

Q3. Do AI “ghost” characters exhibit tennis skills, 
comparable to the skills of their human trainers? 

A. Preparation of Experimental Dataset 

In our experiments we rely on behavior data of eight human 
players H1, …, H8, and one “AI coach”. Human players highly 
vary in their skill level, but all of them have some experience 
of World of Tennis gameplay. The AI coach is a “ghost”, 
deliberately trained to be a reasonable-skilled opponent for 
entry-level players. All the characters in the game have 
comparable skill values (running speed, shot power, etc.), kept 
with no significant adjustments during the experiments. 

A single game session in the experiments consists of a short 
match that lasts until a) one of the players scores 7 points; and 
b) the difference between scored points of the opponents is at 
least two. On average, the actual duration of an individual 
game session is around 2 minutes. Any number of game 
sessions can be used to train a character’s AI “ghost” or to 
construct a behavior fingerprint. 

The actual sessions were designed to replicate the real 
everyday World of Tennis activities. All the human players 
were put into the same “league” and assigned opponents 
according to a round robin scheme. Thus, each player has to 
play seven game sessions as a host against another player’s AI 
“ghost”, and seven game sessions as a guest, serving as an AI 
“ghost” opponent for another player. Each league day begins 
with a training, when a player has a chance to play 1-2 game 
sessions against the AI coach or, starting from day two, against 
the AI “ghost” of the player currently leading in the 
tournament. After the training, the player has to play the next 
scheduled game. 

In total, it gives us (per player) 7 league games played as a 
host, 7 league games played as a guest, and 7.88 training 
games on average. Our present experiments do not take into 
account that the “ghost” are trained on the fly, which means 
that their skill level and ability to capture human play styles 
should presumably be higher for the latter game sessions.  

B. Primary Experiments 

Experiment 1. We used the obtained game data to build a 
behavior fingerprint of each human player Hi, and compared 
the fingerprints of every human character pair (Hi, Hj). To 
check whether a character’s play style is consistent across 
different games, we also compared two fingerprints of the 
same human characters, obtained on three randomly selected 
sessions. The results of fingerprint comparison are shown in 
Table III. 

TABLE III.  HUMAN PLAY STYLE SIMILARITY 

H1 0.96        
H2 0.58 0.94       
H3 0.54 0.76 0.93      
H4 0.75 0.58 0.55 0.93     
H5 0.88 0.49 0.56 0.57 0.97    
H6 0.77 0.59 0.67 0.83 0.64 0.96   
H7 0.81 0.69 0.60 0.74 0.69 0.68 0.96  
H8 0.74 0.78 0.62 0.81 0.57 0.72 0.89 0.93 

 H1 H2 H3 H4 H5 H6 H7 H8 

mean({(Hi, Hj), i = j}) = 0.95, σ = 0.02 
mean({(Hi, Hj), i ≠ j}) = 0.68, σ = 0.11 

The similarity values show that different fingerprints of the 
same human player are consistently closer than the fingerprints 
of two distinct players. Since fingerprints are essentially heat 
maps, it is also easy to visualize them to show the differences 
in human play styles (see Fig. 3). 

One may notice that the present fingerprinting scheme was 
explicitly designed to separate human players, and therefore 
cannot reliably prove that humans indeed exhibit play styles 
that are perceived as distinct by external observers. However, 
since the fingerprinting algorithm is a very straightforward 
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simplification of human behavior data, we believe that major 
contradictions between the automated scheme and human 
evaluations are unlikely. Obviously, the current algorithm is 
unable to detect subtle differences in individual play styles, 
thus the average similarity between different human players is 
high (0.74). 

 

Fig. 3. Heat maps of H1, and H2 (players are always in the bottom half of 
the court; the top half is used to show SetHitPoint targets). 

Experiment 2. We repeated the steps of Experiment 1 for 
the games played by AI “ghost” characters G1, …, G8, and 
compared behavior fingerprints of human and “ghost” 
characters to obtain human/ghost and ghost/ghost similarity 
values (see Table IV and Table V).  

Table IV shows that the “ghost” players indeed exhibit 
diversity of behavior, comparable to their human trainers. 
“Ghosts” tend to be consistent in their play style, and each 
“ghost” is clearly identifiable. Despite several exceptions (such 
as relatively low G7-G7 similarity), on average behavior data of 
“ghosts” is comparable to the results shown by human players. 

Table V demonstrates that our current algorithm is indeed 
able to produce AI “ghosts” exhibiting play style closer 
resembling their human trainers rather than other human 
players or other “ghosts”. 

TABLE IV.  AI “GHOST” PLAY STYLE SIMILARITY 

G1 0.91        
G2 0.67 0.95       
G3 0.74 0.77 0.92      
G4 0.82 0.47 0.69 0.94     
G5 0.75 0.44 0.64 0.72  0.96    
G6 0.88 0.59 0.79 0.90 0.74 0.85   
G7 0.84 0.49 0.69 0.86 0.81 0.87 0.80  
G8 0.84 0.53 0.69 0.78 0.89 0.82 0.92 0.91 

 G1 G2 G3 G4 G5 G6 G7 G8 

mean({(Gi, Gj), i = j}) = 0.91, σ = 0.05 
mean({(Gi, Gj), i ≠ j}) = 0.74, σ = 0.13 

 

Experiment 3. We calculated the total number of points 
scored by the human players and the AI “ghosts” in league 
games, and visualized them (see Fig. 4). This experiment 
shows that the “ghosts” can play on par with human opponents. 
Their slightly better performance can be explained primarily 
with higher “discipline”: AI-controlled characters never miss 
their actions, while human players tend to play casually, and 
sometimes may skip the next hit or move point. 

During the experiments, we collected additional data that 
may be useful to evaluate the resulting AI system. These 
numbers are summarized in Table VI. 

TABLE V.  HUMAN / AI “GHOST” PLAY STYLE SIMILARITY 

 H1 H2 H3 H4 H5 H6 H7 H8 
G1 0.89 0.82 0.66 0.77 0.73 0.75 0.82 0.84 
G2 0.38 0.89 0.69 0.47 0.35 0.50 0.47 0.62 
G3 0.57 0.80 0.95 0.63 0.50 0.75 0.63 0.68 
G4 0.85 0.61 0.61 0.94 0.70 0.92 0.80 0.81 
G5 0.85 0.57 0.69 0.60 0.97 0.69 0.70 0.60 
G6 0.83 0.74 0.73 0.86 0.71 0.88 0.82 0.84 
G7 0.86 0.69 0.70 0.77 0.79 0.79 0.88 0.87 
G8 0.86 0.73 0.73 0.70 0.88 0.73 0.84 0.83 

mean({(Hi, Gj), i = j}) = 0.90, σ = 0.05 
mean({(Hi, Gj), i ≠ j}) = 0.71, σ = 0.13 

TABLE VI.  ADDITIONAL EXPERIMENTAL DATA 

Actions matched in FSM0 18% 
Actions matched in FSM1 56% 
Actions matched in FSM2 18% 

No matching actions found 8% 
Adjacent (strategy-keeping) actions 14% 

Average AI “ghost” graph size (FSM0) 525 nodes 

 

VII. DISCUSSION 

Before discussing obtained results, let us once again 
express the view that the purpose of game AI is to support a 
particular game experience. This way, our goal was to create 
an AI system for a specific type of a mobile tennis game, and 
certain design decisions were influenced by game designers’ 
views of typical game/player interaction scenarios. Since the 
game is still in the development stage, we believe that both 
business requirements and the game engine will be updated, so 
we will have to amend certain AI elements accordingly. 

Our first goal was to create a variety of believable and 
diverse characters. As a preliminary step, we had to make sure 
that the game engine itself allows the players to exhibit 
distinguishable play styles, since one may argue that the 
difference between two human players can be merely 
explained with their different reaction time and differently 
upgraded characters. However, Experiment 1 shows that each 
person tends to adhere to the same distinctly recognizable 
characteristic behavior pattern (at least over a short span of 10-
20 game sessions), thus answer positively to the research 
question Q1. Therefore, believable AI characters should also be 
able to exhibit a variety of recognizable game play styles. 

Experiment 2 confirms that our method is indeed able to 
produce believable and diverse AI “ghosts” that resemble their 
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human trainers (research question Q2). The diversity of 
“ghosts” is comparable to the diversity of human players. A 
similarity score of two distinct “ghosts” in the experiment is 
0.74 on average, while each “ghost” exhibits consistent play 
style across the game sessions (yielding a self-similarity score 
of 0.91 on average). These results are comparable to the 
similarity values obtained from human players in the 
Experiment 1. The similarity scores between the “ghosts” and 
their respective human trainers vary. In most cases, the closest 
match to a “ghost” is indeed its human trainer (with the 
average similarity score 0.90). 

 

Fig. 1. Number of points lost and scored (on average per game)  
by the human players and their respective AI “ghosts”. 

Experiment 3 demonstrated that in the AI “ghosts” are able 
to compete with people successfully, and in the present version 
of the AI system perform even slightly better than their human 
trainers (probably, due to their perfect discipline). From the 
business perspective, we are satisfied with this moderate 
handicap the “ghosts” have. Human players always play 
against the AI, so the players generally have no expectations 
about the skills of their opponents. At the same time, each 
player expects own “ghost” to perform equally well, so in this 
case stronger AI should be more appealing to the users. 

VIII. CONCLUSION 

We demonstrated a practical learning by observation-based 
method used to create an AI system for a mobile tennis game. 
The chosen approach provides reliable decision making, and is 
able to produce a variety of diverse human-like opponents, 
preserving play style of their human trainers. Believability and 
diversity of AI-controlled characters were demonstrated with 
an objective method based on behavior fingerprint comparison. 
Furthermore, the AI agents are able to achieve the same skill 
level as human players. 

The proposed approach is based on the earlier AI project 
for the game of boxing, so we believe that this method can be 
adapted to a variety of game genres. At the same time, every 
game is different, and even small changes in a game engine or 
gameplay may require considerable redesign of AI system. In 
case of tennis, the core elements of decision making system 
were kept intact, however, the design of granularity levels, the 

choice of attributes and queries had to be reconsidered. The 
resulting AI system is resource-efficient, and can work on an 
average (iPhone 4-class) mobile device. 

Currently several core decision making subsystems (such 
as configuration of FSMs and the list of queries) are designed 
manually, on the basis of expert knowledge. While automating 
these tasks is not a priority for us now, it can be a fruitful topic 
for future research. 
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Abstract—This paper proposes a method to help understanding
the influence of a game design on player retention. Using Far
Cry R© 4 data, we illustrate how playtime measures can be used
to identify time periods where players are more likely to stop
playing. First, we show that a benchmark can easily be performed
for every game available on Steam using publicly available
data. Then, we introduce how survival analysis can help to
model the influence of game variables on player retention. Game
environment and player characteristics change over time and
tracking systems already store those changes. But existing model
which deals with time varying covariate cannot scale on huge
datasets produced by video game monitoring. That is why we
propose a model that can both deal with time varying covariates
and is well suited for big datasets. As a given game variable can
have a changing effect over time, we also include time-varying
coefficients in our model. We used this survival analysis model
to quantify the effect of Far Cry 4 weapons usage on player
retention.

I. INTRODUCTION

The amount of data collected by game companies about how
their games are played is constantly growing. Indeed, consoles
and PC are almost always connected to the internet, allowing
Game Studio to virtually track every player interaction with
the game. However, interpreting this massive amount of data
is still a key challenge for game companies.

One of the goal pursued by game developer is not only
to have many players, but to have each of them playing a
lot. Players should spend more time than just trying the game
for a few minutes : they should really enjoy the game and
explore the whole content developers spent a long time to
create. Having many players leaving the game in the first hours
could really be considered as a design failure.

Game studios are thus often analyzing a game’s player
retention, that is to say, the proportion of remaining players
after n hours of playtime. In this paper, we focus on using
statistical analysis of tracking data to improve player retention.
We need to help the designers to identify the design elements
that seem to maintain players inside the game, and those who
don’t. By nature, game design is an incremental process and

games need to be tested to evaluate if players have fun playing
it [17].

A lot can be learned by only monitoring playtime, including
detecting when a player is about to leave the game. For
instance, an issue with the tutorial could be highlighted by a
player retention drop in the first minutes of the game. However
most thing are not as easy to identify. An unbalanced weapon
will have an unnoticeable impact in the quit rate curve, even
if it causes lots of players leaving the game. Different players
will use the given weapon at different times in the game
leading to a wide spray on the time scale. A good way to
detect such impact is to use statistical modeling. In order to
inform designers on which modifications can be done, we need
to investigate how in-game metrics are related to retention.

One of the most interesting aspects of video game tracking
systems is that they allow us to get a large amount of accurate
data on player behavior. In contrast, in the field of health care,
the number of individuals is closer to hundreds than millions.
Furthermore, in longitudinal studies, the patients might be
monitored every week. In video games, we can track any
action anytime in the virtual world. This deep tracking can help
us to better understand the design’s link with player retention
but we have to adapt our model to be able to handle such a
high amount of data.

II. CONTRIBUTION AND MAIN RESULT

This paper proposes a method to extract actionable insight
from tracking data. There exists many black box models, e.g.
random forests or deep learning, that may be used to predict
player departure, but, as our goal is to give actionable insight
to designers, we are restricted to interpretable models.

First, we describe how a simple metric like playtime can be
used to identify time periods when players stop playing the
game. We also show that this simple metric can be calculated
on publicly available data, and thus can be used by anyone to
realize a benchmark and see how a given game differs from
concurrent ones. Indeed, online gaming platforms, like Steam,
are gathering data on their players, and some of these data
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can be retrieved by anyone. This means that any researcher
can nowadays analyze high level data on gamer’s playing
habits. However, this data are often limited to the time spent
by players in each game, and do not provide any insight on
the player’s detailed behavior within the game.

Then, we develop how to model the link between the
player’s behavior and the player’s departure. Thereby, we
introduce a well-known survival analysis model and show how
it can be used with constant-over-time data. Such model works
well for covariates that don’t change over time. However, using
this model on time-varying data, which is often the case in
video games, can lead to wrong conclusions.

Finally, we detail the complexity of time-varying data. We
show how information can be visualized and explain why
we need to take time-varying covariates into account. We
introduce a new algorithm that is able to both analyze a high
amount of tracked data and to take into account time-varying
covariates. We show how it can be applied to analyze Far Cry
4 weapon usage, and what kind of design recommendations
can be done.

III. RELATED WORKS

A video game is an often-complex interactive multimedia
system. As such, it can be described by many quantifiable
variables, depending on the gameplay it provides as well as, for
instance, technical aspects. Gameplay is a relationship between
the player and the game system and thus gameplay variables
may describe part of the game system, e.g. a gun’s rate of fire,
as well as the player’s behavior, e.g. the preferred weapon.
Technical variables can describe the position of a HUD’s icon
to the average amount of network lag. Many of these variables
can be modified by the development team, and are often called
game features when related to the gameplay. We will use the
more abstract term of game variables.

Game analytics is a wide area including visualization [18],
[4], clustering [2], [21] and prediction [12], [20]. In this
work we focus on ways to understand the link between game
variables and the risk that players quit the game. This topic
has already been treated by some authors.

Weber[19] used a regression model to determine which
game variable might have the most influence on player re-
tention. In this research, Weber et al. study the case of an
american football game in which the player has to perform
multiple matches. Instead of directly predicting the game
duration, the authors use the number of matches played as
a target variable. Our approach extend their work for cases
where we do not study a number of matches but a more general
duration measure, as playtime.

Harrison et al[10] used N-gram models to dynamically
attribute quests to players. They are thus able to select a
sequence of quests that players are more likely to accept
in order to increase player retention. However such models
present an exponential complexity with the number of different
actions available for the player, and might such be inapplicable
to datasets with many game variables.

The largest study on playtime distribution was done by
Bauckhage [3] on approximately 250 000 Steam players. They
concluded that playtime seems to follow a Weibull distri-
bution. However, using Ubisoft R© tracking data, we observe
that Ubisoft games seem to follow a log-Normal distribution.
This can be explained by differences in the tracking system.
Furthermore, playtime distribution of free-to-play games is
quite different from paying games due to a high proportion
of droppers (players who played only one day). Knowing
that, using a parametric regression model (based on density
distribution) could not be adapted to every games. We solve
this problem using a semi-parametric approach.

Survival analysis has already been used in video game
analysis. Chen[5] use survival analysis to quantify the effect
of network quality on player retention in Online Games. They
found that both network delay and network loss have a link
with player retention. We propose to extend such work by
including time-varying information in the model.

IV. METHOD

In this section we propose a method to analyze a video
game’s retention, starting from a general, simple approach to
a more complex modeling of the link between game variables
and player retention.

First, we propose to analyze playtime and compute a hourly
survival curve, that can both be used to get a first insight on the
game’s retention as well as to compare it to other games with
publicly available data. Then we introduce a way to quantify
the link between a given game variable and player retention,
namely the Cox model. After what we point out that a lot
of game variables change over time. This temporal evolution
has to be included in the model, otherwise it can lead to
wrong results. We propose a model that includes time-varying
covariates in Cox model and can deal with huge dataset.

A. Playtime Analysis
Playtime is one of the most important metric in video game

analysis. First, playtime allows us to know when the players
stops playing. From this, we can derive and represent metrics
like retention, quit rate and hourly survival.

1) Retention: Retention measures how many players re-
main in the game after a given time. We focus here on
playtime retention, but it can be computed using different time
measure (lifetime, played days, ...). Retention is represented
as players survival curve. Let T being the random variable
of time at which a players leaves the game, then we have :
S(t) = P(T > t)

If we want to know when we lost the most players we would
better look at quit rate.

2) Quit Rate: The hazard function, also called quit rate in
video game industry, gives us the instantaneous rate at which
players quit the game :

h(t) = lim
∆t→0

P(t ≤ T < t+ ∆t|T ≥ t)
∆t

(1)

Retention and Quit Rate only needed a playtime measure
to be computed.
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A locally high value of quit rate may indicate a problem in
your game.

3) Hourly survival: Using a one hour binning, quit rate can
be interpreted as how many players stay from one hour to the
next one. We call this hourly survival in the next section. This
metric is less accurate than quit rate and is useful when we
don’t have a very precise measure of playtime, as it is the case
in our benchmark data.

B. Benchmark

Retention metrics can be analyzed both in an absolute and
relative fashion. First, in an absolute fashion, any inflection in
the curve might reveal a design problem and be investigated.
But from a relative point of view, comparing the game’s
retention curve to other similar game curves can help to
understand where the game strengths or weaknesses are. It is
hard to tell whether a 85% first hour hourly survival is good,
but if at some point, the game is much worse than many other
similar games, then there might be a specific, hopefully fixable
issue.

However, to perform such a comparative analysis, we need
to know about many games playtime information, and many
game companies do not share this kind of information. Hope-
fully, Valve’s Steam online gaming platform provides an A.P.I
that allow developers to query part of Steam users information,
such as playtime information about the game titles owned by
a specific player. Such an API may be used to regularly gather
playtime information from a random set of players and then
compute playtime statistics, as did for instance Bauckhage et
al [3].

Moreover, this approach is used by the website SteamSpy
[9] to give an approximation of playtime distribution for every
Steam games. Thus, if we want to get high level information
about playtime for Steam games, we do not need to directly
query the Steam API but can rely on SteamSpy data instead.
Currently, SteamSpy do not provide any API but data can
easily be retrieved manually from the website.

Of course, data from SteamSpy are less accurate than
internal data from the in game’s tracking system. That is why
we prefer to perform an hourly binning and thus look at the
hourly survival curve in that case. Each value is the percentage
of players who played for at least n hours and will continue
playing for at least n+1 hours. For instance we have computed
the hourly survival curve for some of the most played games
on Steam, based on SteamSpy data (fig. 1).

These curves can be interpreted as follows : among Counter
Strike Global Offensive players who have played at least 4
hours, 98% of them have played at least 5 hours. Which means
that 2% of the players who played at least 4 hours have left
the game between 4 and 5 hours of playtime.

We can see that Dota 2 and Team Fortress 2 have around
80% of hourly survival in the first hour. That means that
around 20% of players leave the game in the first hour of
playtime. We may hypothesize that as both these games are
free to play games, much more player will test them than if
they had to pay for it. We may also speculate that these player

Fig. 1. Hourly survival of some games available on Steam using a logarithmic
scale

have more chance to stop playing the game, thus leading to a
low hourly survival during the first hours of the game.

On the contrary, Grand Theft Auto V has an exceptionally
flat hourly survival curve. The game succeeds in retaining
more than 98% of players hour by hour.

Looking at hourly survival curve and Quit rate may help
to identify temporal windows where lots of players quit the
game. In linear games it can be linked to a given game level.
However, in non-linear game such as open-world games where
the gameplay leaves much more freedom to the player, it is
often impossible to relate a temporal measure like playtime
to a spacial or a progression measure like player’s position or
player’s progression in the missions.

Playtime analysis is thus inherently limited, and while it is
a valuable first step, one will want to include other variables
in the analysis and build a more thorough model.

C. Cox Regression

There are many ways to model the effect of covariates on
a given metric. In our case we are interested in the retention,
which is a duration value. Modeling the player retention can
be done by performing a survival analysis. One of the most
used model in survival analysis is the Cox proportional hazard
[6]. It considers that every player has a given risk to quit the
game at time t. This risk depends on each player’s individual
characteristics, represented by a set of p game variables
(X1, . . . , Xp) in the model. A player characteristics can be
considered as a quantifiable variable, that can be measured
for any player, and that gives us information about a game
variable we want to study. For instance, if we want to know if
the AI is not too strong on close combat, which might be the
game variable ”AICloseCombatDamage”, we will calculate
the player characteristic ”NbDeathInCloseCombat”, counting
the number of deaths for each player while in close fight with
an AI. The βj related to ”NbDeathInCloseCombat” might then
help us tune the AI with regard to retention. We note Xi,j the
value of the covariate j for a given player i. Coefficient βj
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Fig. 2. Example of longitudinal data for one Far Cry 4 player. Blue curve
represent the number of skills unlocked by the player. Red curve is the amount
of cash own by the player. Green point indicate that player get a new weapon.

quantifies the effect of the covariate j on the hazard rate. The
risk that this player stops playing at a given time t is modeled
as

λ(t|Xi) = λ0(t) exp
( p∑
j=1

Xi,jβj
)

(2)

This model is called proportional hazard because the quit
rate function λ of each player is proportional to a baseline quit
rate function λ0(t).

Cox survival analysis will help us create a model of game
variables on player retention. However, we must take into
account the fact that while the player gender or age are
constant, many game variables that we want to study vary a lot
during the game. In a shooter game, the player does not use
the same gun during the whole game. In a Role Playing Game,
character skills change over time and the way a player uses
them vary over time. Our model needs to take into account
such time-dependent covariates.

D. Time Varying data

Covariates may change very often during a game session,
like the number of enemies the player has killed, the amount
of money he has won or spent, or his position in the world.
Each player characteristic can thus be considered be as a time
series curve (fig. 2).

A classical way to deal with time-varying data would be
to add new covariates that try to summarize them, such as
the mean(x(t)), var(x(t)) or to decompose them as basis
functions (Wavelets).

However, summarizing time-varying covariate leads to a
loss of information, and basis decomposition leads to a loss
of interpretation. Furthermore, applying a model made only
for constant data on aggregated time varying data leads to a
scaling problem. Metrics of a player who played 5 minutes
will be compared to those of a player who played 80 hours.
One can try to create a ratio by dividing game variable by
playtime, but often metric evolution over time is not linear in
time. In fact metric evolution is related to design and game
variable cannot simply be compared at different time.

To avoid all these problems we introduce a model that
deals with time varying game variables X(t). For almost the
same complexity cost we also allowed the covariates effect to
change over time β(t), meaning that the same element can
have various effect depending on time.

E. Modeling Time varying data

Extensions of Cox proportional hazard have been proposed
to deal with time-varying covariates and coefficients [14].

λ(t|Xi) = λ0(t) exp
( p∑
j=1

Xi,j(t)βj(t)
)

(3)

However current implementations of such model are based
on matrix inverse and iterative kernel smoothing that makes
the model unable to deal with huge datasets. We propose
a piece wise constant model that makes the minimization
problem separable in the number of individuals. This allow us
to use a stochastic gradient descent algorithm as Adagrad [7]
or Adadelta [22] to solve the minimization problem. Technical
part and theoretical guaranties are developed in [1]. Stochastic
gradient algorithm allows us to load only few datapoints in
main memory and thus to analyze datasets that are bigger than
RAM capacity.

Our model has been implemented in a C++ library and
interfaced with the R programming language [15] thanks to
RCpp [8], to facilitate it usage by game analysts.

As it is the case with Cox proportional hazard, coefficient
can be directly interpreted as an effect on retention. Time-
varying coefficients cannot be summarized as a table of scalar
value. Instead we need to plot the β(t) curves. A positive
value of the coefficients means that the game variable related
to this coefficient has a positive link with quit rate, meaning
that player has higher chance to quit the game in a small time
interval. Each curve can be interpreted as follows : for a given
time t, if we set all features value to a constant except the one
of interest Xj(t), a one point increase in the feature value
Xj(t) leads to multiplying the chance that players will leave
the game in a short period of time by exp(βj(t)).

V. DATASETS

As Far Cry 4 is a shooter game, weapon usage can be
considered as part of its core gameplay. Thus, we will focus
our analysis on weapon usage but the method can be used
with any covariates that may be tracked, time-varying or not.

A. Far Cry 4

Far Cry 4 is a first person shooter in which the player
explores an open world named Kyrat. The game was released
on November 18, 2014. During the game, the player discovers
new weapons. He can carry four of them and switch between
them to modify his strategy. We consider that weapon selection
is highly related to play style and can thus give a lot of
information on which part of the gameplay is experienced
by the player. A player who wants to play stealthily could
approach a camp using a long range weapon, as a sniper rifle
equipped with a silencer, then a Bow, and finally get to his
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objective using a short range silenced weapon. Another player
could choose to fly over the camp with an helicopter armed
with a one hand rocket launcher, shoot three or four rockets
over the main guarded zone before landing inside and draw his
shotgun to complete the mission, which will be a completely
different play style and thus related to different part of the
gameplay Far Cry 4 has to offer. As a result, if rocket users
have a very different retention than silencer users, then it might
give us a useful insight on which part of the gameplay the
developers should modify.

B. Metrics description

Far Cry 4 tracking system monitors the number of kills
made with the following weapons :
• Assault including AK-47, STG-90, F1, MS16, P416 and

A52
• Auto Crossbow
• Bait. Player can launch meat to bait animals who can

attack enemies. The kill is then attribute to player.
• Bow including Recurve Bow and Hunter Bow
• Grenade
• Knife thrown
• Light Machine Guns including PKM, U100, MKG,

MG42 and DshK
• Machete. Available only in Shanath Arena.
• Molotov cocktail
• Pistol including Mark IV, M-712, 1911, 6P9, A.J.M. 9,

D50 and .44 Magnum
• Rocket launcher including M79, RPG-7, GL-94, GL-A87

and LK-1018
• Shotgun including D2, M133, 1887 and SPAS-12
• Submachine Guns including A2000, MP5, A99, Slorpio,

Vector .45 ACP, BZ19
• Sniper rifle including SVD, M-700, SA-50, Z93
Others game variables related to killing are :
• Alert : The number of kills made with AI in alert

detection state.
• Animals : The number of animals killed by the player.
• Cautious : The number of kills made with AI in cautious

detection state.
• Combat : The number of kills made with AI in combat

detection state.
• Distance Kills : The number of kills made over 40 meters.
• Close Kills : The number of kills made under 40 meters.
• Headshot : The number of Headshot kills.
• Idle : The number of kills made with AI in idle (unde-

tected) state.
• Silencer : The number of kills with a silencer equipped.
• TagCamera : The number of kills with enemy previously

tagged with camera

C. Visualizing time varying information

As metrics change over time for a given player, it is not
appropriate to summarize a given covariate in terms of mean
or standard deviation. In this case it is more informative to
show how a given metric changes over time. We can represent

Fig. 3. Density of number of kill using bow over time

the time variation of a metric as a heatmap of players density
(fig.3).

As different users can have a different tracking frequency
in database, we have to be cautious. Each square of the heat
map represents the number of player having the corresponding
covariate value at the corresponding time. Thus we need to
ensure that we take into account only one observation by
player, if he is still playing at that time. By doing so, we mix
players together and thus we are losing individual time-series,
but it gives us a good way to see the main path followed by
players.

Moreover, such plots are a good way to visually detect
outliers. For instance, yellow squares at the top left of fig.3
show that some users have made hundreds of kills using a bow
in less than a hour. Those are outliers that need to be removed
before further analysis.

VI. ANALYSIS

A. Retention and Quit Rate

We see in fig. 4 that Far Cry 4 quit rate is mainly composed
of two peaks : one between 1 and 10 hours of playtime, and
one between 30 and 60 hours of playtime. The second peak
corresponds to players having completed the game. However,
game completion is a subjective notion. Different players need
different playtime to complete the game not only because
some of them reach a specific goal faster than the others
but also because players have different play styles, and thus
different goals [2]. Some players, mostly interested int the
shooting gameplay, might spend a long time to complete all
the side quests as long as they involve shooting on NPCs,
while others may be mainly motivated by the main storyline
and lose interest as soon as the main quest is complete.

The first peak between 1 and 10 hours corresponds to
players who stop the game earlier. From such a high level
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Fig. 4. Far Cry 4 retention in black and quit rate in red.

Fig. 5. Hourly survival curve of Far Cry 4 and some related games using a
linear scale.

point of view, it is very hard to know why these players quit
the game between 1 and 10 hours. But as we know that the quit
rate is quite high it might be interesting to investigate more
thoroughly in these time ranges, and realize a more detailed
survival analysis.

B. Benchmark

We realized a benchmark using SteamSpy data and com-
pared the hourly survival curves as can be seen in (fig.5)

Far Cry 4 has a better hourly survival than Far Cry 3. That’s
true in the long term as in the first hours of the game. The
biggest progress have been made in the first two hours of the
game.

Borderlands 2 has quite similar hourly survival that Far Cry
4, but more players quit the game between two and five hours.

Tom Clancy’s Rainbow Six R© : Siege is also a first person
shooter but the gameplay is more multiplayer oriented than Far
Cry series. Even though Tom Clancy’s Rainbow Six : Siege
has almost the same long term hourly survival as Far Cry 4,
we can see that Rainbow Six has a better retention in the first
two hours than Far Cry 4.

Tom Clancy’s The Division is an open world third-person
shooter video game, who also includes action-RPG elements.
It globally has a much higher retention than Far Cry 4.

We do not see any particular inflexion in Far Cry 4 curves.
All the curves globally share a similar shape, and the game
is globally among the other similar titles released by Ubisoft.
As a result, it is very hard to derive a specific design insight
from this high level point of view. In the next section, we will
thus focus on a more detailed analysis using survival analysis.

C. Time varying Cox model

We run our model on Weapon-related metrics. Estimated
coefficients are plot in fig. 6 and 7. Recall that a positive
coefficient means a positive correlation with player departure.
As we prefer to talk about variable effect on retention, we
should take the coefficient opposite value.

Three weapon usages have a highly positive link with player
retention : Machete, Rocket Launcher and Shotgun. The user
can only use the machete on the arena so this weapon usage
gives us another information about a specific aspect of the
gameplay. Playing arena mode allows the player to unlock
some exclusive weapons. Players who invest time to unlock
new weapons are likely to continue playing for a while.

Rocket and shotgun usage can be related to rough play. It
seems that it is a well appreciated play style since players
who do many kills with those weapons tend to play longer
than others. On the other hand, some weapons related to stealth
gameplay, like silencer and sniper rifle, tend to have no positive
link on player survival.

Few covariates are still significant on long term - after
20 hours of playtime - except the number of kills made by
grenade or machete. Part of this effect is due to the fact that
as playtime increases the number of remaining player in the
game decreases and hence confidence interval increases.

Auto crossbow is the only one that has a negative link with
retention. Note that it has no effect before 10 hours of playtime
because it is in average the time needed by players to unlock
the weapon. The reason of this negative link could be due to
multiple factors. It could thus interesting to perform a playtest
in order to find why players who kill lots of enemies using
auto crossbow are more likely to stop playing than others.

VII. CONCLUSION

We’ve proposed a method to analyze the influence of design
and players behavior on retention. First, we have defined
player retention and have shown how we could use it to derive
quit rate and hourly survival. Quit rate is very useful to detect
design issues that are well localized in time, as a peak in the
curve describes a sudden loss of players. Hourly survival is
more adapted to data set where playtime measures are less
accurate, as it is the case, for instance, with data extracted
from SteamSpy website. Second, we have proposed a model
based on survival analysis to evaluate the link between game
variables and player retention, that extends Cox model to deal
with time varying game variables and huge datasets.
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Fig. 6. Time varying coefficients (blue line) estimated on Far Cry 4 weapon
usage dataset. Dashed grey line represent 95 % confidence intervals. Red
dotted line at zero is the reference for null effect.

Fig. 7. Time varying coefficients (blue line) estimated on Far Cry 4 weapon
usage dataset. Dashed grey line represent 95 % confidence intervals. Red
dotted line at zero is the reference for null effect.
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Then we used the proposed method to analyze Far Cry 4.
First, we analyzed the Quit Rate curve, and found out that
there was a first quit rate peak in the early phases of the
game, between 1 and 10 hours of play, which might be worth
of a more thorough investigation from the development team.
Then,the Hourly Survival curve did not reveal any specific
issue. This curve is the most easy to compute but also the
most coarse grained metric.

We then investigated the game more thoroughly with regard
to weapon related game variables. We selected these variable
as they concern Far Cry 4 core gameplay. From these data,
we found out that many weapons had a positive link with
player retention, and only one weapon were found as having
a negative link with retention. Globally, it seems that weapons
related with stealth gameplay tend to have a less positive link
with retention.

We’ve shown that our approach works well with low level
data, like weapon usage. But to get more influent design
feedback, we need to introduce higher level metrics.

Difficulty is one of the main factor of motivation [13]. We
plan to investigate whether an objective measure of difficulty,
as the one proposed by Levieux [11], might have a strong link
with player retention.

Another research area that might be very interesting to
investigate would be to transform a survey-based theory like
Self-Determination Theory [16] into gameplay metrics. Hav-
ing metrics related to autonomy, competence and relatedness
might give interesting insight on player behaviors.
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Abstract— Behavioral profiling in digital games with per-
sistent online worlds are vital for a variety of tasks ranging
from understanding the player community to informing design
and business decisions. In this paper behavioral profiles are
developed for the online multiplayer shooter/role-playing game
Destiny, the most expensive game to be launched to date and a
unique hybrid incorporating designs from multiple traditional
genres. The profiles are based on playstyle features covering a
total of 41 features and over 4,800 randomly selected players
at the highest level in the game. Four clustering models were
applied (k-means, Gaussian mixture models, k-maxoids and
Archetype Analysis) across the two primary game modes in
Destiny: Player-versus-Player and Player-versus-Environment.
The performance of each model is described and cross-model
analysis is used to identify four to five distinct playstyles across
each method, using a variety of similarity metrics. Discussion on
which model to use in different circumstances is provided. The
profiles are translated into design language and the insights they
provide into the behavior of Destiny’s player base described.

I. INTRODUCTION

The analysis of player behavior in digital games has, with
the introduction of telemetry tracking and game analytics,
become a cornerstone of game development. Behavioral
analysis assists across all phases of a development cycle as
well as after launch, and can help with a variety of tasks from
balancing, experience evaluation, cheat detection, prediction,
monetization and debugging [7]. One of the key behavioral
analyses that has emerged in the nascent domain of game
analytics in the past five years is behavioral profiling [6],
[1].

Behavioral profiling is a technique known from a variety
of data and information science domains, including web
analytics and finance, and serves as a means for considering
users or consumers in a non-abstract and quantifiable way.
Behavioral profiling in digital games seeks to condense the
often high-dimensional, high-volume and volatile behavioral
datasets generated, notably typical for major commercial
(AAA) titles, into a subset of well-described profiles that
encapsulate player behavior and informs game developers
and researchers about how people are playing the game under
investigation. This location of patterns in the behavior of
players is a major challenge in game analytics, as well as
the construction of actionable models based on patterns.

Behavioral profiling in games has previously been per-
formed using a variety of descriptive and statistical tech-

niques, as well as machine learning, the latter with an
emphasis on unsupervised techniques due to the common
explorative goal of profiling in games [8], [2], [22].

One of the most popular approaches has been clustering
[10], [6]. Cluster models allow segments to be developed
which can describe the behavior of players according to spe-
cific behaviors and are driven by specific research questions.
For example, discovering major playstyles in a game. Clus-
ters can be translated into descriptions of the different player
segments, and the information contained within can inform
the game design and optimization [1], [11]. However, there
are a great number of cluster models available, each with
specific strength and weaknesses, and it can be challenging
to assess which algorithm to employ in a given situation.

The analysis of player behavior is important to any digital
game but is notably important in persistent online games,
as the success of these games rests on their ability to
keep a player community engaged over extended periods.
It is increasingly common for games to feature persistent
gameplay, as it enables the application of sources of revenue
not available under a retail-based model [12]. This is also
the case for Destiny, a hybrid online game that combines
elements from a number of game genres, with a primary
emphasis on online shooter-type gameplay. The game was
released in 2014 as a console-exclusive title. Players take on
the role of a guardian, a warrior who works to fend off alien
forces attacking Earth. In this paper four different cluster
models are applied to detailed behavioral telemetry from
Destiny, focusing on player performance, for the purpose of
developing behavioral profiles for the game, as well as for
evaluating the models themselves.

II. CONTRIBUTION

In this paper, behavioral profiles are presented for the
online multiplayer shooter game Destiny. The game forms
a hybrid between a shooter game and Massively Multiplayer
Online Game (MMOG), and thus presents a game format
that has not previously been explored in game analytics.
Behavioral profiles are developed based on cluster analysis
for a subset of 41 behavioral features engineered from a
dataset of over 1,400, focusing on performance and playstyle
measures but including others. Profiles are developed for
both of the two primary game modes: Player vs. Player
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(PvP) and Player vs. Environment (PvE), and include more
than 4,800 players, all randomly sampled from the pool
of players at the maximum character level. Four clustering
models are applied to the data: Archetype Analysis (AA), k-
means, k-maxoids, and Gaussian mixture models (GMM),
each resulting in prototype players or centroids that are
representative of different clusters of behavior.

The results of each model are described and compared, and
the strengths and weaknesses of each method described. This
informs future work in industry that seeks to build behavioral
profiles in games, and highlights the importance of balancing
feature selection, choice of model and the interpretability
and actionability of the resulting behavioral profiles. Feature
engineering in an ultra-high dimensionality situation like
Destiny is also discussed. Finally, the behavioral profiles de-
veloped are described in terms of design language, following
the principles of Drachen et al. [8], and their insights into
player behavior in Destiny discussed.

III. DESTINY: GAMEPLAY

Destiny is a science-fiction themed game where players
take on the role as Guardians, who defend the Earth in a
future where there is only one safe city left, and the human
race is threatened by alien powers. Players protect the city
from these alien races, and are tasked with the overall goal
of reviving a Moon-sized being called the Traveler, who
protected the human civilization but now lays dormant. To do
this the players must explore a variety of planets, complete
various missions and help eliminate the alien threat.

Destiny is a hybrid digital game that blends features from
a number of traditional game genres. Destiny is first and
foremost an online first-person shooter (FPS) game, and
the majority of the gameplay is focused on using any of
thousands of different weapons to eliminate either computer-
controlled or human opponents. Other examples of online
FPS games include Planetside 2. As an FPS, Destiny features
both single-player and multiplayer game modes, as well
as both Player-vs-Environment (PvE) and Player-vs-Player
(PvP) combat. PvE mode includes a variety of story missions,
usually given by NPCs in the game’s central quest hub
”Tower”, but also includes public events, raids and strikes,
which require three or six players respectively to collaborate
in ”fireteams” of 3. When playing in fireteams, players can
put themselves at risk and revive a teammate.

In terms of the MMOG elements, Destiny features a
persistent, shared world in which the players interact with
each other and Non-Player Characters (NPCs). The game
has its own currencies, factions players can build reputation
with, and a comprehensive item customization system, all
common features in MMOGs. The game has missions/quests,
delivered by NPCs, which covers a range of different ac-
tivities. The game also features social interaction, although
the communication options are more restrictive in Destiny
as compared to MMOGs. As a Role-Playing Game (RPG),
Destiny features character classes (Hunter, Warlock and Ti-
tan, each with three subclasses), experience points, character
development and unlocking of more powerful items and

abilities as players progress from level 1 to 40, which is
the current level cap. As a Multiplayer Online Battle Arena
(MOBA) game, Destiny features team-based combat within
arena-type environments, similar to e.g. League of Legends.

PvP play is done via the Crucible, the central hub for
this game mode. There are a variety of different specific
modes, including traditional deathmatch modes, take-and-
control modes, and more. In PvP players can earn medals,
points and in-game currency by accomplishing specific tasks
or feats of skill. For example, a ”First Blood” medal awards
extra points to the player with the initiative to get the first
kill in a match. In both PvE and PvP game modes, players
are rewarded with new weapons and items through random
drops or by completing specific tasks.

Another key aspect of Destiny in both the PvE and PvP
modes is weaponry. Destiny features hundreds of different
weapons (ranged and melee), which can fire a variety of en-
ergy types or projectiles, and be customized in innumerable
ways. Together with armor and ships, guns are perhaps the
focal point of development in the game. Weapons are divided
into over a dozen different types or classes, each specialized
for specific situations. For example, shotguns excel in close-
quarters combat, dealing large amounts of damage with little
need to precisely aim. Conversely, sniper rifles offer similar
amounts of power but are rendered near useless when the
target gets too close. Even at the optimal distance, however,
they require skilled players who can aim precisely. Between
game modes, the utility of these weapon types also varies;
shotguns are typically a one-shot kill in PvP modes, but must
be used with care in PvE modes, as enemies with large health
pools can quickly strike back with devastating close range
attacks. Players are given freedom to switch between any
combination of weapon types, allowing for adjustment to in-
game scenarios while at the same time reflecting individual
behavior and preferences.

IV. RELATED WORK

There are a number of challenges associated with be-
havioral telemetry data in digital games, notably that they
are commonly large-scale, high-dimensional and volatile [6],
[1]. This is also the case for Destiny, and is exemplified
in the current dataset which contains over 1,400 baseline
features, based on just one of a dozen JSON collections.
While only a subset of the population is used here due
to data size constraints, Destiny has dozens of millions of
active players, requiring the adoption of random selection
when defining samples. Given the constant changes in the
design of the game via new content and tweaks to the
mechanics, as well as the running turnover in the population
of the players, any profiles generated will have a limited
lifetime during which they are accurate representations of
the underlying player base. Pattern recognition under the
conditions of contemporary commercial game development
can thus be difficult, but also potentially highly rewarding
because such patterns directly inform the game development
process, can be used for Game AI related purposes, or
to personalize or adapt gameplay, assist matchmaking, and
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identify valuable players [6], [8], [15], [1], [16], [17]. Cluster
analysis [10] is one of the primary tools available for pattern
recognition and has been readily applied across disciplines,
and even in recent years adopted in game analytics for the
purpose of finding patterns in the behavior of players. As
an unsupervised method, it permits the exploration of data
and can identify groups of players with similar behaviors
or detect the features that constitute such behaviors [6], [8],
[15], [1], [16], [17].

The popularity of cluster models in explorative evaluation
of behavior is in part driven by the wide variety of mod-
els, which can be applied to reach specific outcomes, e.g.
searching for extreme or central tendencies in the data [1],
[6], [10].

The majority of previous work on behavioral profiling in
games has focused on employing specific methods, with the
only work specifically comparing multiple cluster models
being Drachen et al. [2] who applied k-means, c-means, Non-
negative Matrix Factorization (NMF), Archetype Analysis
(AA) and Principal Components Analysis (PCA) for a dataset
covering player character progression in World of Warcraft,
and noted the different output produced by these models but
did not discuss cross-model analysis. Bauckhage et al. [6]
showed examples of multiple models and advised on their
application. This paper directly extends on this previous work
by comparing four cluster models and specifically targeting
the problem of making decisions across models.

Behavioral profiling via clustering, and related methods,
has been performed using a variety of models (the following
are more or less in order of publication): The first paper to
target the profiling problem was Drachen et al. [8], who used
Self-Organizing Networks in combination with data from
1,365 players of Tomb Raider: Underworld. The authors
documented that over 95% of the players could be allocated
to one of four behavioral profiles. In a follow-up piece, by
Sifa et al. [11] who explored how player profiles varied as
a function of progress in the same game.

Shim and Srivastava [16] used segmentation and descrip-
tive methods to examine the behaviors of EverQuest II
players, focusing on behavioral profiling and efficiency in
player behaviors. Thurau and Bauckhage [18] explored the
evolution of guilds in World of Warcraft, across 18 million
characters using matrix factorization. Thawonmas and Iizuka
[17] used multidimensional scaling (CMDS) and KeyGraph
to generate visualizations of player clusters working with
the MMOG Shen Zhou Online. Drachen et al. [1] employed
Simplex Volume Maximization (SIVM) and k-means on
datasets from the MMOG Tera: Online and the team-based
shooter Battlefield 2, developing behavioral profiles for these
two games based on a range of behavioral features. Sifa et
al. [19] analyzed more than 3,000 games and over 6 million
players from the distribution platform Steam to investigate
playtime patterns, and developed clusters of games via
Weibull modeling. The work was followed up by Sifa et
al. [20] who identified 11 clusters of players based on their
relative playtime distribution across games on Steam.

Bauckhage et al. [21] adopted DEDICOM (Decomposition

into Directional Components) to cluster players of Quake:
Arena and develop waypoint graphs for behavior-based parti-
tioning. Normoyle and Jensen [22] used Bayesian Clustering
on data from the multiplayer shooter game Battlefield 3 cov-
ering over 500,000 matches. In the multiplayer esports game
DOTA 2, Drachen et al. [24] clustered players according to
spatio-temporal behavior and skill, using distance measures
and k-means. Finally, Sifa et al. [23] adopted DEDICOM to
investigate player churn behavior among multiple games.

V. DATA AND PRE-PROCESSING
For this study, two distinct sets of data from the game

Destiny were used: PvP, and PvE. The data was provided as
a large JSON object, which was parsed and converted into a
flat comma delimited file. The data is aggregated and exists
on a static level, meaning for each character there is a slice
of data only at the point in time when the data was pulled. If
the character has progressed since (e.g. changed weaponry,
made more kills, leveled up), the information is not reflected
in the data. Similarly, the characters details when they started
the game (e.g. weapon equipped in the first five minutes,
number of kills in the first five minutes, level during the first
five minutes), is also not reflected in the data.

A. PvE Dataset

• Consists of 1,217 variables detailing encounters by
27,967 player characters in the game.

• Divided into five categories:
• Basic character information containing the account ID

and character ID field, and the deleted flag, showing
whether a character has been deleted or not. The infor-
mation covers virtually any aspect of player behavior
across performance, engagement, progression, etc.

• Game Progress variables detailing how many activities
the character has participated in and completed.

• Personal bests of kills and deaths.
• Average statistics of kills and deaths.
• Total counts of kills and deaths.

B. PvP Dataset

• Consists of 211 variables detailing encounters by 16,422
characters in the game.

• Divided into five categories:
• Basic Character information containing Account ID and

Character ID, and the deleted flag, showing whether a
character has been deleted or not.

• Game Progress variables detailing how many activities
the character has participated in and completed.

• Personal bests of kills, deaths, and medals earned.
• Average statistics of kills, deaths, and medals earned.
• Total counts of various kills, deaths, and medals earned.

C. Behavioral Features and Selection

Clustering analysis relies on being able to classify players
into groups based on features. Conversely, the features used
for clustering should easily explain the groupings that are
found [8]. To this end, it is important to filter out highly spe-
cific, correlated, redundant, and dependent variables, which
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may create noise and obfuscate the end results. In order to
keep the clusters decipherable, feature selection, with an em-
phasis on finding the subset of variables that explain overall
variation in the dataset is necessary. Feature selection was
done based on classifying the available high-level variables
into three categories: performance, progress, and playstyle.
Here the focus is on developing high-level profiles and thus
the playstyle features covering Destiny’s main mechanics
were used. The initial selection process yielded 41 features
from the original over 1,400. Initially, about 90% of of the
PvE variables were removed due to redundancy. This paper
focuses on high-level behaviors, so highly specified features
are excluded, as the information is better contained and
summarized by higher level aggregate features. For example,
the original data kept track of how many times a player was
killed by a specific enemy in a particular encounter of one
mission in the game. Additionally, many attributes depended
directly on a players time spent playing the game. To mitigate
this effect, a subset of characters that had already reached
the games level cap of 40 were considered in the analysis
(4,800 players) (Fig. 1).

Fig. 1. Mean and standard deviation of the primary features in the PvP
and PvE datasets from Destiny.

An exploratory data analysis was performed on the re-
maining features, including histograms and correlation anal-
ysis. Correlation analysis revealed that many attributes ex-
hibited large correlations with play time. For example, the
raw number of recorded kills per weapon understandably
increased over time. Weapon kills were time normalized
after being converted to a proportion of total kills. Other
variables that had no associated total amount with which to
calculate a proportion were converted to a rate by dividing
by the number of seconds played. Histogram plots revealed
significant right skew in many of the attributes. To account
for this, a logarithmic transformation was applied. Some
skew still remained after applying these transformations, so
zero mean standardization was applied to ensure that all
variables were on the same scale. After correcting for the

aforementioned skewness and time dependencies, the final
selection of variables involved creating a set of attributes
designed for all of the main game mechanics in either mode.

VI. CLUSTER MODELS

Four different clustering methods were applied to the data.
Each clustering methodology had a variety of parameters to
choose from, such as number of clusters or archetypes, and
cluster shapes. To account for the inherent differences in how
the methods generate clusters, different evaluation metrics
were chosen for each method to determine the optimal
number of clusters. The optimal cluster solutions for each
method were compared using adjusted mutual information.
The four models are as follows:

A. K-means Clustering

The k-means algorithms partitions the data in k different
clusters such that all points in a given cluster are closest
to the corresponding cluster center. K-means is a common
clustering method in game analytics, for example in Drachen
et al. [1] and Drachen et al. [2]. While more computa-
tionally efficient than the algorithms mentioned below, k-
means focuses on the average behavior of players and does
not identify more extreme behavior accurately. Additionally,
resulting k-means clusters must be spherical in shape and
the algorithm is biased to equal-sized clusters. However,
the algorithm can still be used to observe and cluster the
general average behavior of players in Destiny, serving as
a baseline to support the findings of other methods, such
as Archetype Analysis, that are designed to identify more
extreme behavior. The k-means function in R was used to
cluster PvP and PvE players based on the various playstyle
metrics. In order to select the best number of clusters, a
natural grouping was assumed to be homogenous within and
heterogenous across, i.e. the solution should have a high
between-cluster variance and a low within-cluster variance.
The best solution, in terms of interpretability and using the
aforementioned metric, resulted in a four cluster solution.

B. Gaussian Mixture Models

Gaussian mixture models are conceptually related to k-
means clustering, with a few distinct differences. First and
foremost, k-means clustering assumes that each cluster is
approximately equally sized and distributed–that is, there
will be an approximately equal number of data points within
each cluster, and each cluster will appear to be a sphere
of equal proportions to the other clusters. Gaussian Mixture
Models, on the other hand, relax this constraint; the user has
control over whether to enforce equal sizes of clusters as well
as whether or not to assume a spherical shape, as opposed
to an ellipsoidal shape. When using ellipsoidal clusters, the
ellipsoids can either all be oriented in the same direction, or
always oriented along the coordinate axes; or, if necessary,
the orientation can be in any direction. This allows for more
flexible definitions of clusters. For more information on the
math behind Gaussian mixture models, see [14].
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For the purpose of this analysis, the R statistical soft-
ware package Mclust was used thanks to its flexibility and
available features [13]. Mclust was able to return the results
of all possible model shapes as well as a range from one
cluster to ten clusters. Based on the Bayesian Information
Criterion (BIC), Mclust selects the best shape and number.
The best result based on this criterion used four ellipsoidal,
equally-sized, and equally-oriented clusters for PvP, and six
ellipsoidal, equally-sized, and equally-oriented clusters for
PvE. While Gaussian mixture models have not been known
to be used in previous work in game analytics, it was
included in the analysis for its similarity to k-means, and to
provide an opportunity to examine the similarities between
two centroid-based methods.

C. Archetype Analysis

Archetypal Analysis seeks to identify points whose convex
combinations can generally represent the population of the
dataset. These archetype points are not necessarily observed,
but exist as manifestations of extreme behavioral qualities.
This means that archetypes typically exhibit more radical
values than the typical observation. Each observed data point
is then classified to its closest archetype, resulting in clusters.
Archetype Analysis [4] has previously been used for game
analytics by Sifa et al. [3]. In contrast to centroid-based
clustering algorithms such as k-means and Gaussian mixture
models, the clusters found using archetypal analysis are
identified by prototypical points. This means that the contrast
between various archetypes is magnified (more so than the
mean of these clusters), as they represent more extreme
values. Conversely, this means that the values that are less
extreme get classified to these clusters. A Scree plot using
residual sum of squares (RSS) found that the optimal data
groupings were four clusters for PvP and five for PvE.

D. K-Maxoids

Similar to archetype analysis, k-maxoids seeks to find
cluster prototypes that represent the extremes of a data set
rather than the modes. The maxoid of a set is defined as
a data point that has the largest average distance from all
other points in the same set. Bauckhage and Sifa [5] used the
method in the context of game analytics to cluster players
based on vehicle usage. Due to the extreme nature of the
maxoids, the resulting cluster prototypes are generally more
varied than those produced by centroid-seeking algorithms
such as the Gaussian mixture models and k-means. To choose
the optimal number of clusters, the average silhouette score
was computed for cluster sizes ranging from three to eight.
The four cluster and five cluster solutions were chosen as
the best for PvE and PvP, respectively.

VII. EVALUATING CLUSTER SIMILARITY

Each clustering method produced a somewhat different set
of clustering classifications, which begs the question, how
different are these clusters, and how does it affect the results?
In order to understand how similar one method was to
another, clustering results were compared using the Adjusted

Mutual Information (AMI) value [Vinh]. AMI ranges on a
[-1,1] scale, where 1 is perfectly similar, 0 is no more similar
than what would be expected in a random assignment, and -1
is perfectly dissimilar (less similar than a random clustering).
Fig. 2 shows the AMI for each method, using cluster sizes
of four, five, and six to account for different methods having
different preferred numbers of clusters. This directly extends
the comparative work of [2]

Fig. 2. Adjusted Mutual Information for Various Clustering Results. The
upper triangle (yellow) represents PvE clustering AMIs, while the lower
triangle (green) represents PvP clustering Adjusted Mutual Information
values (AMI).

The results were not as expected based on the models em-
ployed: the expectation was to see a high degree of similarity
between GMM and k-means, since the two methods share
a centroid-based approach to clustering. Furthermore it was
expected that k-maxoids and Archetype Analysis would be
similar due to their mutual reliance on extrema of the dataset.
However, from the above chart, the clusters had AMIs that
were, for the most part, only slightly above 0 (where 0
implies they were no more similar than a random assignment
of classifications). The one exception was between Archetype
Analysis and k-means, which can reach as high as 0.6 for
PvE and 0.5 for PvE, which suggests the two methods were
producing more consistent results than a random assignment
would. The lack of similarity amongst either the centroid-
based models or the extrema-based models, as well as the
moderate similarity between Archetype Analysis and k-
means, were contrary to our expectations. A comparison
using the Jaccard similarity coefficient yielded comparable
results, so only one set of values is included here.

These results suggest that, while no method is necessarily
more powerful than any other method, the expectation that
each method is interchangeable with any other method is
incorrect. As such, it is important to look beyond the quan-
titative comparisons of each clustering result, and instead
focus on the characteristics of the clusters within each result
to see which methods produce the most interpretable clusters.
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A. Comparing Models Using Cluster Interpretability

The key in any clustering exercise is that, first and fore-
most, the clusters produced must be valuable to the recipient
of the analysis. Clusters may appear in the data but if there
are no actionable insights to be gained, the knowledge of
those clusters are unhelpful. Because the clustering methods
so far have been shown to have low similarity, the expectation
was that profiling those clusters (that is, looking at the
defining characteristics of each cluster to create a more
general set of terminologies by which to consider those
clusters) would also return sets of profiles that are different
from method to method. Table 1 shows an example heatmap
used to identify clusters with Archetype Analysis.

Fig. 3. Example heatmap used to identify clusters with Archetype
Analysis. Each archetype has different prototypical values associated with
each variable, which were used to differentiate and profile the archetypes.
Red values indicate values below the mean, and blue values indicate values
above the mean for each variable (the strength of the hue helps to show
which clusters have the most extreme values for each parameter).

Each method, having produced a single best set of clusters
based on the aforementioned criteria for cluster selection,
was subjected to an exercise by which a title was assigned
to each cluster based on its profile. Tables 1,2 show two
sample results of for PvP, and tables 3,4 for PvE.

B. PvP

For the PvP dataset, the two largest clusters identified
by Archetype Analysis, using a four-clusters solution as
shown in Table 1, are groups that are characterized by
their use of specialized weapons: Aggressive Close Range
players make effective use of Shotguns and complement their
favorite weapon with melee blows in order to dismantle PvP
opponents. The second largest group, Marksmen, make use of
sniper rifles to take out opponents at a long range and make
smart use of hand cannons to take out enemies that are at
a close to medium range. Objective Killers are players that
play a majority of Control games where the match consists of
holding various bases, defending them and attacking enemy-
controlled bases. Finally, Casual PvPers are individuals that
play a higher proportion of PvE that are not focused on
using any specific weapon type. Because these archetypes

are defined using the extreme values in the dataset, the
differences between cluster values tend to be more dramatic.
These more pronounced differences lead to clusters that are
more distinguishable from one another.

TABLE I
PVP PROFILES FOR ARCHETYPE ANALYSIS. %P = % OF PLAYERS

Title %P Characteristics
Objective Killers 20.1 Highest scores for proportion of-

fensive & defensive kills
Casual PvPer 15.9 Does not appear to play PvP much
Aggressive Close
Range

35.1 Lowest average kill distance, high-
est melee and Shotgun kills

Marksmen 28.9 Highest average kill distance, high-
est Hand Cannon and Sniper usage;
plays PvP the most

Table 2 shows the clusters identified by Gaussian mix-
ture models, using a 4 cluster solution. However, only the
long-range hardcore PvP cluster can be readily interpreted.
The short-range kill distance with long-range weapons used
cluster is counter-intuitive. There does not not seem to be a
logical explanation for why 14.2% of players prefer weapons
intended for medium-long range to kill opponents at short
range, but it may be an effect of less experienced players
not yet proficient with weapon switching, possibly being
recent lvl 40 characters. The two last clusters include almost
70% of all players included in the clustering analysis and
represent what would be a balanced playstyle. Gaussian
mixture models do not perform well here because the method
identifies and groups players based on the average behavior
of all individuals, a pitfall shared by k-means. The cluster
results exist closer to each other at the center of the data,
leading to prototypes with less pronounced differences.

TABLE II
PVP PROFILES FOR GAUSSIAN MIXTURE MODELS. %P = % OF PLAYERS

Title %P Characteristics
Short-range with
long-range mix

14.2 Lowest average kill distance, but
with lower than average use of all
typically short-range weapons, and
higher than average use of scout
rifle (the second-longest range
weapon)

Long-range hard-
core PvP

16.1 Higher than average fusion rifle
usage but otherwise unremarkable;
slightly more PvP play than aver-
age

Balanced I 37.4 Slightly stronger focus on PvP,
with a preference for long-range
weapons but also shotguns

Balanced II 28.9 Lower than average sidearm and
sword usage, with slightly low PvP
playtime, but otherwise unremark-
able

C. PvE

Clusters found by Archetypal Analysis in Table 3 were
roughly equal in size and were the most readily interpretable
in terms of in-game behavior. The archetypes are: High
DPS, Guerilla Warriors, Close Combatants, Sitting Duck
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Snipers and Mobile Marksmen. These groupings are pri-
marily defined by damage output, distance from enemies
and weaponry used. The largest cluster of players focused
on using weapons with a high damage per second (DPS)
output, and are named High DPS. Solely distance-based
metrics defined the Close Combatants, who focus on a variety
of close combat weaponry and have the shortest average
kill distance. Solely variety of weaponry metrics defined
the Guerilla Warriors, who are a family of players who
are highly adaptable to changing situations, and have the
highest variety of weaponry used. A combination of distance-
based metrics and variety of weaponry metrics established
the Sitting Duck Snipers and Mobile Marksmen. Sitting Duck
Snipers are a group who prefer to shoot from a single
location, utilizing snipers at first and switching weaponry
as enemies come closer. In contrast, Mobile Marksmen are
players who prefer to stick to a single weapon and move
themselves as enemies get closer.

TABLE III
PVE PROFILES FOR ARCHETYPE ANALYSIS. %P = % OF PLAYERS

Title %P Characteristics
High DPS 23.5 Players who appear to focus on

high DPS moves (such as specials)
Guerilla Warriors 16.7 Players who often switch weaponry

to fit the occasion; highly adapt-
able, and play a lot of PvP

Sitting Duck
Snipers

18.8 Players who are more prone to
shoot from a single location and
switch weaponry as the enemy
closes in

Mobile
Marksmen

18.1 Players who stick to using a
weapon of choice (Pulse Rifles)
and move around to maintain dis-
tance when fighting enemies

TABLE IV
PVE PROFILES FOR GAUSSIAN MIXTURE MODELS. %P = % OF PLAYERS

Title %P Characteristics
Pulse Rifle &
Sword Reliant

5.5 High usage in pulse rifles and
swords, but no other stand-out
qualities

Auto Rifle Re-
liant

29.4 High usage of auto rifles, low scout
rifles, but no other stand-out quali-
ties

Mobile
Marksmen

28.1 Highest average kill distance; high
usage of scout rifle

High Variety 7.7 Lowest reliance on any single
weapon type

Sitting Duck
Snipers

21.2 High sniper but mid-range average
kill distance suggest a player un-
willing to adapt to surroundings

Close
Combatants

8.2 Shortest kill distance and reliance
on short-range weapons and melee

Table 4 shows prototypes derived via Gaussian mixture
models. In this case, the commonalities are the Mobile
Marksmen, Sitting Duck Snipers, and Close Combatants,
though the proportions of each differ significantly. The
combination of features defining the behavioral profiles here
titled Pulse Rifle & Sword Reliant, Auto Rifle Reliant and

High Variety proved difficult to interpret in the context of the
mechanics in Destiny. What the former three clusters have in
common is that they all are defined by a set of weapons that
seem to be consistent with the average kill distance, which
creates an easily interpreted cluster. On the other hand, the
other three clusters share the characteristic of being defined
by only one or two weapons with nothing else that stands
out in great detail.

VIII. RESULTS AND DISCUSSION

Destiny provides a number of challenges to the task of de-
veloping behavioral profiles, including the sheer variety and
volume of this player telemetry data which complicates the
feature selection process. To align with the goal of creating
high level behavioral clusters, overly specific features can be
systematically excluded. A second level of filtering requires
knowledge of Destiny’s mechanics, and targets features that
cover primary gameplay. Lastly, care must be taken to isolate
game modes with different gameplay, e.g. PvP and PvE.

The primary differentiators of character behavior fall
into three dimensions: a) the usage frequency for different
weapons, b) the average kill distance, and c) the time spent
playing either PvP or PvE. The first of these typically
align with each other; players getting more frequent kills
with typically longer range weapons tend to have larger
average kill distances. Given that Destiny’s main gameplay
revolves round the collection and upgrading of weapons,
the importance of kill frequency by weapon type is un-
derstandable, as players may latch onto certain weapon
archetypes early in the game and develop a signature loadout.
Some clusters, however, display a variety of weapon usage,
suggesting that a portion of the playerbase is willing to adapt
to various situations in different game modes by changing
their weaponry. The game type dimension groups the cluster
results into either PvP focused or PvE focused, with few
players spending equal time in both. Within each game
mode, other features serve as proxy measures for activity
preferences. For example, offensive and defensive kills are
exclusive to the control gametype, in which teams guard
territory to earn points, so clusters with large values for these
features may correspond to players that prefer objective-
based gameplay. Players tend to focus on either only a few, or
a variety of weapon types. Regardless of game mode, clusters
of players emerge that prefer either extreme close range or
long range playstyles. Long range players use scout and pulse
rifles for primaries, and sniper rifles for secondaries. Short
range players specialize in melee attacks and point-blank
shotgun blasts. Players that vary their weapon choice also
tend to include melee attacks, and special abilities such as
grenades and super abilities. Player preference for PvE or
PvP varies between two extremes, and within each game
mode preferences for specific activities are revealed through
average playtime and types of kills.

In addition to the three main dimensions described above,
the results also demonstrate variability in features that are
either more subtle or secondary to Destiny’s main gameplay
goals of collecting items and defeating enemies. E.g. the
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ratio of player resurrections performed to received was
significantly above average for some clusters. In these cases,
the values for the remaining features did not seem to follow
any identifiable pattern. This could mean that some players
are inherently more attuned to supportive roles, regardless of
their preferences for certain weapon types. Another feature
- the average time remaining in a PvP activity when a
player quits - allows for inferences to be made about more
nuanced player behavior. Some clusters show high values
for this feature, suggesting that some players may be more
likely to leave early if a match is not going their way.
From the matrix and clusters we can conclude that each
method gives varying results. If one specifically knows what
kind of behavior needs to be analyzed, it is crucial that
the appropriate method is used during the exercise, e.g.
k-means for more general behavior or archetype analysis
for more extreme behavior. Otherwise, it is important for a
clustering project to include a variety of methods in order to
evaluate a range of behaviors/scenarios, encompassing both
general/typical- and more extremal behavior.

The developers of Destiny have designed an apparently
well-balanced game when it comes to performance; a digital
experience where players with different preferences can
adopt diverging strategies in order to hit the level-cap and
to continue the experience beyond that point. The aforemen-
tioned balance is indicated in the cluster analysis results, with
varying styles colliding at the top-levels of the game. For
developers, an analysis with similar results would serve as
an evaluation of the design intent in delivering an experience
that can be played in a variety of ways. The results indicate
that there is no best method to examine how players form
clusters, but that the choice should be determined by the
goal of analysis and include multiple models. In essence,
different clustering models are more or less suited for specific
circumstances or for providing specific views on the data.
The choice of clustering algorithm is important [6].

IX. CONCLUSION AND FUTURE WORK

In this paper behavioral profiles were developed for Des-
tiny across four cluster models. The results highlight patterns
in the behavior of players in the game across PvP and
PvE modes, with a focus on performance and playstyle
measures. The challenges of operating with high-dimensional
behavioral data and comparing results across cluster models
has been described and discussed. Future work aims at
building on the profiling results towards the creation of an
item recommendation system for Destiny. The first step in
this process will be extending across the character level
range, and generate performance/playstyle clusters as a func-
tion of progression, adopting a more dynamic performance
view. Secondly, the equipment held by each player can be
incorporated into the analysis, providing insights into what
weapon choices are preferred by the most skilled players
for each playstyle at all levels of in-game progression.
With this information, a recommender system for suggesting
items to players can be developed. Additional work will
also focus on methods such as agglomerative and divisive

hierarchical clustering. While the methods used in this paper
were selected to cover centroid and extrema-based models
that have previously been used in games, there are myriad
other methods worth comparing in similar fashion.
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Abstract—Procedural generation is important to modern game
development as both an artistic implement and an engineering
tool. However, developing procedural generators and understand-
ing how they work are both difficult tasks, and even more so for
novice developers. In this paper we describe Danesh, a tool to
help in analysing, changing and exploring procedural content
generators. In particular, we describe several features in Danesh
which help a user optimise their procedural generator towards a
certain kind of output by automatically changing parameters and
evaluating the effect it has on the generator. We compare different
approaches to these tasks and describe our future intentions for
Danesh’s automated features.

I. INTRODUCTION

Procedural content generation is an important part of mod-
ern game development and a well-known concept among
gamers and critics [1], useful both as a tool for solving
problems [2] and a paintbrush for expressing ideas [3], and
often employed as both at once [4]. The ability to generate
game content automatically opens up the potential for new
kinds of game to be made possible [5], as well as easing the
development of games by allowing abundance, serendipity and
surprise to be added to a game in very simple ways [6].

In our experience, developing procedural generators is hard.
Unlike many other common concepts in game development
like physics engines [7] or particle systems [8], most modern
tools for making games do not come with built-in support for
content generation. Where they do offer such support, it is
usually in the form of fixed-purpose generators of (usually
decorative visual) content, such as Unity’s tree generator
[9]. In addition to this, a user wishing to learn more about
procedural generation is mostly limited to tutorials about
generating highly specific content through one method (such
as Unity’s cave generator tutorial [10]), which usually focus
on the process of implementation rather than understanding
and customising a generator after the fact. As an example, the
tutorial in [11] ends by telling the reader: ‘the final step is
down to you: you must iterate over what you learned to create
more procedurally generated content for endless replayability’.

Understanding procedural generators can also be difficult.
Unlike traditional content creation, the user cannot see the
entirety of what they are creating all at once. Instead, they
typically view an example output from the generator (perhaps
multiple examples in quick succession) to assess the approxi-
mate type of output the generator might produce. In a survey

we conducted of 53 game developers, 85% of them stated that
their primary method of testing a generator involved changing
parameter values and repeatedly viewing the output. There are
many problems with such an approach: it doesn’t capture the
variance or distribution of the output; it can’t detect outliers or
anomalous results; it is extremely hard to do when parameters
have nonlinear relationships with the output or interact with
other parameters; and it doesn’t provide feedback to the user
as to whether their goal is even achievable.

In order to help new practitioners learn about procedural
content generation as a skill and an artform, we need to build
tools that focus on domain-independent analytical techniques,
that provide as much help and feedback as possible in the
process of learning what a generator does and understanding
how to change it. There is also a need for such tools among
experts too – better development tools could streamline the
process of working with procedural generators and help make
them more accessible to artists and designers [12]. This would
make their use in modern game development easier, but also
promote experimentation among expert communities [13].

In this paper we describe Danesh, an open-source tool
for helping designers and developers of all experience lev-
els explore, explain and experiment with procedural content
generators. We focus here on describing our techniques for
automatically optimising and analysing the generators, in-
cluding identifying useful parameters for the generator to
tweak and automatically configuring the generator towards
producing a certain kind of output. In addition to being
useful for both novice PCG developers and experts, we hope
that by developing Danesh as an open-source tool we can
promote crossover between procedural generation researchers,
and provide an open platform for implementing analytical
ideas about generative software.

The remainder of the paper is organised as follows: in
section II we discuss existing work at the intersection of
procedural generation and design tools; in section III we
introduce Danesh and describe some of its features, including
a suite of analysis tools; in section IV we describe the ways
in which Danesh can automate some of its processes, and
describe experimentation done to assess the best techniques; in
section V we discuss the strengths and limitations of Danesh
in its current form, and describe our intentions for future work
on the system; finally, in section VI we summarise the paper’s
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results.

II. BACKGROUND

In [14] Smith and Whitehead describe Tanagra, a tool for
generating levels for platforming games using a rhythm-based
system for labelling and slotting content together. In this
paper they introduce the notion of expressive range, a way
of evaluating a generator based on the qualities of its output.
Hundreds of pieces of content from the generator are produced
and then evaluated according to two metrics (in the paper
these are the linearity of a level and leniency of its difficulty
structure). The values are then plotted on a histogram, with
bright colours or larger points indicating that more pieces of
content fall in a particular area. This provides a neat visual
summary of the current state of the generator, as the user can
see information such as the spread of the generator’s output
(whether the cluster of points is large or small); the correlation
between axis metrics (whether the points appear to correlate
along a particular line); the quantity and nature of outlying
points; and areas of the metric space which the generator does
not currently cover. We have implemented expressive range in
Danesh and this enables the user to generate histograms based
on those described in [14].

Besides Tanagra, other attempts have been made to produce
tools for generating content, typically tailored to one specific
kind of game content such as maps or levels. Ropossum
[15] uses a physics simulation to verify levels for the game
Cut The Rope, and can either generate levels from scratch
or co-create with a human user who has produced a partial
level design. The Sentient Sketchbook [16] is a slightly more
general tool aimed at developing maps – users can sketch
a map at a low resolution and then upscale the map to a
more detailed version automatically using the tool. Danesh
is related to this work primarily because all of these tools
are concerned with generative software – however, Danesh
is a general analytical and developmental layer intended to
be plugged into an existing generator, whereas the systems
mentioned above are all generators themselves, trying to help
a user solve a particular type of content generation problem.

In [17] the authors describe a procedural procedural level
generator generator. This represents another attempt at higher-
level descriptions of generators, by describing the properties of
a system which then goes on to generate procedural generators.
The work describes the notion of ‘inner’ and ‘outer’ gen-
erators, where the inner generation process is parameterised
by the outer level, which the user interacts with. Similar to
the tools we have mentioned, this is a bespoke tool aimed at
a particular game domain, although the techniques are quite
broadly applicable. One of the most interesting features of this
work is how playful and divergent the system is – interacting
with the generator generator is an enjoyable experience, and
can produce unusual and unexpected results.

In [18] the authors present procedural generation from the
perspective of those who use it, and highlight the different
metaphors practitioners use when discussing it. One of the
motivations for the work is to explore the possibility of a

‘shared language’ with which to talk about procedural content
generation across different communities and areas of expertise.
The four metaphors proposed are Tool (something which
acts as an extension of its user to achieve a goal); Material
(something that can be shaped or manipulated into a particular
form); Designer (something that solves a design problem
independently or collaboratively); and Expert (something that
holds specific knowledge about a domain and can interpret
data based on this knowledge).

The work presented in [18] not only reinforces how widely-
used procedural generation is, by people of diverse back-
grounds and experience, but also how important it is to provide
different ways of engaging with this technology, and to assist
people in getting the most out of these ideas by providing
different ways to think about and explore them. We believe
the work on Danesh outlined in this paper continues some of
these ideas by trying to provide new tools to help people better
understand procedural generation.

III. THE DANESH TOOL

Danesh is a Unity plugin designed to help developers to
analyse and improve generative software. It is being developed
with the intention of making it as general as possible – it
is currently not designed to evaluate a particular kind of
content generator, and instead relies on modular subsystems to
evaluate and visualise generated content while being agnostic
to what exactly is being generated. This does not mean that
Danesh is able to work with any kind of generator – there are
limitations to the current version of the software, which we
discuss later. However, it can handle a wide range of generator
types and provides a suite of useful tools for analysing and
improving them, which we briefly describe in this section.

Danesh is an open-source C# project and can be downloaded
from GitHub1. We are writing tutorials for new features of
the tool as they are developed – these, as well as further
information about Danesh, can be found on the tool’s website2.

A. The Cellular Automata Cave Generator

Throughout the remainder of this paper we will be using
a cave generator based on cellular automata [20] whenever
an example generator is needed for explaining a feature of
Danesh. The implementation of the generator is based on [19].
The generator produces two-dimensional grids of solid and
empty tiles which describe a top-down view of a cave-like
structure. The implementation of the generator in Danesh has
four parameters: the initial chance a tile will be randomly
assigned as solid when the algorithm begins; the number of
iterations the algorithm is run for; and two numbers that define
the conditions for a tile changing from solid to empty, or empty
to solid (called the birth and death limits).

Danesh uses what we call metric functions to measure
features of a generator’s output. These metric functions must
be provided by the user before starting to use the tool. They
are written as methods which take a piece of generated content

1http://github.com/gamesbyangelina/danesh
2http://www.danesh.procjam.com
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Fig. 1: A screenshot of Danesh working with a generator.

and return a number in the interval [0, 1]. We have written five
metrics for the example cave generator:

• Connectedness: Measures the largest contiguous area of
empty tiles, returns its area as a proportion of all empty
tiles in the cave. (i.e. If the cave is one single contiguous
area, returns 1.0).

• Density: Calculates the proportion of solid tiles.
• Openness: Calculates how many empty tiles are not

adjacent to any solid tiles, as a proportion of all empty
tiles.

• Jaggedness: Calculates how many empty tiles are
‘jagged’ (a tile is jagged if it is adjacent to two solid tiles
on opposite sides), as a proportion of all empty tiles.

• Wall Distribution: Calculates how many empty tiles are
adjacent to one or more solid tiles, as a proportion of all
tiles in the cave.

The following sections will explain the use of these metrics
and parameters in Danesh.

B. Loading, Viewing, Changing

Before loading in a generator, the user tags sections of
their code with custom C# Attributes that mark out methods
used for generating content and for visualising that content.
Danesh can currently visualise content either as text, or as a
2D image. The user is relied upon to write the visualisation
function for their content, although we provide a small suite
of utility methods to help them do this easily. In order to
load a generator, three things must be tagged with attributes:
a Generator method which Danesh can call to generate a
new piece of content, a Visualiser method which Danesh
can call to display a piece of generated content on-screen, and
any fields of the generator that the user wishes to change using
Danesh’s interface. When tagging a field, the user must also
provide a simplified name to display in the tool, and minimum
and maximum values for the field (where applicable).

Figure 1 shows a screenshot of the main interface after
loading a generator. The display is split into three columns. In
the central column is a piece of content that has been generated
by Danesh and displayed using the visualiser. In the right-hand
column is a series of sliders, each one referring to a field in the

generator that was tagged by the user. The slider is limited by
the minimum and maximum values set by the user. Changing
the slider values directly adjusts the underlying generator, and
the user can then click a button to generate and display a new
piece of content using the changed parameters.

C. Expressive Range Analysis

In the bottom-right corner of the interface in Figure 1 is a
group of controls for the expressive range analysis functions
of Danesh. Expressive range analysis (ERA) is a method of
analysing a procedural generator according to the qualities of
its output rather than those of its parameters. Suppose we have
a generator with a set of fields and a zero-argument generation
method GenerateContent. Additionally, suppose we have
two metric functions Metric1 and Metric2 which take an
output from the generation method and return a number in the
interval [0, 1]. To produce an expressive range histogram, we
repeatedly sample from the generator and calculate both metric
values for each sampled output. We record each result by
multipling it by 100, flooring the result, and using the resulting
integer to index a 100-element array, incrementing the indexed
value. For example, if Metric1 returns a value 0.87995,
we calculate b(0.87995 ∗ 100)c, which gives us 87, and then
increment the value in the 87th element of the Metric1 array.

To produce the visual ERA output we plot the data on
a histogram with the two axes referring to Metric1 and
Metric2. If there are no samples at a particular co-ordinate,
no colour is plotted. The higher the number of samples
recorded at a point, the more intense the colour is plotted.
This representation is derived from Smith and Whitehead’s
original expressive range histograms in [14]. Figure 2a shows
an expressive range analysis of the cellular automata generator,
as seen in Figure 1. The x-axis records Openness – the
proportion of tiles in a level which have no solid tiles adjacent
to them – while the y-axis records Density – the proportion
of tiles in a level which are solid (regardless of what they
are adjacent to). From the ERA in Figure 2a, we can see that
the generator produces levels which contain about 50% solid
tiles, and of the open tiles, just over 50% are not touching
solid tiles. This might mean that the space in the dungeon
is more open rooms than narrow corridors. The user can get
more information about a data point in the ERA by hovering
their mouse over it to view an example piece of content.

An ERA provides a visualisation of a single generator con-
figuration, because it samples the generator with a set of fixed
input parameters. This is useful when considering a particular
configuration in detail, however it is not especially useful
when the user wants to consider what might be possible with
other configurations of the system. To this end, Danesh also
provides a randomised expressive range analysis, or RERA. A
RERA is performed very similarly to a standard ERA, except
that each time Danesh samples the generator, the parameters
are randomised within the minimum and maximum values set
when the generator was loaded. The resulting histogram shows
a broader picture of the generator’s potential generative space.
Figure 2b shows a randomised expressive range analysis of the
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(a)

(b)

(c)

Fig. 2: Top: An example of an expressive range histogram.
Middle: An example of a random ER histogram. Bottom: The
ERA from 2a overlaid in red on the RERA from 2b. We have
circled the area for readers of a B&W version of the paper.

same procedural generator which produced the ERA in Figure
2a. Here we can see a much wider set of potential outputs from
the generator, as well as seeing which areas are more dense
with content than others – or even which parts of the metric
space the generator does not appear to cover at all.

Figure 2c shows the standard ERA overlaid in red on
top of the RERA. From this image, we can see the current
configuration of the generator in the wider context of its
potential. We can see, for example, that we can increase the
openness or the density of the generated content, but not both
(the top-right of the RERA is completely dark, indicating no
generated content appeared in this area). This could be because
the parameter intervals are not wide enough to explore. It
could also be because there is some kind of conflict between
the metric features (which is the case here – we cannot have
extremely dense levels which also have a lot of open space,
so it makes sense that we can’t maximise both metrics).
Most importantly, however, it might mean that the generative
algorithm itself needs revising, because its structure means that
content of this type cannot be generated currently.

RERAs provide the user with information about the po-
tential of the wider space their generator exists within, while
ERAs confirm the current state of the generator. Using the two
in tandem, the user can make adjustments to their generator
and then verify the effect of the changes by performing regular
ERAs and examining the changes made. This is an improve-
ment on simply generating and examining single examples,
because the increased density of data contained in an ERA
or RERA allows the user to understand the shape of the
generative space better. They can also hover over the histogram
to view points of interest such as outliers, or more dense/sparse
areas, to better inform their decision-making.

For example, Figure 3 shows a RERA with two different
ERAs superimposed for the purposes of illustration. In this
histogram, the y-axis shows Wall Distribution – a similar
concept to Openness, which we described earlier and showed
in Figure 2a – and the x-axis shows Density. The first ERA,
circled at top of the histogram, shows that the generator was
producing content with a high Wall Distribution score. The
user has tried to reduce this, and the second ERA (circled
in the lower part of the histogram) shows they have been
successful in doing so. We can also infer other small changes
from the shape of the second ERA – the spread of the
generator’s output has increased slightly, and the average
density has been slightly reduced. The user may wish to make
further changes if this is not exactly what they wanted.

IV. AUTOMATING GENERATOR OPTIMISATION

So far we have described the basic investigative and analyt-
ical techniques of Danesh. These provide data and feedback to
the user, but are primarily user-led and only enable people to
perform adjustments and exploration of the generator. The user
is able to tag parameters to identify areas for investigation,
adjust those parameters manually in the tool, and then run
ERA and RERA analyses to explore the space. This process
of iteratively changing parameter configurations and running

2016 IEEE Conference on Computational Intelligence and Games (CIG’16) 273



Fig. 3: An RERA with two ERAs superimposed (circled for
B&W readers). The two ERAs show the state before and after
adjusting the generator to reduce the y-axis metric score.

ERA analyses is time-consuming, however, and there may
be hidden non-linear relationships between parameters or
between parameters and metrics that make it hard to predict
the impact of small adjustments on the output of the generator.

In this section, we describe features implemented in Danesh
to automate parts of this process, and report on some analyses
of the approaches we undertook. In the future we intend to
provide automation support for other tasks the user may wish
to undertake with the tool – we discuss these in Future Work.

A. Automatic Parameter Identification

Recall that in order to add a generator parameter to Danesh’s
interface the user must add C# Attribute tags to their code
to label each parameter individually. Adding parameters in-
discriminately is not a good idea, since it clutters up the
user interface and makes automation tasks more difficult. It
can also confuse novice users who might need help focusing
on parameters that have meaningful impact on the generator.
Thus, deciding which parameters to add and which to leave
out is a difficult decision to make. There are also many
reasons why a user might mistakenly decide not to add a
parameter to Danesh – perhaps they forgot the parameter
was there, underestimated how useful it might be, or simply
don’t want the burden of deciding which parameters to add.
It would be helpful for the user if Danesh were able to
intervene and automatically add useful generator parameters.
To facilitate this, we have implemented a feature into Danesh
which searches for fields in the generator code, tests their
feasibility for influencing the generator, and then prompts the
user to add them with upper and lower bounds and a name.
The process by which a particular field is tested for feasibility
is as follows.

First, before testing any fields, Danesh collects an average
metric sample by generating several pieces of content (cur-

rently we use a sample size of 20) with the generator as-is
and then computing the average metric score and standard
deviation for each metric across all the generated content.
We then use a metaprogramming technique called reflection
to examine the generator’s class and extract a list of fields
declared in it. For each of these fields (we currently only use
numerical values and booleans) we set the field’s value to a
series of test values, generate another sample of 20 pieces of
content, compute the average metric score for this new sample
and compare it to the baseline metric average. If any of the
test values for the field produce an average metric score more
than one standard deviation away from the original generator
average, we consider the field to have had an effect on the
generator and add it as a potential parameter.

The testing values we use for the field are pre-set values
chosen via earlier experimentation to cover common parameter
ranges. For boolean values, we simply test both values and see
if there is a difference. For numerical values we test the follow-
ing values: {−1, 0, 1,−100, 100, MAX VALUE, MIN VALUE}. If
the numerical type is a floating-point value we also test
{−0.5, 0.5}. We currently do not test string fields or other
types, this is planned for future work.

Once this process is complete, Danesh presents the user
with a list of potential parameters to add, along with three
input fields to set a name for the field, a minimum value, and
a maximum value (the same information given when a user
manually tags a field using an attribute in their code). The
user can then either confirm the addition of the parameter to
Danesh, or delete the suggestion.

As an example, when running this procedure on our example
cave generator it suggests both the width and height of the cave
as parameters to the system, as well as a boolean value which
sets whether the edge of the map is considered solid or empty
(for the purposes of calculating tile births/deaths). The width
and height parameters are useful for scaling the system, while
the boolean field has a large impact on the expressiveness
of the system - setting the edges of the map to be treated
as empty changes the generated caves greatly, making them
much sparser and fragmented.

B. Parameter Configuration Search

One of the tasks Danesh was designed to facilitate is the
act of changing a generator’s parameters to achieve a different
kind of output (in terms of the type of content being produced,
how variable the content is, how likely outliers are to occur,
what properties hold of the content, etc.). As we mentioned
in the introduction, a small survey we conducted of 53 game
developers indicated that 85% of them typically achieve this
by adjusting parameters and then viewing individual output
examples to assess whether the change was good or bad.
We have already described in the previous section analytical
tools in Danesh such as metric functions and expressive range
analysis to help the user achieve some of these outcomes
without the need for laborious output examination.

Danesh can also automate this process of parameter search
entirely, allowing the user to simply specify a target outcome
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in terms of desired metric scores and then let Danesh search
the parameter space to find a parameterisation of the generator
whose average metric score is as close to the user target
as possible. To set up an automatic parameter search, the
user must provide some information: first, they select which
parameters they wish Danesh to search over. Fewer parameters
results in a more efficient search, but more parameters covers
a wider space of possibilities, so the user must decide how
broad they want the search to be. Then, the user selects which
metrics they wish to target for the search, and what values
they wish the average generator output to be.

We implemented three algorithms for searching for pa-
rameterisations, in order to test different approaches: random
search (as a baseline), hill climbing, and evolutionary search.
There are conflicting goals here when considering the best
algorithm for parameter search. A high-quality solution is
desirable, since we want to get a result as close to the user’s
specified goals as possible. However, the time taken is also
an important consideration – Danesh is designed to be an
interactive application, so long periods of time searching for
a solution is not desirable. In this section we describe the
algorithms and some experiments performed to assess the
relative performance of each one.

All of the algorithms use the same definition of fitness
to assess the quality of a particular parameter configuration,
which we define as follows. Given a set of n metric functions
f1 . . . fn ∈ F , a target value ti for each metric function
fi ∈ F , and a set of p generated content samples c1 . . . cp ∈ C,
we define the fitness of a parameter configuration as follows:

mi =

∑
cj∈C

fi(cj)

|C|
δi = |mi − ti|

Where mi denotes the mean value for metric function fi on
the set of generated content C, and δi denotes the difference
between the user’s target value ti for the metric and the
observed mean value mi. The score Φ is then expressed as
an average of these differences:

Φ =

n∑
i=1

δi

|F |
Randomised search randomly generates parameter values

for the selected parameters, using the minimum and maximum
values set by the user as limits. It then evaluates them by
sampling from the generator and recording the average metric
value for each metric. The random search terminates after a
set number of iterations, at which point the best parameter set
seen is returned. It can also terminate after a set amount of
time has elapsed. The number of samples per iteration and
the number of iterations are parameters to the system – in the
experiments here we test 15 samples over 100 iterations.

Hill climbing randomly generates an initial set of parameter
values, and then iteratively changes one of the parameters by
a small fixed interval, ensuring that each time it picks the
interval change that results in the biggest increase in fitness. If

it cannot increase its metric score any further, it has reached
a local maxima. It records this maxima if it is higher than
any it has found so far, and then randomly restarts. The hill
climber terminates after a set number of iterations, or after a
set amount of time has elapsed. As with randomised search,
the number of samples per test and the number of iterations
can be set as parameters to the system. In the experiments
outlined here we use 15 samples per test, over 100 iterations.

Evolutionary search generates a population of random sets
of parameter values and then performs an evolutionary search,
crossing over parameter sets using one-point crossover on the
parameter array and mutating a parameter value with a 5%
probability. It terminates after a fixed number of generations
have been completed, but can also terminate at the end of a
generation cycle after a time limit expires. We use a population
of size 15 evolved for 15 generations for these experiments.

1) Experimentation: We set up three auto-tuning scenarios
of varying difficulty to test the algorithms, based on the
example cave generator:

• P1: 2 target parameters, 2 target metrics.
• P2: 2 target parameters, 3 target metrics.
• P3: 4 target parameters, 4 target metrics.
Because responsiveness is important to the design of the

Danesh tool, in our first experiment we were interested in the
performance of each technique in a time-limited scenario. We
ran each algorithm on each problem five times, and on each
run we recorded the best fitness available at 2.5 seconds, 5
seconds, 10 seconds and 20 seconds. These were considered
hard limits on time, so if the algorithm was computing an
iteration at a time limit, we recorded the best fitness reported
so far. Figure 4 details the results for each algorithm and
problem case combination.

There are a few points worth making about the data avail-
able. First is that, in general, there is not a huge disparity
between the three algorithms at the 20s mark. However, we
can see that in many of the cases the hill climbing and
evolutionary search algorithms perform badly at shorter timing
marks – on P2 and P3, the evolutionary algorithm fails to
complete processing a generation before the 2.5s mark. As
these two algorithms progress, they improve in larger amounts.
We believe that the primary reason for this disparity is the
number of samplings and evaluations required to iterate the
algorithm. Random search repeatedly chooses and evaluates
new parameter configurations - meaning it can try several con-
figurations across a wide search range in a few seconds. The
evolutionary approach evaluates fifteen different configurations
in each generation, however, and the number of evaluations the
hill climber makes scales with the number of parameters (since
it checks incremental changes to each parameter individually).
This means that initial progress is slow, but rapid improvement
is made once the algorithms progress.

To highlight this, we ran a second experiment which focused
on minimum fitness. Instead of sampling fitness at preset
timing cutoffs, instead we tested how long each algorithm
took to reach a fitness of 0.9 and 0.95. This is to simulate
Danesh finding a ‘close enough’ result, from which a user
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2.5s 5s 10s 20s
RS 0.892 0.909 0.959 0.964
HC 0.784 0.959 0.959 0.963

EVO 0.932 0.952 0.966 0.967

(a) Timing results for P1.
2.5s 5s 10s 20s

RS 0.868 0.879 0.892 0.909
HC 0.738 0.806 0.892 0.911

EVO - 0.887 0.897 0.917

(b) Timing results for P2.
2.5s 5s 10s 20s

RS 0.889 0.906 0.916 0.942
HC 0.851 0.914 0.932 0.948

EVO - 0.877 0.925 0.942

(c) Timing results for P3.

Fig. 4: Results showing best fitnesses recorded at fixed time
intervals on three problem scenarios. RS: Random Search,
HC: Hill Climb, EVO: Evolutionary Search. All results to 3
significant figures, an average of five samples.

could conceivably perfect or tweak the details to fine-tune the
result. If the algorithm did not reach the fitness limit in 60
seconds, we recorded a failure. The results are shown in table
5 for each algorithm and problem case combination, as before.

First, note that the 0.95 target was not reached on P2 for any
of the algorithms - this is because the targets set could not be
reached closely enough in this problem scenario (in that it was
slightly outside of the generator’s expressive range). P2 is the
hardest problem of the set because although it has fewer metric
targets than P3, it also has fewer parameters it can change
to reach those targets. The most important result here is that
while the results are relatively close again, both hill climbing
and evolutionary search far outperform the random search on
the 0.95 fitness target for the hardest problem, P3. This shows
that although random search can rapidly explore the state space
to find relatively good results, the more intelligent techniques
work better when prioritising high fitness.

We are still developing and refining techniques for auto-
matic parameter configuration, but we believe that a hybrid
approach may yield good results, where the first 5-10s is spent
using random search, and then the best result is used to seed
a hill climber. It is likely we will offer different techniques to
the user depending on what tradeoff of speed versus quality
they wish to have with the result.

V. DISCUSSION

A. Current Limitations Of The System

We are currently working on various additions and im-
provements to the Danesh tool. Boolean and string fields are
currently unsupported, and other conveniences such as numeric
intervals or arrays are not supported in a convenient way (it is
possible to use them in Danesh but workarounds are required).
As we release Danesh to more developers and complete the

> 0.9 > 0.95
RS 2.61 4.29
HC 2.71 2.21

EVO 3.35 5.65

(a) Fitness-limited timing results for P1.
> 0.9 > 0.95

RS 11.3 -
HC 11 -

EVO 11.6 -

(b) Fitness-limited timing results for P2.
> 0.9 > 0.95

RS 2.06 30
HC 5.61 17.3

EVO 10.4 17.9

(c) Fitness-limited timing results for P3.

Fig. 5: Results showing time taken to reach a fitness of 0.9 and
0.95. RS: Random Search, HC: Hill Climb, EVO: Evolutionary
Search. All results to 3 significant figures, an average of five
samples.

user studies we are currently conducting, basic features like
these will be implemented to round out Danesh’s feature set.

Danesh’s generality comes at the expense of placing a
burden of implementation on the user. Currently, the user must
write a visualisation method for their generator which makes it
harder for novice users (although we provide a suite of utility
functions to help with this, and text rendering requires almost
no visualisation code). In the future, we hope to work on some
automatic visualisation methods or a stock set of visualisers
for common kinds of content (such as arrays representing tile-
based levels, for example).

The other main implementation bottleneck for users is
selecting and writing good metric functions. We plan to extend
the automation of Danesh to cover this task, and provide other
ways for users to express metrics, such as allowing the system
to machine learn models of metrics. This will be conducted
through an interface that allows the user to label positive and
negative content examples and slowly define a metric function
interactively. Good metrics are crucial to all of Danesh’s more
complex features, so this is an important area of future work.

Another potential limitation of the tool is that it is imple-
mented as a plugin to Unity and written for C# and Javascript
generators as opposed to being a general platform-agnostic
tool. We do not see this as a limitation specifically, since
we are primarily concerned with connecting with developer
communities, and Unity is one of the most widely-used
development tools today. Integrating with Unity and its asset
store will help us contact developer communities directly and
hopefully have a larger impact. However, we hope that the
open-source nature of the tool will allow Danesh’s techniques
to be reimplemented into other languages, platforms and
engines, should this be a barrier for other users.
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B. Towards Domain-Agnostic PCG

The development of Danesh comes partly in response to a
feeling that most work in procedural content generation, both
within and outwith academia, is highly fragmented. Generative
systems in games are typically highly bespoke, and as such it is
harder to make theoretical connections between them. This is
possibly one reason why Super Mario has continued to be such
a common domain for procedural generation research – it is
one area where there is a lot of overlapping existing work that
provides baselines, inspiration and complementary sources of
code. Of course, there are many other reasons to work in this
domain as well – it is well-defined, the game is popular and
well-known among potential survey participants, it is a well-
understood design space. Yet the density of work provides
additional appeal – comparisons, competitions, engines, tools.

While the fragmentation of generative software and research
is a cause of its vibrance and diversity, it also hampers the
formation of strong theoretical work that is independent of
a particular domain, genre or game. While we do not see
Danesh as a panacea for this, we hope that more projects
like it that aim to be less domain-specific will help shift
the targets of procedural generation research and encourage
more domain-agnostic theoretical work on generative soft-
ware. Open-sourcing Danesh hopefully enables interested re-
searchers to branch off or extend Danesh with their own work,
contribute features to the tool, and as we expand the library of
example generators, will allow them to perform experiments
across a wide range of generator and content types. This could
contribute to more abstract theories of content generation for
larger classes of games or design scenarios.

VI. CONCLUSIONS

In this paper we introduced Danesh, a tool for exploring,
explaining and experimenting with procedural content genera-
tors. We described the basic functionality of the tool, and how
it affords a richer way of visualising and interacting with gen-
erative spaces. We then discussed how Danesh can automate
some aspects of its own process to greatly simplify the act of
iteratively refining a generator’s output. We evaluated several
techniques for automating parameter configuration search, and
then discussed the current limitations for the system and the
potential future for domain-agnostic PCG tools.

We believe there exists a skills gap in game development
concerning procedural generation, and that this gap is not be-
ing bridged by traditional tools. Writing procedural generators
is already a difficult task, but understanding them well enough
to tweak and adjust them to a designer’s liking requires a
lot of knowledge that is difficult to obtain. Other comparably
complex (arguably even more complex) tasks such as writing
graphics shaders have been made considerably easier thanks
to intuitive and useful tools. We hope the same can be done
for procedural generation, and that Danesh contributes towards
this goal in some small way.

Procedural generation is often seen as a simple case of
‘more unpredictable stuff’, content that can be thrown into
a game for endless replay value without much thought. But

generative techniques are increasingly a key tool in achieving
certain design goals, expressing artistic ideas, and developing
new genres of game. In order to promote this growth and
diversity, we need to support developers, students, dabblers
and novices of all kinds, to ensure this technology is as flexible
and accessible as possible.
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Abstract—Game balancing is a recurring problem that cur-
rently requires a lot of manual work, usually following a game
designer’s intuition or rules-of-thumb. To what extent can or
should the balancing process be automated? We establish a pro-
cess model that integrates both manual and automated balancing
approaches. Artificial agents are employed to automatically assess
the desirability of a game. We demonstrate the feasibility of
implementing the model and analyze the resulting solutions from
its application to a simple video game.

I. INTRODUCTION

Game balancing is the process of finding a rule-set and
corresponding parameters such that the resulting gameplay
defined accordingly satisfies certain design goals, such as
fairness. It seems obvious that this is a very important activity
during the game design process. Balancing ensures that all
game components work together smoothly and in the way
intended by the designer. However, balancing is not necessarily
constrained to the development phase. Especially content
creation after game deployment as performed by professional
developers or amateur users who create add-ons or mods may
require a re-balancing as a reaction to the introduction of new
game components or the modification of existing ones [8].

Balancing therefore has a significant effect on a player’s
experience. Thus, if games have major balancing issues, the
community will speak up. A recent example of this and how
it can affect the game is the addition of the R8 Revolver
weapon to Counter-Strike: Global Offensive, a first-person
shooter published by Valve Corporation. The issue in this case
was that the newly introduced pistol was able to kill players
with one shot and had a near 100% accuracy while moving.
The community’s feedback was harsh: players were unhappy
with the new weapon and some even threatened to stop playing
until the issue was resolved.1 Valve was forced to react fast
and just a few days after release the weapon was adjusted,
reducing damage and increasing spread and cooldown.2,3

1Nathan Grayson (2015). ”Counter-Strike Players Really Hate The
Game’s New Gun” http://steamed.kotaku.com/counter-strike-players-really\
-hate-the-games-new-gun-1747153436

2Valve Corporation (2015). ”Damage Control”. http://blog.counter-strike.
net/index.php/2015/12/13366/

3Reddit User SlothSquadron (10 December 2015). ”In Depth Analysis of
R8 Revolver Nerf (No other weapon changes included in update).” https:
//www.reddit.com/r/GlobalOffensive/comments/3wbhnf/

But how do we define balancing? Obviously, there is no
undisputed, generally accepted definition. Nevertheless, one
that is prominently featured on Wikipedia reads:

In game design, balance is the concept and the
practice of tuning a game’s rules, usually with the
goal of preventing any of its component systems
from being ineffective or otherwise undesirable when
compared to their peers.4

For this paper, we define game balancing slightly differently,
emphasizing the process and its general aim [19, cf.]:

Game balancing is the process of systematically
modifying parameters of game components and op-
erational rules in order to determine satisfactory
configurations regarding predefined goals.

This definition uses the terms configurations and goals.
With configuration, we refer to parameters that flexibly define
properties and/or behavior of game components. For example,
a parameter could be the maximum hit points of a character
or the damage an attack does. A goal stands for an explicit,
checkable condition. Schell [14] provides a lot of possible
goals for balancing, the most well-known of which may be
fairness. But many other goals are relevant too, as we will
see in the following. It may not always be easy to derive
an explicit condition, but a formalization of the problem is
necessary even in manual balancing if the reliance on intuitive
conceptualization of balancing is to be minimized.

We deliberately use the plural for configurations and goals.
One of the contributions of this paper is our conjecture that
for most systems there are many satisfactory configurations,
not just one. Consequently, even though designers usually
aim to obtain a single good configuration, finding several
good configurations has considerable advantages because it
presents us with alternatives if the chosen solution is difficult
to implement, fragile, or has other unwanted properties. Addi-
tionally, the solutions obtained with the different approaches
can be used as starting solutions for the other one. We also
conjecture that for obtaining several satisfactory configurations
we need algorithmic assistance, but at the same time it makes

4Mark Newheiser (9 March 2009). ”Playing Fair: A Look at Competition in
Gaming”. Strange Horizons. http://www.strangehorizons.com/2009/20090309/
newheiser-a.shtml
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no sense to rule out manual balancing efforts completely.
We therefore define a process integrating both automated and
manual balancing, but at the same time flexible enough to be
adapted to a specific game. This integrated process is the main
contribution of this paper and is formally depicted in Figure
1. It is instantiated for a simple game prototype, the Zombie
Village Game (ZVG), for which we compare the results of
automated and manual balancing attempts and discuss how the
different approaches can profit from each other in the context
of our integrated model and what lessons can be learned for
more complex scenarios.

The remainder of this paper is structured as follows. Firstly,
Section II will report on related work, after which Section
III will present the process model that is proposed for inte-
grated game balancing. Afterwards, Section IV will describe
a concrete instantiation of this process by example of the
aforementioned ZVG. The major results will be discussed in
Section V. The paper concludes with a brief summary and
outlook in Section VI.

II. RELATED WORK

Despite the obvious practical importance of game balancing,
the process has received little scientific attention until now.
For this reason, in the following, we not only discuss directly
related work, but also publications that contain parts of the
addressed problem.

Volz et al. use artificial players (APs) to demonstrate the
feasibility of automatic game balancing in terms of compu-
tational complexity and minimal achievable solution quality
for the card game “top trumps” [19]. However, they focus
on a multi-objective approach for situations where desirable
characteristics can not be prioritized a priori. They also specif-
ically address a multi-player game and consider a relatively
large configuration search space, but restrict themselves to a
simple game which is easy to simulate. In contrast, we use
more complex games with real-time interaction and infinitely
many possible player actions. Additionally, using APs that do
not act like humans to evaluate a game configuration could
potentially introduce a bias if the results are not thoroughly
verified with humans. In order to tackle this problem, we use
an interactive approach that is shown to be robust even in the
face of necessary simplifications for modeling human player
behavior.

Similarly, Mahlmann et al. choose card sets for the card
game Dominion to optimize the gameplay regarding the deci-
siveness of a win in the game [10]. In contrast to parameter
optimization, the balancing problem in this case is combinato-
rial in nature. The game is also multi-player and round-based,
unlike the ZVG. Again, the authors do not look at the possible
interaction between manual and automatic balancing.

Jaffe presents an approach to game balancing that is based
on analyzing the win rates of different artificial players in a
simulated game. The capabilities of these APs are restricted
in different ways in order to investigate the satisfaction of
balancing goals [7]. However, separate testing of different
goals might lead to a result that is not easily integrated,

whereas our approach is able to handle a conclusive scenario.
Again, the lack of interaction between the algorithm and
humans could greatly bias the search.

Interactive, or so-called mixed-initiative approaches, that try
to alleviate this, have mainly been used for level design. For
example, in [17] the authors present a system that can propose
levels for a side-scrolling 2-D platformer that are guaranteed
to be playable. Similarly, Liapis et al. introduce a tool that
is intended to suggest novel and playable levels to a designer
and visualize them as support for gamedesign related decisions
[9]. However, neither of these approaches expressively focuses
on balancing or enables the designer to measure configurable
design goals. Liapis et al. include a study on game designers
that has an overall positive response to design support tools,
which is encouraging for this work as well.

The automatic evaluation of a game has also been addressed
in procedural content generation, specifically in the context of
map or level generation. However, publications in this field
mostly focus on specific simple criteria like playability [18],
solvability [15], or diversity [6, 12].

Further related research areas include the dynamic adap-
tation of the difficulty in single-player games [5] and the
generation of rules to conceive new games [2, 16]. Nelson
et al. published a formalization of the latter in order to
gain better insight into the game design process [11]. The
process formalization we propose here, however, is intended
as a guideline for practical work, specifically for automatic
balancing rather than game generation.

III. PROCESS MODEL

In this paper, we propose that game balancing should be
envisioned as an integrated process that incorporates both
automated as well as manual components. To describe this
process, the Business Process Model and Notation5 (BPMN)
widely-used in the Business Process Management domain is
used. This notation allows describing the order and conditions
for the execution of a set of activities in order to accomplish
a certain goal, which in this case lies in balancing a particular
computer or video game. The main components of BPMN are
events represented by circles, activities depicted as rounded
rectangles, and gateways represented by diamond shapes.
Arrows between these elements describe the sequence flow
of the process, i.e., the order in which activities are executed.

Focusing on the top-level process model depicted in Figure
1, two events can be seen: one indicating the begin of the
balancing process on the left, and one depicting its end on the
right. Furthermore, two types of gateways are used: whereas
a diamond containing an “x” represents an exclusive OR,
a diamond containing an “o” represents and inclusive OR.
All activities contain a small “plus” icon, meaning that they
contain sub processes with additional details. Further elements
used in the model are documents and databases which are
involved in activity execution. More detailed information about
BPMN can for instance be found in [3].

5See: http://www.bpmn.org. Last accessed: 2016/04/07
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Fig. 1. Integrated Game Balancing Process modeled using BPMN.

The following paragraphs provide an in-depth description
of the balancing process model presented in Figure 1. In
particular, conceptual details about the activities shown in
the model are discussed, including the required inputs as
well as the outputs of these activities. The applicability and
generalizability of the process is demonstrated by instantiating
it for the ZVG in Section IV.

Assess context. This activity deals with the conceptual
preparation of the balancing process. First, the game to be
balanced needs to be selected. Furthermore, as a preparation
for later balancing steps, a stakeholder report containing
information about the target group of the game and other
relevant parties must be compiled. Lastly, the goals of the
balancing process must be defined. These goals encapsulate
the knowledge and expertise of game designers about how
the game is meant to be played and what kinds of emotional
responses are intended. How well the intentions are met (i.e.
how well balanced a game is) should be quantifiable so
that these measures can be operationalized for algorithmic
optimization.

Set environment. In this activity, the technical setup of the
balancing process is carried out. This requires the specification
of a set of scenes to balance, which can either be the entire
game itself, or certain parts of it representing its important
mechanics. Next, the choice of game parameters is performed.
Each parameter, e.g., hit points or attack strength, represents a
single decision variable that can be modified by an optimiza-
tion algorithm to meet the balancing goals. Afterwards, an
objective function (fitness function) that measures how well the
game is currently balanced needs to be defined. This function
should therefore accurately represent the balancing goals for
the game. The final step lies in choosing an optimization
algorithm that is capable of tweaking the game parameters
to improve the resulting fitness. As indicated by the following
gateway, after the environment has been set, manual balancing,
automated balancing, or both are performed.

Perform manual balancing. To complement the auto-
mated balancing process, it is reasonable to also perform
manual game balancing using already-established tools and
techniques, such as spreadsheets, “doubling” and “halving”,
and the game designer’s intuition. The results obtained from

manual balancing can be used to interact with automated
balancing, for example for deriving an initial parameter con-
figuration or for validation of its output.

Perform automated balancing. In this core step of the
process, the game is balanced by applying an optimization
algorithm that detects parameter configurations which result
in good objective function values. For every parameter config-
uration, the prepared game scenes are successively simulated
and the objective function values are measured. As this re-
quires an (adapted or newly implemented) AP for representing
player actions as well as an AI for the non-player characters,
this activity starts with the configuration (and possibly even
implementation) of the needed AIs. The optimization process
is continued until a predefined stopping criterion is reached,
e.g., a quality criterion (optimal or near-optimal solution), or
a predefined time limit.

Analyze data. Both manual and automated balancing sub-
processes produce simulation results as output, that is, pairs of
parameter configurations and objective function values. This
data is analyzed during the data analysis phase in order to
assess the quality of results and recognize important structural
patterns within the decision variables and objective values.
Knowledge obtained in this step can be used, e.g., to eliminate
some parameters from the balancing process. Based on the out-
come of the analysis, the game designer decides if the process
shall be continued or if the obtained configurations are already
satisfactory. This step includes an important educational aspect
of the integrated balancing process, as structural patterns help
game designers to understand the actually implemented game
mechanisms and the resulting gameplay.

IV. APPLICATION

This section demonstrates the applicability of the integrated
game balancing process introduced in the previous section by
applying it to an actual game prototype. For that purpose,
it is subdivided into multiple subsections, each of which
corresponds to a single activity in the balancing process.

A. Context Assessment

The proposed balancing process has been applied to a
simple game prototype provided by BlueByte GmbH, named
Zombie Village Game (ZVG). The prototype can be classified
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Fig. 2. Screenshot of the Zombie Village Game Prototype.

as a Tower Defense game, a sub-genre of Real-Time Strategy
games. The basic idea of the concept is to defend a camp
invaded by enemy zombies. The player commands units that
may be freely placed on the map in order to combat the
attacking zombies. Player and enemy (zombie) units attack
each other automatically if they are within proximity. Re-
sources are collected by player units from different locations
and are consumed over time at a constant rate. Resource and
enemy unit spawning spots are placed on the map by the
level designer and are the core components of a level. Playing
towards a given goal, a player has to fight the enemy units
coming in large numbers. Simultaneously, they are forced to
collect resources, keeping the consumption of resources over
time in mind. The players are confronted with the decision of
putting their limited number of units either into combat with
enemy units or next to resource spots for gathering.

A gameplay example of the game is shown in Figure 2.
In this screenshot, orange humanoid figures represent player
units, the blue dot is a resource spot with the number of
available resources displayed above it. Furthermore, a single
zombie depicted as a blue figure can be seen in the top middle
of the screen. The control panel on the right is used to manage
(i.e. place and remove) player units on the map.

Regarding the target audience of the game, no particular
focus was set. Therefore, the overall goal of the balancing
process was defined ex ante as providing an exciting and
challenging experience to all players. Consequently, players
are intended to “barely” win the game most of the time, i.e.,
they should not be able to dominate too easily, but often
come close to losing. To achieve an initial understanding
of how this balancing goal focusing on “fair challenge” can
be met, the game was manually played before the actual
balancing activities to identify game parameters and estimate
their relative influences on how the game plays out.

B. Environment Setup

For the purpose of applying the balancing process and
especially automated balancing to the ZVG, a game scene

TABLE I
INITIAL GAME PARAMETERS CHOSEN AS CANDIDATES FOR BALANCING.

Parameter Symbol Range Initial Value
Resource drain interval CT [1, 5] 1
Resource drain amount CA [1, 5] 1
Player Unit Start Health PH [90, 100] 100
Player Unit Attack Power PP [1, 20] 9
Player Unit Attack Distance PD [1, 20] 5
Zombie Unit Start Health ZH [90, 100] 100
Zombie Unit Attack Power ZP [1, 10] 3

representing a very simple level was created. The scene
exclusively consists of a number of resource spots and varying
numbers of enemies that guard them. In order to successfully
complete the scene, the player has to defeat all enemies and
avoid running out of resources or losing all player units for a
predefined time. The scene includes all main game mechanics
and is viable for a publishable game. For a more complex
game, one may have to resort to selecting several scenes for
a more complete representation.

The initial set of parameters and their possible bounds were
decided upon through expert knowledge gained from multiple
game plays. The results of this step can be seen in Table I.
Based on these parameters, we defined an objective function
encapsulating the outlined gameplay goals as follows:

f = βH ∗ fH + βR ∗ fR (1)

With different target audiences in mind, other choices for
the components of f could be made. Here, f represents the
total fitness (objective function value) of a playthrough, which
is comprised of two non-conflicting components, namely the
health-related fitness fH and the resource-related fitness fR.
Furthermore, the linear weights βH and βR are used to
influence the balance of fH and fR. The two individual fitness
components are computed in the following manner:

fH = |H∗ −
N∑
i=1

hi| and fR = |F ∗ − Fr|.

Here, H∗ and F ∗ represent the “optimal” target values for
remaining health points and resources at the end of the game,
respectively. Furthermore, N denotes the number of player
units under control of the player and hi the health of player
unit i ∈ 1 . . . N when the scene is finished. Lastly, Fr is the
remaining amount of resources in possession of the player at
the end. Should the player loose, i.e., all player units die or
the resources run out, f is set to a high penalty value.

The following values were chosen for the above equations:
βH = 1, βR = 6, H∗ = 50, F ∗ = 5. These choices
were made after initial playing and manual balancing and
incorporate game design expertise directed towards achieving
the aforementioned gameplay goals. The best-possible fitness
value of 0 is achieved if the player terminates the scene with
a total sum of 50 health points and 5 units of resources.
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With the objective function defined in eq. (1), we have
defined a black-box minimization problem that can be tackled
with different optimization algorithms. Random or grid search
algorithms (or a more sophisticated experimental design as
Latin Hypercube Sampling) could produce valuable initial
insights into the game mechanics, especially in cases where
the budget for evaluations (play-throughs) is very restrictive.
In our case, the budget was in the order of several hundred up
to some thousand evaluations. We thus relied on evolutionary
algorithms (EAs) due to their flexibility and anytime character.
We tested five EA versions with different strategies regarding
parent selection, crossover, mutation and survival selection
(called algorithm configuration in the following). As the
parameters are mostly discrete, and in order to start with an
easy-to-implement algorithm, we relied on relatively simple
EA variants that are a mixture of genetic algorithm (GA)
and evolution strategy (ES) concepts. The implemented EAs
use a parent population of size µ and generates a number of
offspring λ in each generation, each from 2 parents out of
µ, selected in a fitness proportional manner with Goldberg‘s
sigma-scaling [4, ch. 3]. Crossover is done uniformly random,
mutation is (rounded) Gaussian perturbation and selection is
done via truncation, letting the best µ out of the pool of µ+λ
configurations survive to the next generation.

To decide on the concrete algorithm configuration, an
adapted version of the F-RACE algorithm described by Birat-
tari et al. [1] was used. The algorithm receives an initial set of
algorithm configurations from which it determines the best one
through iterative simulations and removal of configurations
which have statistically significant higher cost. During the
removal phase, every algorithm is assigned a cost value which
expresses the anytime performance of the algorithm configu-
ration. In our case, the initial set of algorithm configurations
included 20 EA instances with varying parameters. As a cost
function, we used the Area Under the Curve (AUC) of the
mean fitness of the top three configurations found during the
optimization process.

C. Manual Balancing

Manual balancing was carried out following recommenda-
tions outlined by a game designer. It consisted of repeated
playthroughs by two testers, the results of which were doc-
umented in a spreadsheet. At the beginning of this activity,
the parameters as well as their bounds were already fixed.
The parameters were set to the default values for the first two
playtests in order to get a feeling for the game and get used
to the controls. Then, a single parameter was adjusted using
the “doubling and halving” method. The idea of the method
is to understand the effects of a parameter on the game by
making large changes to it. At the end of each playthrough,
the fitness of the configuration was computed according to the
function defined in the previous subsection. Each configuration
was played five to six times to examine whether its results are
reproducible. In accordance with the principles of a Tower
Defense game, the playtesters employed a defensive playstyle
focusing on unguarded resource spots first, small groups of

TABLE II
CONFIGURATIONS FOUND BY MANUAL AND AUTOMATED BALANCING.

Configuration CT PP PD ZH ZP f

Initial Values 2 9 5 100 3 >200
Manual Balancing 2 6 4 100 8 72
Auto-Bal. Solution 1 1 7 17 99 4 6
Auto-Bal. Solution 2 2 3 9 90 2 8
Auto-Bal. Solution 3 1 8 11 91 5 10

Zombies next, and larger groups of enemy units only at the
end. Overall, 142 solutions were recorded by the testers over
the course of several days. The “optimal” configuration that
was eventually agreed upon by the testers is documented in
Table II (row 2).

D. Automated Balancing

As described in Section III, we propose to do automated
balancing based on data gathered from playthroughs with APs.
The AP we implemented for the ZVG was limited to the core
actions: it is able to place units next to enemies to engage
them in combat, place units next to resource spots to gather
resources, and remove units that are below a certain health
threshold from combat as well as move units that have depleted
a resource into a combat. All possible actions are modeled in
a single decision tree and chosen based on a set of predefined
conditions, such as the amount of resources currently available
to a player. These conditions are intended to ensure that the
actions of the AP are reasonable within the context of the state
of the game at any given point in time. Naturally, this simple
AP can not entirely replicate the actions of a human player,
but as long as its behavior is not detrimental to its progress in
the game, it is satisfactory for our purposes.

Using this AP, the ZVG was successively simulated while
collecting and documenting the results of each individual
playthrough. Using the fitness function defined in Section
IV-B, the quality of each parameter configuration was eval-
uated and the EA described in Section IV-B was employed
to successively optimize the parameters. For each optimiza-
tion run, we employed a termination criterion of about 400
simulations corresponding to roughly two hours of play-time.
The best configurations were recorded, as seen in Table II. It
must be noted that the configurations with the same fitness
value often strongly resembled each other, and were thus
summarized using the median value.

E. Data Analysis

In the following, we describe some key observations we
made on the results of the application of the proposed balanc-
ing process to the ZVG.

Algorithm performance. Multiple, automatically detected
configurations were tested by human players to evaluate the
algorithm in practice. An important aspect to analyze before
assessing the algorithm itself is how well the fitness func-
tion expresses the human perception of the game and our
playtesters stated that how well they enjoyed a playthrough
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correlated with the obtained numerical fitness. The fitness
function also seems to allow distinguishing between config-
urations that are playable and fun for humans (e.g. fitness
values of 32 and 44) and those that are not (e.g. fitness values
of 122 and 160) in many cases.

Two of the three solutions chosen for more detailed analysis
were found to be challenging and enjoyable according to our
playtesters, despite the games resulting from the successful
configurations having a different pacing due to different val-
ues in PP and ZP . The last configuration did not provide
a challenge at all and was easy to play despite having a
good fitness. A likely explanation for this are the differences
between the human and AP play styles. During the playtest,
it became obvious that the player unit attack distance PD can
be exploited by the player if the player keeps placing their
units just out of attack range for the zombies (kiting). The
AP, however, was not programmed to do that and just places
its units close to enemy units without even considering PD.
Considering this limitation, it is very interesting that viable
results were produced and suggests that a simulation-based
approach to balancing could be feasible even for complex
games.

In terms of computational performance, the algorithm did
reasonably well: one optimization run on one PC for the ZVG
took 2 - 3 hours on average, depending on an initial seed
and optimization algorithm. This is considerably faster than
the several days it took two (admittedly inexperienced) game
designers to find a single reasonable manual configuration.

Fitness landscape. 33 unique solutions with fitness value 6
were found automatically (0 would be optimal), 14 with fitness
8 and 108 with fitness 10, albeit all with only small variations.
This supports the thesis of a complicated fitness landscape,
since these values indicate small plateaus that a game designer
would likely have trouble to identify manually. Additionally,
we observed that although the solutions with the same fitness
were very similar, solutions with even small differences in
fitness (when compared to the standard deviation of approx.
72) differ noticeably. This further compounds the likeliness of
a complex fitness landscape since there seem to exist multiple
local optima.

Parameter analysis. To narrow down the set of game
parameters that must be optimized in the balancing phase, the
objective function was used to carry out an initial examination
of their dependencies. This was achieved by repeatedly doing
grid samples over two parameters while keeping all others
constant. This enabled us to measure marginal effects of
certain parameters to the fitness, as well as their correlation,
without additional parameters complicating the observations.
All possible pairs of parameters were simulated to construct
fitness heat maps for the 2-dimensional slices of the search
space. These heat maps were examined to identify parameters
which are highly correlated or do not affect fitness at all.

Not surprisingly, it turned out that the parameter Player
Unit Health has a huge impact on the objective values,
rendering most other parameters negligible. In addition to that,
parameters Time to Consume and Amount to Consume are

Fig. 3. Heat map of fitness values for various combinations of Zombie and
Player Unit Attack Power, the rest of parameters are kept constant. Cells
without fitness represent the outcomes where AP failed to win the game.

highly correlated (linear structure in heat maps). To the enable
a more thorough investigation of the remaining parameters, the
parameters Amount to Consume and Player Unit Health were
eliminated from the balancing process and assumed to be fixed
at values 1 and 100, respectively.

An exemplary heat map is depicted in Figure 3. It visualizes
the interdependence of Zombie and Player Unit Attack Power.
There is a dependency between the parameters, but it is not
strictly linear. This figure outlines a pattern that can already
be used for informed decisions on game balancing regarding
these two parameters.

After eliminating the above mentioned parameters, we es-
timated the variable importance based on the R2 statistic of
a non-parametric regression model using only one predictor
against the intercept only null model as described in 6.
Among others, variable importance is expressed as a Maximal
Information Coefficient that captures the relationship strength
between a variable and fitness value. The results indicate that
CT , ZP and PP are the most influential of the remaining
variables. These are also the parameters that were constant
between all solutions with the same fitness value (cf. Table
II). Further related statistics (MAS, MEV, MCN) indicate that
the relationship between the predictors and the outcome is
relatively complex, thus suggesting that the choice to use an
evolutionary optimization algorithm was justified.

V. DISCUSSION

In the following, we discuss some findings and problems
that may be generalizable to other games when applying the
proposed framework. The main concerns in this discussion are
three points already touched upon under the heading Algorithm
performance in section IV-E for the ZVG, namely expressing
human enjoyment, creating a believable AP and computational
performance and costs.

Even with the obtained results, it is not clear whether human
perception can be expressed by a fitness function in general.
However, as was the case for the ZVG, there always seem to

6https://cran.r-project.org/web/packages/minerva/minerva.pdf
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be some indicators as remaining health, playtime and clicks
per second that can be measured and that seem reasonable
as an estimate of player enjoyment. The task of specifying
their intentions in terms of these measures therefore remains
for the game designer. This makes generalizing an approach
for identifying a good fitness function difficult, for as long
as current attempts of measuring flow and player engagement
with physiological signals remain expensive.

In case that the chosen objectives are contradictory, the
fitness function and selected algorithms would need to be
adapted accordingly to enable multi-objective optimization.
Additionally, with a multi-objective approach the designer
does not need to specify any preferences in terms of objec-
tives currently represented by the weights in our aggregated
function. Besides the fitness function, another intricate part of
the proposed process model is the AP. In some cases, it can
be considered relatively difficult to build an AP that represents
the behaviors of real testers, and even risky in terms of time
and money investments. However, modern game AI algorithms
are becoming more advanced and easier to implement, posing
new opportunities in that area. There are also serious attempts
at building general game playing AIs7 that tackle this problem.

Additionally, with our experimental study we have shown
that even a rough approximation of a player can be sufficient
within the balancing process. About a third of the automati-
cally detected configurations were considered to be enjoyable
by a human player, in spite of the fact that the AP and the
tester had different play styles.

Another point of concern are the relatively high upfront
costs for the initialization of the process. The process starts
to be productive only after all its components, including AP
and Balancing Environment, are set up. Additionally, if, like
for the ZVG, there is no clear indication of what optimization
algorithm to use, a statistical approach to meta-optimization
might be necessary. Thus, putting too much emphasis on
such initialization tasks can result in having no time for
the balancing itself. One way to cope with the risk is the
development of a technological standard for game balancing
like the process model we suggested. The standard should
define modularized components for the process, thus some
parts can be transferred across games, decreasing time and
costs for the setup phase.

The amount of time necessary for the balancing process
also heavily depends on the time it takes to simulate a game
and the need to simulate one configuration multiple times
in case of non-deterministic games. Besides exploiting the
possibility to parallelize these simulation runs, a possible
remedy for this could be to restrict the balancing process to
parts of a game, e.g. the fighting. Another approach could
be to integrate a simplification of the game, as already often
done in industry, or other, more general, surrogate models in
the optimization algorithm. In case of the relatively simple
ZVG, the optimization runs proved to be much faster than the
attempts at manual balancing.

7http://www.gvgai.net/

Besides these possible concerns, the experiment was also
able to highlight some advantages of automated game bal-
ancing. For the ZVG, the approach proved helpful during
the phase of game identification, providing insights about
the game and its parameters. Automated balancing delivered
a larger set of satisfactory configurations in shorter time
compared to manual balancing. Furthermore, as known from
other applications of metaheuristic based optimization, au-
tomation often generates unsuspected solutions. In more than
one instance, our play testers were convinced that a seemingly
good parameter configuration from automated balancing would
not be playable, but were then suprised that they were actually
fun to play.

A great benefit of automated game balancing is that the
setup is robust to any changes within the game, since the
optimization process does not need to be adjusted when the
game changes. It makes this approach interesting for long
lasting games with continuous patches and releases. This
characteristic could be successfully exploited during our work,
when we added a new element (resources) to the game me-
chanics. After the AP and the goal were updated accordingly,
all the functionality of the balancing environment was reused
in order to find good parameter configurations.

VI. CONCLUSION AND OUTLOOK

Game Balancing is a time-consuming, yet necessary pro-
cess in order to make a satisfying game and keep players
happy. Since there are many different interpretations of what
balancing is, we proposed our own definition to align the
term with our integrated balancing process. This process with
its formal representation shown in Figure 1 is the main
contribution of the paper, whereas its application to a simple
game demonstrates its usefulness in practice. While we strive
for an automated way of balancing, manual game balancing
is incorporated in our approach. It is the de-facto standard
of how balancing is done in the game industry and can not
be disregarded when designing games for human players.
Furthermore, both manual and automated balancing deliver
data which can be analyzed and compared.

While there are still limitations regarding automated game
balancing, the numerous resulting configurations can be used
to supplement the manual balancing process as we have shown
for the ZVG. The used player AIs are quite simple but also
fast and easy to implement. Nevertheless, the results in our
case were very satisfactory, making a strong case for the
practicability of our integrated balancing approach.

Practitioners argued [13], that this approach may also be
used as an educational tool for game designers. The produced
data can help them identify relationships between different
parameters. Until now, game designers often rely on ”gut
feeling” for this task. However, the acquired data may be
used to formulate experience (or tacit knowledge) into explicit
knowledge about a game. Furthermore, it was argued that
the approach could first be used as a support tool for a
game designer and later be extended, increasing the level of
embeddedness into the game design process.
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A potential first step for future research is to increase the
complexity of the used game, i.e. increase the number of
parameters used for optimization. At the same time, several
fitness functions may be envisioned in order to allow for
multi-objective optimization. With multiple balancing goals,
different player types can be accounted for. Other research
streams can go into the direction of developing more accurate
player AIs and analyzing the processes in the game industry
with regard to the general game development and different
possible applications of automated balancing approaches.

The presented integrated process for game balancing is
intended as a proof-of-concept, to be extended as discussed
above, possibly including a more extensive user and expert
(game designers) study.
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Abstract—One of the most notable features of collectible card
games is deckbuilding, that is, defining a personalized deck before
the real game. Deckbuilding is a challenge that involves a big and
rugged search space, with different and unpredictable behaviour
after simple card changes and even hidden information. In this
paper, we explore the possibility of automated deckbuilding: a
genetic algorithm is applied to the task, with the evaluation
delegated to a game simulator that tests every potential deck
against a varied and representative range of human-made decks.
In these preliminary experiments, the approach has proven able
to create quite effective decks, a promising result that proves that,
even in this challenging environment, evolutionary algorithms can
find good solutions.

I. INTRODUCTION

Collectible Card Games (CCGs) have been part of the

mainstream gaming culture since the 90s, when Magic: the

GatheringTM first became popular. Such games have suffered

a recent growth thanks to HearthStone: Heroes of WarCraftTM

[1], a game that, thanks to a very effective Free-To-Play model,

reached a record of 40 million registered accounts in 2016 [2].

The common objective in a wide set of turn-based card

games is to beat the opponent by using on him different

types of cards (such as spells or minions). In CCGs every

player is asked to construct a specific deck before the actual

match. As the cards include specific rules that deeply affect

the interaction between players, building a deck promotes an

interesting and rich game play.

These kind of games are an interesting test bed in AI

research, as players need to deal with hidden information and

randomness, with the combination of states, rules and cards

that may imply complex or unpredicted reactions, such as

combos, combination of card so explosive that probably have

not been anticipated even by the creators of the game.

Several authors have applied diverse computational intelli-

gence methods to a variety of problems related to this field.

For example, Cowling et al. compared different Monte Carlo

tree search methods to deal with the imperfect information of

the Magic: the Gathering game, obtaining better results that

an expert rule-based agent [3]. CCGs have also been used as

an example of the application of a framework to automatically

detect design issues of new games [4].

However, previous works dealt with the AI aspects of the

game in terms of automatic playing and behavior design. Being

the construction of the deck a very important part of this kind

of games, where players may spend hundred of dollars in

buying cards, it is quite surprising the lack of works in the

literature proposing computational methods for automatic deck

generation and analysis of their effectiveness. The only work

related with this topic is [5], where the authors evolved decks

of the game Dominion in order find methods to balance the

game. However, they were limited to select 10 cards for each

deck, extracted from a pool of 25, while in HearthStone, each

deck requires 30 cards from a collection more than 600.

These techniques can also be interesting for CCGs man-

ufacturers or developers, as adding new sets of cards may

unbalance the game. Balancing games is a complex task, as

new cards can affect previous rules, as well as all the possible

combinations of card effects [6].

This paper proposes a methodology to automatically create

decks for CCGs using an Evolutionary Algorithm (EA), an op-

timization technique loosely inspired by natural evolution. In

EAs, potential solutions are encoded in a suitable format, and

an objective function called fitness is automatically optimized

[7]. EAs have already been extensively used in AI generation

for videogames [8], [9], [10].

EAs are commonly used in combinatorial problems, as they

commonly produce very effective combinations of elements,

yet quite different from what a human expert would do. In the

current framework, it makes possible to obtain competitive

decks from scratch, i.e. without adding human knowledge.

The proposed approach encode the candidate decks as vectors.

The fitness function used to drive the evolutionary process is

based on a series of actual matches against properly selected

opponents. The resulting statistics are then analyzed and

parsed to obtain a numerical metric.

The rest of the paper is structured as follows: after some

background in CCGs and Evolutionary Algorithms, the pro-

posed approach is described in Section III. After the ex-

perimental setup (Section IV), the results are discussed in

Section V. Finally, the Conclusions and future lines or work

are addressed.

II. BACKGROUND

In this section we present some preliminary concepts that

will help the reader to better understand the work.

A. Collectible card games

The field of CCGs, that exploded with Magic: the Gathering

in 1993, over time developed a specific terminology. There is
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a set of shared concepts in this field: deckbuilding (decks can

be prepared by the player, following certain rules); competitive

play (the objective is to defeat the opponent); card costs (play-

ers have limited resources available every turn, and playing

each card consumes some of these resources). While there are

many variations on CCGs, ranging from cooperative play to

games with no card costs, the popular ones — namely Magic,

HearthStone, and Yu-Gi-Oh! — include all these concepts.

1) Deck types: Some of these terms are referred to the type

of decks:

• Aggro, short for “aggression”, is a deck driven by a

relatively simple strategy: the player attempts to finish

the game in its early stages, quickly consuming lots of

resources to inflict the maximum possible damage to

the opponent. Typically, if a player with an Aggro deck

cannot end the game fast enough, he will eventually lose

in the mid or late game.

• Combo is a deck where player’s main objective is to

survive until he manages to draw all the necessary pieces

of a combination. Combos usually include two or more

synergistic cards that allow the player to unleash a

considerable amount of damage (ideally lethal) over the

span of a single turn, securing the game. Players with

these decks may lose if the opponent is able to produce a

significant attack before all the pieces of the combination

are gathered, or if the opponent is prepared to somehow

counter it.

• Control is a deck chosen to keep the opponent in check,

neutralizing early-game threats to prolong the match until

the late game, where they can finish off using high-cost,

high-value cards. Players with Control decks risk losing

if they cannot find good answers for the cheap, effective

threats of Aggro decks, or if they fail to counter the lethal

combinations of Combo decks.

2) Metagame: The term metagame is used to describe

conceptually difficult activities associated with game play,

perceived by players as ‘peripheral’ to the game itself, but

important to the whole game experience. Concretely, in the

context of CCGs, metagame indicates the types of decks that

a player entering a specific competitive event (or ladder) is

expected to find, in largest numbers. Or in other words, ‘what

everyone else is playing’ [11].

B. HearthStone

Launched in 2013, Hearthstone: Heroes of Warcraft is an

online CCG, developed by Blizzard Entertainment. Players

compete against each other, trying to reduce the enemy health

from 30 to 0 points, building their decks from a pool of cards

that is constantly increasing, when either expansion packs or

single-player adventures that reward the player with collectible

cards upon completion are published. Currently, there are 743

unique collectible cards in the game, with more planned to be

added in the future through additional content. Every card has

an associated probability to be obtained when the player buys

an envelope, being related with its power: common, rare, epic

and legendary.

Cards in HearthStone fall into two main categories: spells

and minions. Spells are played, create an effect on the bat-

tlefield, and then are discarded. Minions, on the other hand,

stay in play, and can be used to attack the enemy Hero or

other minions. Each card has a cost, that is paid when the

card is played, using crystals (also called mana), a resource

that grows every turn. On their first turn, players can use a

total of one crystal, on the second turn they are allotted two

crystals, and so on, to a maximum of ten crystals for turns ten

and later. The cost is used for balance: powerful cards have a

higher cost, cheaper cards are not as effective. A deck has to

feature cards of all costs, in order to be able to play effectively

in the early, mid and late game.

In HearthStone, deckbuilding is further constrained by the

Hero the player chooses: each Hero features a special power

that can be activated during the game, and exclusive cards that

can only be used for that Hero. There are currently 9 different

types of Hero: Druid, Hunter, Mage, Paladin, Priest, Rogue,

Shaman, Warlock and Warrior. Even if it is theoretically

possible to build an Aggro/Combo/Control deck using each

Hero, in practice most Heroes are more suited to a single deck

type. For example, the Priest’s ability and exclusive cards make

it a very powerful choice for Control (with several variations

of Priest Control decks), but a poor one for Aggro.

Figure 1 shows a screenshot of a match confronting a Hunter

versus a Mage.

Fig. 1. Screenshot of a HearthStone match.

C. Evolutionary algorithms

Evolutionary algorithms (EAs) [7], [12] are bio-inspired

meta-heuristics that can be effectively used to find nearly

optimal solutions for optimization problems. Usually an EA

starts by generating a set of random solutions, called popula-

tion, following a user-defined description. Then, it evaluates

each candidate solution, called individual, assigning it a fitness

value, that describes how good the individual is, with regards

to the target problem. New solutions are then generated

by the application of operators that either mutate a single

existing solutions or recombine different existing solutions.
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After each iteration, called generation, the least fit individuals

are removed, and the process continues until a user-defined

stop condition is met.

What makes EAs particularly interesting is their ability to

manipulate complex structures such as binary trees or graphs

[13]; and their relying only upon the fitness values, that can be

provided by black-box evaluation, with no need of assumptions

of regularity or stochasticity of the search space. For all

these reasons, EAs have been already successfully employed

in game design, for example evolving the parameters of an

agent that play RTS such as Planet Wars [8] or generating

the strategy of a StarCraftTM bot [14], and even the automatic

creation of card games [15].

III. PROPOSED APPROACH

In this work, we propose to use an EA to optimize the deck

for a specific metagame. The EA initially generates random

decks, and then mutates and combines the most promising

ones to generate new solutions. Candidate decks are evaluated

using an AI capable of playing HearthStone, against a set

of representative human-designed decks that define the target

metagame. Their fitness is tied to the total number of victories

obtained. We will go into details of the different aspects of the

approach next.

A. Candidate solutions

Solutions in our problem are decks: following HearthStone’s

rules, a deck has to be composed of exactly 30 cards, with no

more than two copies of each, or exactly one copy in the case

of Legendary cards. Decks can include both Neutral cards and

those reserved to a single specific Hero.

B. Fitness function

As the evolutionary algorithm can freely manipulate decks,

swapping any card for any other, crossing two decks and so

on, it is possible that it will obtain decks that violate the rules

of the game: for example, by having more than 2 copies of

the same card, or more than 1 copy of a Legendary one. Also,

while the total number of victories obtained is important, at the

same time we desire a deck with a fair chance to win against all

decks in the metagame, and not one that mercilessly slaughters

specific opponents and loses badly against other ones. Also,

and due to the stochastic nature of the game, a single execution

of a game against a deck would not be statistically significant

[16], so for each opponent at least 15 games should be played.

For these reasons, the fitness function is divided into three

parts, evaluated following a lexicographical order:

1) Correctness: this metric takes into account the number

of errors in the decklist (repeated cards). decks that have

this fitness value bigger than 0 are not evaluated further,

and all their remaining fitness values are set to the lowest

possible amount. This fitness value is to be minimized.

2) Victories: straightforwardly, this is the total number of

victories obtained by the decklist played 16 times against

each of the decks in the target metagame. This fitness

value is to be maximized.

TABLE I
PARAMETERS USED BY THE EA. THE ACTIVATION PROBABILITIES OF THE

OPERATORS ARE SELF-ADAPTED. FOR MORE INFORMATION ON THE

PARAMETERS, SEE [17] OR VISIT

HTTPS://SOURCEFORGE.NET/P/UGP3/WIKI/HOME/.

Parameter Meaning Value

µ Population size 10
λ Operators applied 10
α Self-adapting inertia 0.9
σ Initial mutation strength 0.9
τ Size of the tournament selection [2-4]
G Number of generations 50
R Replacement mechanism Generational
e Number of parry decks 8
t Number of games per parry deck 16

Operators used singleParameterAlterationMutation

onePointCrossover

twoPointCrossover

3) Standard deviation: this value is computed by evaluat-

ing the number of victories obtained against each oppo-

nent, and computing the standard deviation with regards

to the number of victories against other opponents. If

the deck obtains the same number of victories against all

opponents, its standard deviation will be optimal. This

fitness value is to be minimized.

This type of lexicographical fitness, using different parry

opponents has been successfully used in previous works [14],

[8].

IV. EXPERIMENTAL EVALUATION

This section describes the algorithm used and the decisions

taken into account to model the fitness function.

A. Evolutionary algorithm

The EA used in the experience is µGP , a general-purpose

evolutionary framework [17], designed to easily implement

different optimization problems out-of-the-box, thanks to its

flexible definition of individual structure and external evalua-

tor. The project is available on SourceForge1. During all the

experiments, µGP has been configured with the parameters

reported in Table I. The evolutionary operators collectively

allow the EA to replace a card with any other card and cross

over two decks.

B. MetaStone

MetaStone is an open-source HearthStone simulator2. It

allows the manual creation of decks using the cards available

in HearthStone and simulate games between decks, obtaining

several statistics, such as turns taken or the damage done.

Different heuristics can be selected for the AI engine, based

on a score given to the actions that are evaluated in each turn,

taking into account a combination of weights of the type of

minions/spells used.

• Play Random: each turn the actions (moves) to play are

selected randomly.

1http://ugp3.sourceforge.net/
2https://github.com/demilich1/metastone
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• Greedy Optimize Move: in each turn the AI selects each

move ordered by score.

• Greedy Optimize Turn: in each turn the AI selects the

combination of all possible moves with the higher score.

• Flat MonteCarlo Tree: during a certain number of itera-

tions the AI simulates random moves until possible ends

of the match to calculate the score.

C. Opponents decks

For the experimental evaluation, we consider the metagame

of Season 18 of HearthStone competitive play, featuring the

base set, the adventures Curse of Naxxramas and Blackrock

Mountain, and the expansions sets Goblin vs Gnomes and

The Grand Tournament, that overall include 694 cards. We

have chosen this set of cards because it is the one used in the

last season before the metagame changed to current (and still

changing) one: just before the newest expansion (League of

Explorers) appeared. This season has a good representation of

different deckbuilding strategies, and we selected 4 represen-

tative human-designed Aggro decks (Hunter, Mage, Paladin,

Shaman), 3 Control (Priest, Warrior, Warlock) and 2 Combo

(Druid, Rogue).

The considered decks, summarized in Table II, have been

taken from the website of Tempo Storm3, an American e-sports

professional video game team, and selected among the ones

able to reach the highest rank in the competitive ladder during

season 18.

D. Opponent decks analysis

In order to get an estimate of how well MetaStone can play

the human-designed decks, we run a first tournament, where

each deck was paired against every other for 256 games, using

all combinations of the 4 possible AIs . Thus, 11520 games

were played. From that results we discovered that the AI

GreedyOptimizeTurn obtained the best percentage of victories,

winning 4320 games out of the 11520 (37.5%). Therefore, we

set this AI as the one to bet during the rest of the experiments.

Focusing on the deck behavior using this AI, Table III shows

the win ratio of each one.

E. Experimental results

As the fitness evaluator requires a lot of computational time

to simulate the large number of games for each individual,

every execution of the algorithm requires several days. How-

ever, as this is a proof-of-concept, we have performed two

preliminary experiments, limiting each run to a different set

of cards. The first is aimed at evolving a Mage deck, normally

played as a control deck, and the second is focused on a

Hunter deck, usually played as aggro. In both experiments,

each candidate decklist was played t times (16) against every

human-designed deck in the metagame, with the exception of

the deck featuring the same Hero (e=8), so each individual is

tested 128 times in each evaluation.

3https://tempostorm.com/articles/meta-snapshot-18-from-warrior-to-warrior

TABLE II
CONSIDERED DECKS FOR THE EVALUATION.

Deck name Type Description

MidRange
Druid

Combo Aims to stall for time in the early game,
and slowly build a ramp that increase the
resources faster than the opponent’s to use
a combination of 2 specific cards that inflict
14 to 30 damage.

MidRange
Hunter

Aggro Trades cheap cards for cost-effective min-
ions that are harder to remove, and thus
more difficult to deal with for Control decks.

Mage Tempo Aggro Uses cards that are able to improve one’s
progression, while at the same time slowing
down the opponent, making enemy minions
unusable for one or more turns.

Aggro
Paladin

Aggro Swarms the battlefield with a lot of weak
but cheap minions.

Shadow
Madness
Priest

Control Tries to switch between curing and dealing
damage depending on board conditions, to
keep the match under control.

Oil Rogue Combo Slowly builds a large hand of cards, to
finally unleash lethal damage in one single
turn.

Mech
Shaman

Aggro Uses minion of the type mech. They are
harder for the opponent to deal with, and
interact nicely with each other, as some
Mechs provide bonuses to all other Mechs
in play.

Warlock Ma-
lyLock

Control Tries to obtain the card Malygos as soon as
possible. This card increases the amount of
damage dealt by all of the player’s spells
by a large quantity, allowing the Warlock to
quickly win the game after it appears.

Warrior Con-
trol

Control Tries to use Armor to survive the early
game, removing the most pernicious threats,
while waiting for powerful, expensive min-
ions that will be extremely effective in the
late game.

TABLE III
NUMBER OF GAMES WON BY THE GREEDY OPTIMIZE TURN AI. EACH

DECK SHOWN IN THIS TABLE PLAYED A TOTAL OF 256 MATCHES.

Deck name Games Won Games Lost Win/Lose ratio

Aggro Paladin 182 74 0.7109
Mage Tempo 177 79 0.6914

Shadow Madness Priest 152 104 0.5937
Midrange Hunter 143 113 0.5585

Mech Shaman 119 137 0.4648
Oil Rogue 106 150 0.4140

Control Warrior 104 152 0.4062
Midrange Druid 85 171 0.3320

Warlock MalyLock 83 173 0.3242

V. DISCUSSION

The proposed approach is proven able to discover decks

with a satisfying win ratio against competitive human-designed

decks in the target metagame. Figure 2 shows the evolution

of victories of the best, the average and worst individuals in

each generation, showing the fitness improvement during the

evolution. In both cases (Mage and Hunter) the final win ratio

outperformed the Mage Tempo and Midrange Hunter decks

from season 18, respectively: the best evolved Mage wins

71.87% of the matches (vs Mage Tempo, 69.14%) and the

best evolved Hunter wins 57.81% of the matches (vs Midrange

Hunter, 55.85%).
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Fig. 2. Evolution of the number of victories in the population during the experiments for Mage (top) Hunter (bottom).

As the fitness evaluation is dependent on the MetaStone

AI, however, our methodology might incur in overfitting with

regards to the AI capabilities and playing style. By looking at

the results of the preliminary tournament among the human-

designed decks in Table III, it is immediately evident that

MetaStone can use some decks (and some playing styles)

better than others: for example, the Mid-Range Druid and

Malylock decks, while pretty effective in the hand of an

experienced human player, have relatively low performances

when played by MetaStone. The human strategy for both decks

relies upon waiting for specific cards (Force of Nature+Roar

for the Druid, Malygos for the Warlock) and play them at

the right moment, which is something that MetaStone might

not be capable of. For this reason, we deem it useful to

perform an expert card-by-card analysis of the deck found

by the evolutionary approach, to understand whether the deck

contains cards (and cards combinations) that are considered

powerful by humans, or rather that MetaStone could play more

effectively. The expertise comes from one of the authors, an

average competitive HearthStone player, able to reach rank 10

in the season ladder (ranks 1-10 contain more or less the top

10% of the registered users [18]), that has played over 7,000

matches since the Open Beta of the game.

A. Evolved Mage deck

Figure 3 contains the best Mage decklist obtained at the

end of the process. Mana curve (a histogram of the number

of cards grouped by cost, shown in Figure 4) shows that the

deck is clearly Aggro, using several small, effective minions as

early threats (Clockwork Gnome, Fallen Hero, Leper Gnome,

Razorfen Hunter); blocking the opponent’s minions in the mid-

game through so-called freeze spells (Blizzard, Frost Nova),

that prevent hit minions from acting during the next turn,

or directly wiping the board with Flamestrike; and finally

attempting to finish off the game through large minions

and powerful spells (Baron Geddon, Fireball, War Golem,

Pyroblast).

There are a few remarkable properties of the evolved deck,

that we are going to describe in more detail. First of all,

the majority of cards appear in two copies, the maximum
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TABLE IV
STATISTICS OF THE BEST INDIVIDUAL USING MAGE CARDS, AGAINST ALL THE HUMAN-DESIGNED DECKS (16 TIMES PER DECK). WIN RATES OF THE

MAGE TEMPO SEASON 18 (MTS18) DECK IS ALSO SHOWN AS COMPARISON.

Druid Hunter Paladin Priest Rogue Shaman Warlock Warrior

% of wins of MTS18 90.625 59.375 34.375 53.125 78.125 78.125 87.5 71.875

% of wins of Evolved Mage 87.5 62.5 50 62.5 81.25 81.25 93.75 56.25
Damage Dealt 37.25 57.13 60.50 76.81 48.50 66.75 60.44 65.00
Healing Done 1.50 5.50 4.00 4.50 5.00 5.00 4.00 4.00
Mana Spent 22.94 31.31 25.69 46.06 37.56 39.06 41.69 44.69
Cards Played 9.06 11.63 11.31 16.69 12.94 15.44 16.69 16.38
Turns Taken 7.31 8.50 7.81 10.38 9.25 9.88 10.06 10.44
Cards Drawn 7.31 8.50 7.81 10.38 9.25 9.88 10.06 10.44

Minions Played 5.50 6.19 5.38 8.19 6.88 7.75 7.25 7.81
Spells Cast 2.06 2.94 2.81 5.19 3.63 4.00 5.19 4.69

Hero Power Used 1.50 2.50 3.13 3.31 2.44 3.69 4.25 3.88
Weapons Equipped 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MINIONS SPELLS

Antique Healbot (C) Blizzard (R)

Antique Healbot (C) Blizzard (R)

Argent Commander (R) Dragon’s Breath (C)

Baron Geddon (L) Fireball (C)

Clockwork Gnome (C) Flame Lance (C)

Clockwork Gnome (C) Flamestrike (B)

Clockwork Knight (C) Flamestrike (B)

Coliseum Manager (R) Mirror Image (B)

Dancing Swords (C) Polymorph Boar (R)

Fallen Hero (R) Polymorph Boar (R)

Flesheating Ghoul (C) Pyroblast (E)

Gormok The Impaler (L)

Imp Master (R)

Leper Gnome (C)

Leper Gnome (C)

Razorfen Hunter (B)

Razorfen Hunter (B)

War Golem (B)

Water Elemental (B)

Fig. 3. The best decklist obtained through the evolutionary approach for
Mage. Cards that are considered particularly powerful by a human expert are
highlighted in bold. Cards that are considered sub-optimal are in italics. The
rarity of each card is also marked as (in decreasing order of rarity) Legendary
(L), Epic (E), Rare (R), Common (C), Basic (B).

number allowed, even if there is no explicit pressure to have

this configuration in the fitness function. The evolutionary

algorithm autonomously discovered that possessing a higher

number of copies of some cards is better, since it makes

the deck more reliable. Secondly, a considerable percentage

of cards appearing in the deck have been often used in the

competitive ladder, with the exception of Coliseum Manager,

considered a sub-optimal minion, Razorfen Hunter, that has

several strong competitors in the same niche, and Gormok

the Impaler, which is sometimes used but considered very

circumstantial by the players.

Finally, the deck includes several interesting synergies.

Antique Healbot, Clockwork Gnome, Clockwork Knight: these

are all minions of type Mech, and Clockwork Knight is able to

boost other Mechs. Imp Master, Gormok the Impaler, Razorfen

Hunter: Gormok is a Legendary minion with a powerful ability

that rarely activates, since it requires the presence of at least
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Fig. 4. Mana curve of the evolved Mage deck.

other 4 other minions on your side of the field; the other cards

all spawn extra minions on the battlefield, making it easier to

activate Gormok. Flesheating Ghoul, that increases its strength

every time a creature on the board dies, works very nicely with

spells able to wipe the board such as Blizzard and Flamestrike.

Table IV presents results and play statistics of the evolved

decklist against each one of the human-designed decks. The

deck is able to win reliably against most of the opponents,

being particularly effective against Warlock, Shaman and

even Paladin (the highest ranking deck in the preliminary

evaluation). On the other hand, the toughest match-ups seems

to be Hunter and Warrior: the former is probably often able

to out-run the Mage deck in a damage race; the latter is more

of a control deck relying on large, dangerous minions that are

hard to deal with for the Mage deck.

B. Evolved Hunter deck

Figure 5 showcases the best Hunter decklist obtained at the

end of the evolutionary process. Again, the deck is clearly

Aggro (see Figure 6), but this time it exploits a relatively large

selection of creature-removal spells, that can probably be used

to control the field in the mid-game. Interestingly, the deck

exploits either minions with a low cost (Gadgetzan Jouster,
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Jungle Panther, Lance Carrier), or with a large cost (Gazlowe,

King Krush, Piloted Sky Golem, Sneed’s Old Shredder), while

featuring lots of spells with intermediate cost (Multi-shot,

Cobra Shot, Deadly Shot, Powershot).

MINIONS SPELLS

Annoy-o-tron (C) Animal Companion (B)

Annoy-o-tron (C) Animal Companion (B)

Blackwing Technician (C) Arcane Shot (B)

Captain Greenskin (L) Bestial Wrath (E)

Defender Of Argus (R) Flare (R)

Defender Of Argus (R) Kill Command (B)

Fel Reaver (E) Unleash The Hounds (B)

Fel Reaver (E) WEAPONS

Gilblin Stalker (C) Gladiator’s Longbow (E)

Goldshire Footman (B) Glaivezooka (C)

Goldshire Footman (B)

Hungry Crab (E)

Kezan Mystic (R)

Loatheb (L)

Metaltooth Leaper (R)

Piloted Sky Golem (E)

Raging Worgen (C)

Ship’s Cannon (C)

Sylvanas Windrunner (L)

Timber Wolf (B)

Twilight Guardian (E)

Fig. 5. The best decklist obtained through the evolutionary approach for
Hunter. Cards that are considered particularly powerful by a human expert
are highlighted in bold. Cards that are considered sub-optimal are in italics.
The rarity of each card is also marked as (in decreasing order of rarity)
Legendary (L), Epic (E), Rare (R), Common (C), Basic (B).
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Fig. 6. Mana curve of the evolved Hunter deck.

Again, even without a specific pressure to do so, the

algorithm found it useful to include double copies of several

cards. And most of the cards have seen play in the competitive

ladder: Sylvanas Windrunner and Loatheb are two Legen-

daries considered extremely powerful, Animal Companion,

Kill Command and Unleash the Hounds are included in almost

all Hunter decks, and the same can be said for one of the

two weapons, Glaivezooka. Annoy-o-Tron and Defender of

Argus are also pretty popular, albeit they are more used in

decks featuring other Heros. Fel Reaver is perhaps the most

surprising choice, being a large, cheap creature with a huge

drawback: every time the opponent plays a card, Fel Reaver

destroys the top three cards of the player’s deck. The usual

response to Fel Reaver is to play as many cards as possible, in

order to remove a huge part of its controller’s deck; but maybe

the MetaStone AI is not able to assess correctly the drawback,

and thus in this environment Fel Reaver might be even more

effective. The deck also features some questionable choices:

Hungry Crab, Goldshire Footman and Ship’s Cannon simply

have too many better competitors in their respective niches;

while Bestial Wrath’s effect is considered too circumstantial

to be useful in competitive play.

Nevertheless, we can observe again some interesting syn-

ergies: Kill Command and Bestial Wrath are enhanced by

minions of type Beast, and the deck has 4 of them (counting

the spell Animal Companion, that puts a random Beast in

play); Metaltooth Leaper boosts minions of type Mech, which

the deck plays 6 of; Flare and Kezan Mystic are two cards that

are particularly effective against spells used by Mage and Pal-

adin decks, the top two of our preliminary evaluation; finally,

even if not particularly cost-effective, Captain Greenskin can

enhance both Gladiator’s Longbow and Glaivezooka.

From the results in Table V, it is noticeable how the deck’s

performance is particularly good against Druid and Warlock,

that are probably too slow to deal with the Hunter’s aggression;

while the worst match-ups are versus Priest, which is effective

against low-strength minions, and Mage, another Hero whose

cards are able to wipe the board, resulting in a big disadvantage

for aggressive decks.

C. Remarks

While the presented proof-of-concept seems promising,

there are a few weak points that are worth discussing. The

most evident issue lies in the fitness function: MetaStone

is a good AI, but so far it cannot attain human-comparable

levels of play, especially with the settings we used for the

experiments, based on a greedy choice; thus, it is hard to tell

whether the optimization process is discovering generally good

decks, or good decks just for this specific AI. This issue is hard

to solve, but the fact that the evolutionary process created a

deck with cards considered good by human players is at least

encouraging. In future works, we plan to perform a play-by-

play analysis of selected games using the evolved decks, in

order to better study the problem.

Another possible issue lies in our definition of the search

space. Currently, the evolutionary algorithm is free to replace

a card with any other card in the set, with a low chance of

obtaining an improvement. It would probably be more sensible

to include mutations able to transform a card into other cards

with the same cost, or similar characteristics, as human players

often do when considering modifications to a decklist. The

presence of such mutations could potentially help smoothen

the fitness landscape, driving the algorithm towards interesting

areas more effectively.

VI. CONCLUSIONS

In this paper we have presented a methodology for the

automatic evolution of decks for collectible card games using

HearthStone as a case study. An evolutionary algorithm is

applied to the task. This EA uses as the structure of an
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TABLE V
STATISTICS OF THE BEST INDIVIDUAL USING HUNTER CARDS, AGAINST ALL OF THE HUMAN-DESIGNED DECKS (16 TIMES PER DECK). WIN RATE OF

THE MIDRANGE HUNTER SEASON 18 (MHS18) DECK IS ALSO SHOWN AS COMPARISON.

Druid Mage Paladin Priest Rogue Shaman Warlock Warrior

% of wins of MHS18 81.25 40.625 40.625 25 65.625 62.5 65.625 65.625

% of wins of Evolved Hunter 100 37.5 43.75 37.5 62.5 62.5 68.75 50
Damage Dealt 34.81 34.06 45.69 54.00 33.94 37.69 41.50 42.56
Healing Done 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mana Spent 23.63 23.25 25.19 28.00 26.69 23.81 27.81 31.75

Cards Played 11.69 10.56 11.63 11.88 11.94 11.19 13.06 13.63
Turns Taken 7.81 7.44 7.56 7.94 7.81 7.56 8.25 8.75
Cards Drawn 7.94 7.69 7.75 7.94 7.69 7.69 8.69 9.13

Minions Played 6.00 6.00 6.13 6.94 6.44 6.00 6.75 7.31
Spells Cast 2.75 2.25 3.13 2.56 3.13 3.06 3.25 3.13

Hero Power Used 2.63 2.00 2.06 2.13 2.00 1.94 2.63 2.75
Weapons Equipped 0.31 0.31 0.31 0.25 0.38 0.19 0.44 0.44

individual a list of 30 cards, taken from the almost 700

available. The fitness function is the number of victories of

the candidate deck against popular human-made competitive

decks, performed through MetaStone, an AI able to play

HearthStone. Two experiments have been conducted, and the

proposed approach proved able to create a competitive Mage

and Hunter deck for a specific real-world metagame, taken

from Season 18 (the last one before the current, and still

changing, metagame).

In future works, we plan to evolve decks for other Heroes,

improve the evolutionary algorithm by adding context-aware

mutations, and perform a play-by-play analysis of the decks,

to try and assess the generality of our approach.
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Abstract—Turn-based strategy games are interesting testbeds
for developing artificial players because their rules present
developers with several challenges. Currently, Monte-Carlo tree
search variants are often utilized to address these challenges.
However, we consider it worthwhile introducing minimax search
variants with pruning techniques because a turn-based strategy is
in some points similar to the games of chess and Shogi, in which
minimax variants are known to be effective. Thus, we introduced
three forward-pruning techniques to enable us to apply alpha
beta search (as a minimax search variant) to turn-based strategy
games. This type of search involves fixing unit action orders,
generating unit actions selectively, and limiting the number of
moving units in a search. We applied our proposed pruning
methods by implementing an alpha beta-based artificial player
in the Turn-based strategy Academic Package (TUBSTAP) open
platform of our institute. This player competed against first-
and second-rank players in the TUBSTAP AI competition in
2016. Our proposed player won against the other players in five
different maps with an average winning ratio exceeding 70%.

I. INTRODUCTION

Building competitive computer game players is one of the

main themes in the field of artificial intelligence. As a result of

much research, computer players are sufficiently competent to

compete with professional human players in some traditional

board games such as chess [1], Shogi (Japanese chess) [2],

and Go [3]. On the other hand, there are games in which

computer players are weaker than human players. Turn-Based

Strategy (TBS) games constitute a genre of games that require

additional research to increase the levels of competency of

computer players.

TBS games require players to take turns moving their

pieces (known as ‘units’ in TBS) when competing against

each other in games such as chess and Shogi. However, TBS

games contain rules that complicate the development of strong

computer players.

For example, TBS games allow players to manipulate all

their pieces (units) in whatever order they prefer in each turn.

This rule provides players with a large number of possible

actions per turn, which increases the number of nodes and

edges for game tree search. Even the use of only six units,

each of which has 10 possible actions, result in 720 million

possible actions available to a player in a turn. As with other

examples, there are various game positions from which players

start their games (known as ‘maps’ in TBS) and unit types have

complex relationships to ensure competitiveness in combat.

The rules make it difficult to design state evaluation functions

with high precision and to apply supervised machine learning,

which uses the game records of expert human players.

These difficulties are frequently overcome by adopting

Monte-Carlo tree search variants for computer players in TBS

games, whereas minimax search variants such as αβ search are

rarely used. However, TBS games have basic game structures

similar to those of chess and Shogi, for which αβ search

is known to be effective. In addition, human players often

look ahead by considering sequences of consecutive actions to

decide their subsequent moves, as is the case with αβ search,

by focusing only on the plausible actions for each position.

Therefore, we tried to apply αβ search to TBS games and

evaluated the performance.

We introduced three modifications to decrease the number

of edges of the game tree in αβ search to allow us to increase

the depth of the search sufficiently to achieve the desired

performance. These modifications are as follows:

• Fixing the order in which units are allowed to move

• Applying selective unit action generation

• Limiting the number of moving units in each search

It is true that these modifications involve some risk of over-

looking important or critical moves because these techniques

are forward pruning. However, we believe that introducing an

appropriate level of this pruning would result in an enhance-

ment of the performance of artificial players in TBS games.

Especially, the use of αβ search in TBS games often does not

permit the player to look ahead by even one opponent move

(i.e., the search cannot even reach 2 ply deep) in a practical

amount of time positions without any pruning, because of the

large number of possible actions in one turn. Thus, we expect

pruning techniques to have a great effect on the performance,

especially if they are capable of increasing the search depth to

an extent that would enable them to consider the opponent’s

future actions.

This paper is organized as follows. In Sect. II, we present

work related to this research. Sect. III explains the TUBSTAP
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platform we use in this research to evaluate the performance

of the proposed method. Sect. IV describes the three types

of modifications we adopt in this research. Sect. V to Sect.

VII describe preliminary experiments to assess the respective

effects of the three modifications. In Sect. VIII, we present the

experiments in which our proposed computer player competes

against a first- and second-rank player of the TUBSTAP AI

competition in 2016. We discuss some future work in Sect.

IX.

II. RELATED WORK

A. Minimax Tree Search and Pruning Techniques

Minimax tree search has been widely adopted to develop

computer players in several games such as chess and Shogi.

Sometimes developers adopted tree searches by removing

certain branches of the tree to increase the search depth Such

techniques are known as pruning, and pruning techniques are

categorized into two types: backward pruning and forward

pruning. Backward pruning is pruning that does not affect the

search result. The αβ algorithm is a well-known backward

pruning technique [20].

On the other hand, forward pruning removes some game tree

branches involving risks to affect the minimax value of the root

node. For example, in a classic pruning method shown in a

1960s chess program, tapered n-best search searches [4] only

the n best moves, which are decided by some move ordering

techniques [5]. These best moves are considered and the other

moves are pruned in the search.

More recent techniques often use the alpha/beta values in

the αβ algorithm for forward pruning. For example, futility

pruning [6] and null move pruning [7] estimate the upper/lower

bounds of evaluation values obtained by moves. In this case,

pruning discards moves with evaluation values that have little

potential to exceed the alpha value or fall below the beta value.

These techniques are used not only for chess but also for Shogi

[9], thereby making it possible to search trees deeper than 10

plies.

B. Turn-based Strategy

Considerable research has been performed on TBS games

[12] [13] [14] for the “Cid Meier’s Civilization” series [10]

or its clones. However, we consider the game system of this

series to contain many complex factors other than combat by

units, such as economy, research, and diplomacy. Thus, we

focus on TBS games of which the systems concentrates on

combat between units.

The following studies relate to TBS games of this type. A

computer player with an evolutionary computational technique

is proposed for the Advance Wars clone game [11]. A Monte-

Carlo tree search algorithm [15] and upper confidence tree

algorithm with fuzzy functions [16] were applied to the open

platform TUBSTAP [17]. In this work, we also adopt the

TUBSTAP platform for the application of our method.

Fig. 1. Screenshot of the TUBSTAP platform.

TABLE I
UNIT RELATIVE STRENGTH

Defense F A P U R I
Attack

F 55 65 0 0 0 0

A 0 0 85 115 105 105

P 0 0 55 70 75 75

U 0 0 60 75 65 90

R 70 70 15 50 45 105

I 0 0 5 10 3 55

TABLE II
LAND TYPE - PROTECTIVE EFFECT AND MOVEMENT COST

Land type Mountain Forest Plain Road Sea
[Protective Effect]

A, F 0 0 0 0 0

R, I, P, U 0.4 0.3 0.1 0 0

[Movement Cost]

A, F 1 1 1 1 1

P, U, R ∞ 2 1 1 ∞

I 2 1 1 1 ∞

III. TUBSTAP PLATFORM

TUBSTAP is an open platform for TBS game computer

players. The game system is modeled after “Famicom Wars

DS2” [18]. A screenshot of TUBSTAP is displayed in Fig. 1.

AI player competitions are held annually using the platform,

and the code produced by some of the participants and maps

that are used for the competitions are freely available.

We provide an overview of the game rules of the platform.

In each turn, each player can manipulate as many units as

they like in whatever order the player prefers. Each unit can

perform an attack action, a movement action, or an “attack

after movement” action in a turn. Attack actions reduce the

Hit-Points (HPs) value of the opponent unit at which the attack

is directed. When the HP value of a unit is reduced to zero, the

unit is excluded from the game. A player wins if the opponent

player loses all of their units.

There are six types of units in this platform. That is, Fighter

(“F”), Attack Aircraft (“A”), Panzer (“P”), Cannon (“U”),

Anti-Air Tank (“R”), and Infantry (“I”). In addition, there

are five types of land cells, that is, mountain, forest, plain,
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road, and sea. Each unit type and each land type are assigned

constant values as shown in Table I and II. The values “relative

strength” and “protective effect” define the amount of damage

by attack actions. Equation 1 shows the amount of damage,

i.e., the amount by which the HP value is reduced by a unit

carrying out an attack.

damage =
(relativestrength)× (attackHP) + 70

100 + (protectiveeffect)× (defenseHP)
(1)

For example, when a unit A with seven HPs attacks an

opponent unit P with nine HPs on a forest cell, the amount of

damage unit P experiences is calculated as 85×7+70
100+3×9 (= 5).

Cells that can be reached by each unit in turn are defined as

“movable capacity” of the unit and the sum of the movement

costs the cells along the movement path impose on the unit.

The “movable capacity” of F, A, P, U, R, and I is 9, 8, 6,

6, 6, and 3, respectively. The movement cost of each land

cell is listed in Table I. A cell is reachable if the sum of the

movement costs along the movement path is less than or equal

to the unit movable capacity. Each unit cannot proceed through

cells occupied by any opponent unit, whereas each unit can

pass through cells occupied by friendly units (although, they

cannot remain on the same cell).

Each unit except U can attack an opponent unit on an

adjacent cell after one movement per turn. Attacks instantly

prompt a counter attack by the opponent unit after an attack

action. U can only attack more distant units, located in cells

found at a Manhattan distance of 2 or 3. These distant attacks

do not lead to any counter attack, but U cannot move and

attack during the same turn.

This platform serves game systems simpler than those of

existing commercial TBS games, although the platform covers

essential rules that are found in most TBS games. Thus, we

consider this platform as a suitable testbed for this research

even though success in creating strong artificial players in this

platform does not guarantee success in other TBS games.

IV. APPROACH

In this section, we explain the three modifications we adopt.

We aim to reduce the computational costs for tree search

by removing certain edges of the tree. These reductions are

important not only because they can limit the computational

time to a reasonable amount, but also because they might be

able to sufficiently extend the search depth such that it enables

them to look ahead at the opponent’s actions.

A. Fixing orders of unit to move

In TBS games, the order in which players manipulate their

units in a turn is often important. However, there are many

cases in which the difference between orders is irrelevant.

In addition, there are also cases in which the order of only

a few units affects the result (e.g., the case in which the

result is affected only by whether a unit X moves before or

after another unit Y, even though there are many other units

in the position). Therefore, we try to reduce the amount of

Fig. 2. Grouping movement actions. Only one movement action is generated
per group.

computation by forcing each player to manipulate their units

in some (or a single) fixed order.

In this work we attempted to use the fixed-order patterns

listed below for all the units that are assigned IDs(1-N)

randomly in a map.

• Forward 1, 2, 3, . . . , N .

• Backward N, (N − 1), (N − 2), . . . , 1.

• Cut-Forward (N2 + 1), (N2 + 2), . . . , N, 1, 2, 3, . . . , N2 .

Forward order with the former and the latter parts

swapped.

• Cut-Backward (N2 −1), (N2 −2), (N2 −3), ..., 1, N, (N−
1), ..., N2 . Backward order with the former and the latter

parts swapped.

Depending on the value of a parameter, our proposed player (

which appears in the following sections) might consider only

one of them, or some of them.

B. Selective unit action generation

At first we provide definitions for some of the specific terms

used in this method. Strictly speaking, there are attack actions,

movement actions, and “attack after movement” actions in

TBS games, although we include “attack after moving” in

the attack actions for convenience. Furthermore, we prune

movement actions and attack actions differently.

[Movement action]

The number of possible movement actions per unit tends

to be large. Thus, we group the movement actions of a

unit according to the attack ranges of opponent units. This

grouping procedure is illustrated in Fig. 2. Then, we select

one movement action from each group, and discard the other

actions. This approach seems to be important because other

actions in the same group only serve the same opponent units

that can attack the unit in the next turn. There are many ways

to decide which action to pick from each group; however, we

selected actions according to the priorities stated below (the

first has higher priority).

1) The extent of protection the unit can take after the

movement (the higher the better.)

2) The Manhattan distance after movement of the coordi-

nates from the center of the whole units in the map (the

shorter the better.)

If more than one candidate remains, choose only one at

random.
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Fig. 3. Tree search with limited number of moving units. Instead of
performing a tree search using a large depth, repeat a shallower tree search
in which only a limited number of units can move.

[Attack action]

Similarly, we group attack actions to partially prune them.

We group the attack actions of a unit according to their target

unit (note that there can be more than one attack action from

a unit against another unit in a position). Then, we select only

one action per group, and discard the others. The action to be

chosen is selected by the number of opponent units that can

attack the unit in the next turn. The action with the least value

is selected. If there are multiple candidates, only one action is

selected at random.

C. Limiting the number of moving units

Before we start explaining the detailed issues, to avoid

confusion, we provide definitions for words used frequently

in this section.

• Unit action: Atomic action by a unit. Movement or

attack.

• Player action: A sequence of multiple unit actions that

one player can take in one turn. In case a player has

N units, their player action consists of N unit actions

(unless the player finishes the turn leaving some of their

units unmoved).

In TBS games, the number of player actions increases

exponentially according to the number of units. Given that

a player has N units on their side, each of which can take M

possible actions, a minimax tree requires N !MN leaf nodes

to look ahead of whole possible actions of the player in a turn

(i.e., search 1 ply deep). This value easily exceeds a reasonable

amount for practical use (e.g., M = 30 and N = 6 result in

about 520 billion nodes) as the value of N increases.

Therefore, we try to decrease the number of units involved

in a tree search. The procedure is illustrated in Fig. 3. We

repeat the two following operations until the whole the unit

finishes its action, (a) search the best player action by tree

search in which only a limited number of units generates

possible actions, (b) execute only the first unit action from

the obtained best player action.

This procedure is able to decrease the exponential factor in

the computation. In case each player has N units each of which

M possible unit actions can be taken, the amount of nodes

needed for a naive D-ply tree search is (N !MN )D . However,

by applying this limitation technique (only N ′ (< N ) units can

generate actions), the number of nodes becomes fewer than

N(N ′!MN
′

)D. The number of nodes decreases by a factor of
1
N
( N !
N ′!M

(N −N ′))D .

It should be considered how to select such ‘movable’ units

(i.e., units capable of generating possible unit actions in a tree

search) in this method. The measurements are as follows (the

first has a higher priority):

1) HP value of the unit. A higher value is preferred.

2) Manhattan distance from the coordinates at the center of

all the units in the map. A smaller distance is preferred.

By adopting these measurements, we ignore weak units (i.e.,

units incapable of causing a large amount of damage against

opponents and can be destroyed easily), or units further from

a hot spot. These units can be considered to be less influential

on the battle situation.

V. PRELIMINARY EXPERIMENT 1: FIXING UNIT ORDERS

In this section, we describe the experiment that was carried

out to determine the influence of the fixing order technique on

the performance. We prepared an αβ search player to which

we apply the fixing order technique. (Hereafter we refer to the

search player as the ‘proposed player’ to indicate players we

built for experiments) This player has two parameter variables:

the search depth of the game tree and the number of fixed-

order patterns adopted by the player. The performance of the

player is measured through battle trials.

A. Design: Artificial Player

The proposed player’s search depth (the number of ‘player

actions’ that need to be looked ahead) is 1 or 2. The unit

orders considered by the player are {Forward}(see section

IV-A), {Forward, Backward}, {Forward, Backward, Cut-

Forward, Cut-Backward}, or whole possible orders. The

state evaluation function adopted by our proposed player is

described in the appendix of this paper.

B. Experimental Setup

The proposed player competes against a naive UCT player

(described in [15]) that uses 10,000 playouts per unit action

generation. The maps illustrated in Fig.4 to 6 are used, and

200 matches are carried out for each map. The proposed player

moves first in 100 games, after which the other player plays

first in the next 100 games. A drawn match is counted as a

1/2 win for both players.
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Fig. 4. Map X. Designed by the
authors. (F6, A7, R7, P7) for Red
player. (F10, A10, R10, P10) for Blue
player. Red player move first.

Fig. 5. Map Y. Designed by the
authors. (F10, A10, R10, P10) for
Red player. (F10, A10, R10, P10) for
Blue player. Red player move first.

Fig. 6. Map Z. (P8, U10(already enacted), I10(already enacted), I10(already
enacted), I10) for Red player. (P10, U10, I10, I10, I10) for Blue player. Red
player moves first.

C. Results

The results of the battle experiments are shown in Fig. 7 and

8. The larger the number of fixed-order patterns is, the higher

the performance tends to be. Additionally, the computation

time increased according to increasing parameter values. The

reduction in the win rate is less than 10% in most cases for

the ‘2 orders’ and ‘4 orders,’ whereas the computation times

surely decreases by a factor of more than 10 (for ‘2 orders’).

Thus, we conclude that the approach in which the order is

fixed is able to improve the efficiency.

On the other hand, there should be possible flaws in our

method. In some cases, especially the cases in which we need

to eliminate whole opponent units through a narrow path, this

pruning method might fail to find an effective move because

the correct order in which units are required to move are

overlooked.

VI. PRELIMINARY EXPERIMENT 2: SELECTIVE ACTION

GENERATION

In this section, we use experiments to verify the influence

of the selective action generation approach on performance.

A. Design: Artificial Player

We prepared an αβ search player, with/without selective

action generation. The state evaluation function used by the

player is shown in the appendix. Different from Sect. V, this

player always adopts whole orders for units to participate in

the tree search. We apply selective generation for movement

Fig. 7. Win rate against UCT player. 1-ply search. The number of unit orders
are varied. Filled/Outlined markers for matches in which proposed player
plays first/second.

Fig. 8. Win rate against UCT player. 2-ply search. The number of unit
orders are varied. Filled/Outlined markers for matches in which the proposed
player plays first/second. If the computation time exceeds the time limits (300
seconds), the plot is omitted; e.g., ‘2 orders’ in Map 2 and ‘4 orders’ in Map
3 are omitted because of the time limit.

actions, for attack actions or for both of these types of actions

and then we observe the performance and the computation

time.

B. Experimental Setup

Almost the same settings as in Sect. V are employed. The

αβ search player competes against a naive UCT-based player

with 10,000 playouts. The αβ search player’s search depth is

either 1 or 2. The options in regard to forward pruning are as

follows.

• Both: Both the movement actions and attack actions are

generated selectively.

• Move: Movement actions are generated selectively.

Whole attack actions are generated.

• Attack: Whole movement actions are generated. Attack

actions are generated selectively.

• No-Prune: No forward pruning is applied. Whole possi-

ble actions are generated.

As in Sect. V, the maps illustrated in Fig. 4 to 6 are used, and

the number of matches per each map are also the same.
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Fig. 9. Win rate against UCT player. 1 ply deep. Pruning options for selective
action generation are varied. Filled/Outlined markers for matches in which the
proposed player plays first/second.

Fig. 10. Win rate against UCT player. 2 ply deep. Pruning options for selective
action generation are varied. Filled/Outlined markers for matches in which the
proposed player plays first/second. If the computation time exceeds the time
limits (300 seconds), the plot is omitted; e.g., each of the ‘No-Prune’ options
are omitted from the plot because their time limits exceed the specified value.

C. Result

The results of the battles are shown in Fig. 9 and 10. The

pruning attack actions seem to degrade the performance even

though the differences are slight in some cases. On the other

hand, pruning movement actions seem not to degrade the

performance, although this type of pruning action decreases

the computation time significantly by nearly a factor of 10.

Thus, we conclude that the approach involving selective

generation is effective in this case, because it does not result

in significant performance degradation even though it reduces

the computation time.

VII. PRELIMINARY EXPERIMENT 3: LIMITING THE

NUMBER OF MOVING UNITS

The approach described in Sect. IV-C is examined in this

section.

A. Design: Artificial Player

As in the experiments in Sect. V and VI, we prepare an αβ

search player of which the state evaluation function is provided

in the appendix. The player employs a tree search with a 1-

Fig. 11. Win rate against UCT player. 1 ply deep. The parameter value (M,
N) represents that “Only M friendly units and only N opponent units can
participate in the tree search”. Then, (1, 1), (3, 3), and (4, 4) are employed
here.

Fig. 12. Win rate against UCT player. 2 ply deep. The parameter value (M,
N) represents that “Only M friendly units and only N opponent units can
participate in the tree search”. Then, (1, 1), (3, 3), and (4, 4) are employed
here, although (4, 4) exceeded the time limit (300 seconds).

or 2-ply search in which only the limited number of units can

act.

B. Experimental Setup

The number of friendly and opponent units that can act in

the tree search performed by our player, are (1, 1), (3, 3),

and (4, 4). A naive UCT player with 10,000 playouts is the

opponent player.

We adopted maps different from those used in previous

sections, because this pruning technique allows our player to

function on larger maps. The five sample maps bundled with

TUBSTAP platform ver. 1.07 (available on the website) are

used. The number of red/blue units are (6, 6), (8, 4), (7, 7),

(5, 5), and (7, 7), respectively. The number of matches per

each map is the same as in Sect. V.

C. Results

The results are shown in Fig. 11 to 12. When the parameter

values are increased, the winning ratio and computation time

are increased. Additionally, the performance improved with

the deeper search except for the battles on map 4. The results

show that this limiting approach might harm the performance

in some cases, but it surely seems to decrease the computation

time.
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TABLE III
WIN RATES AGAINST FIRST- AND SECOND-RANK AI PLAYERS (200 MATCHES FOR EACH MAP)

% wins against first-rank player “M-UCT” (with 95% C.I.)

Map-Fujiki Map-Ishitobi Map-Muto Map-Sato Map-Takahashi Averaged

Move First 90 (±5.9) 75 (±8.5) 41 (±9.6) 93 (±5.0) 66 (±9.3) 73 (±3.9)

Move Second 94 (±4.7) 65 (±9.3) 26 (±8.6) 98 (±2.7) 92 (±5.3) 75 (±3.8)

Total 92 (±3.8) 70 (±6.4) 34 (±4.2) 96 (±1.7) 79 (±3.6) 74 (±2.7)

% wins against second-rank player “DLMC-PW55” (with 95% C.I.)

Map-Fujiki Map-Ishitobi Map-Muto Map-Sato Map-Takahashi Averaged

Move First 89 (±6.1) 65 (±9.3) 82 (±7.5) 97 (±3.3) 63 (±9.5) 79 (±3.6)

Move Second 82 (±7.5) 53 (±9.8) 78 (±8.1) 97 (±3.3) 80 (±7.8) 77 (±3.7)

Total 86 (±4.8) 59 (±4.3) 80 (±3.5) 97 (±1.5) 72 (±3.9) 78 (±2.6)

VIII. EXPERIMENT: PERFORMANCE EVALUATION

Next, we assess the performance of the proposed method

against some advanced players. We prepared a player by

applying all three the modifications. The proposed player

competes against the winners of the TUBSTAP AI compe-

tition 2016 [19] we adopted as the opponent players in this

experiment.

A. Design: Artificial Player

We prepared an αβ player by employing the three forward

pruning techniques. The parameter values that were used for

pruning in the proposed player were decided by experiments

that are omitted from this paper (because of space limitations).

The parameters are:

• 2-ply deep search.

• Two fixed-order patterns for units’ actions. (Forward and

Backward in section V.)

• Each friendly unit generates pruned movement actions

and pruned attack actions as its possible actions in the

tree search.

• Each opponent unit generates no movement actions and

pruned attack actions as its possible actions in the tree

search.

• Five friendly units and 10 opponent units generate pos-

sible actions in the tree search.

B. Experimental Setup

The proposed player competes against two players on five

maps. The detailed conditions are as follows.

• Five maps are used. (These maps are the same as those

used in the GAT2016 competition and are available on

the website [19].)

• First-rank player “M-UCT” and second-rank player

“DLMC-PW55” in the GAT2016 competition as oppo-

nent players. (These players are also available on the

website.)

• Two-hundred matches per map for each opponent. One

player plays first in 100 games, and the other player plays

first in the next 100 games.

• A match that ends in a draw is counted as a 1/2 win for

both players.

• Each player uses around 10 seconds to carry out its player

action.

We also tested a player without any of the three pruning

techniques, though, the player cannot search even 1-ply deep

within one minite.

C. Results

The result of the experiment is presented in Table III.

The proposed player was significantly more competent than

the first-rank player on four out of the five maps, and was

significantly stronger against the second-rank player on all the

maps. Additionally, the averaged win rates exceeded 70 %

over the whole game against the first- and second-rank player,

respectively. Thus, we conclude that the proposed player

outperformed both of the winners of the 2016 competition.

We attribute this performance to the success of our proposed

methods in extending the search depth without negatively

affecting the precision of the tree search to any significant

extent.

IX. CONCLUSION AND FUTURE WORK

We proposed three forward-pruning techniques to apply

minimax search variants to TBS games. These methods allow

artificial players to search quicker and deeper at the risk of

overlooking some important moves.

The influence of these techniques on the respective play-

ers’performance was analyzed. These analyses showed that,

although these techniques have a slightly harmful effect on

performance, they allow the artificial player to search deeper,

thereby resulting in the enhancement of the overall perfor-

mance on the TUBSTAP platform.

Then, we introduced the techniques into an αβ search with

appropriate parameter values and created an artificial player

on the TUBSTAP platform. The experimental result showed

that the created player significantly outperformed first- and

second-rank players in the TUBSTAP AI 2016 competition.

However, we only evaluated our method on a platform of

which the rules are simpler than those of existing commercial

TBS game titles. On this platform, the benefits of using

our method (reduction of the search space) are greater than

the disadvantages (risks of overlooking critical moves). The

benefits should be assessed in other TBS game environments

because they may not be greater than the disadvantages.
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Moreover, our methods have room for improvement because

they contain unsophisticated architectures. For example, the

method for selecting actions from whole legal moves is

designed roughly. In addition, our method is presently unable

to intentionally support movement actions that guard important

friendly units.
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APPENDIX

A. State Evaluate Function

We prepared artificial players by using an αβ search, and

the search method needs a state evaluation function. Here,

we explain the state evaluation function adopted over all the

experiments in this paper.

A game position is scored as follows:

1) Each unit (owned by the player to move) carries out an

attack action that causes the largest damage out of all

possible attack actions. (However, these ‘possible attack

actions’ are not precisely suggested. Whether a unit can

attack another unit is roughly (and quickly) estimated

by obtaining the Manhattan distance between the two

units.)

2) Calculate the weighted sum of unit HPs as the evaluation

value. The weight values are: 1 for the turn player’s in-

fantry units, 4 for the turn player’s units except infantry,

-1 for the other player’s infantry, -4 for the other player’s

units except infantry.
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Abstract—Operating autonomous agents inside a 3D 
workspace is a challenging problem domain in real-time for 
dynamic environments since it involves online interaction with 
ever-changing decision constraints. This study proposes a 
neuroscience inspired architecture to simulate autonomous 
agents with interaction capabilities inside a 3D virtual world. The 
environment stimulates the operating agents based on their place 
and course of action. They are expected to form a life cycle 
composed of behavior chunks inside this environment and 
continuously optimize it around the stimulated reward. The 
architecture is composed of specialized units that run Cortical 
Learning Algorithm (CLA) which models functional properties 
of layers II and III as in six layer theory of neocortex. This work 
focuses on extending it with functional properties of layers IV, V 
and basal ganglia to obtain voluntary behavior that is suitable for 
an autonomous agent. Through experimental scenarios, the 
architecture is observed and evaluated in order to obtain an 
apparent learning process. The communication between layers 
and internal connectivity of embedded CLA units are able to 
capture sequential and causal relations from the environment 
and the first evaluation of the implementation has high potential 
for future directions. 

Keywords—cortical learning algorithm; hierarchical temporal 
memory; autonomous agent; neocortex layers; artificial life  

I.  INTRODUCTION 

 Building an autonomous agent that operates in a virtual 3D 
workspace is a complex task which can be approached from a 
variety of fields [1]. To name a few, the solution can be based 
on machine learning, artificial intelligence, logic models, signal 
processing principles, mathematical theories, nanotechnology 
and other related fields [2, 3]. Recently, a number of studies 
integrated neuroscience into their solutions. Hierarchical 
temporal memory (HTM) is one of the better known 
frameworks that inhabit neuroscientific properties [4]. The 
theory involves constructing a hierarchical structure composed 
of computational units that imitate the local regions of 
neocortex at a functional level. The computational units of this 
hierarchy runs on CLA [5]; a model that incorporates 
algorithmic principles of some individual layers in neocortex, 
namely layers II and III. 

 Cortical learning algorithm itself may seem to promise a 
domain independent solution on the surface with its high noise 
tolerance, semi-unsupervised approach and neuroscientific 

algorithmic properties. However, in order to build an 
autonomous agent based on CLA, additional structures are 
required to produce voluntary behavior. Reward circuitry is a 
central structure in any autonomous agent for assessing options 
on a given situation. Novelty detection and internal experience 
replay mechanisms are also crucial to obtain a predictable, 
efficient and apparent learning process from a human-like 
perspective. These properties are obtained through various 
subcortical regions and brain parts in neuroscience. 

 This study identifies the related areas in the brain to 
incorporate the necessary properties into the model and extracts 
their algorithmic properties in order to come up with a model 
that is capable of simulating an artificial life inside a 3D virtual 
environment. After presenting the related background, the 
study continues with an overview of CLA and the proposed 
architecture. This is followed by the detailed functionality of 
these structures and how they are connected together. The 
focus then is on evaluating the model through the use of an 
autonomous agent operating in 3D environments with 
constraints. Implementation, performance metrics for these 
scenarios and information regarding the testing platform are 
provided. Finally, the model is discussed in detail to underline 
the strengths and weaknesses followed by conclusion and 
future works. This study implements the layers IV, V and basal 
ganglia based on current CLA foundations and introduces a 
novel prototype which further extends the capabilities of the 
existing models to simulate artificial life. 

II. BACKGROUND 

The HTM model was developed based on the memory 
prediction theories that are presented On Intelligence by Jeff 
Hawkins [6]. A year after he published the book, he founded 
Numenta Inc. with Dileep George. The goal was to come up 
with a theory of how the brain works and a platform to 
implement it. Sparse distributed memory [7] was their starting 
point which represents information throughout the model. 

Cortical learning has been around for a decade and it is 
utilized in various fields and for commercial purposes. Grok 
[8] is the commercial application of this model onto various IT 
analytics problems. It is mainly used as an anomaly detector in 
commercial applications such as geospatial tracking and stock 
predictions. The company also has an open source 
implementation Nupic [9] since 2013, in order to help advance 
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the theory and the implementation through an active 
community. The model is also utilized in a natural language 
processing domain by Cortical.io [10]. 

Computational architecture of neocortex layers were argued 
on [11] in an extensive research. In [12], the HTM theory 
extended to create a general solution for resembling the brain 
functioning. Hawkins and Subutai patented their neuroscience 
related research on cortical learning [5, 13]. These patents 
focused on the algorithmic properties and the correlations of 
the HTM theory with neuroscience. Building an autonomous 
agent based on CLA was attempted previously on a 2D virtual 
world where it is extended with emotions that would guide the 
learning [14]. The agent would then decide which grid to go 
depending on the output of the model. 

III. CORTICAL LEARNING ALGORITHM 

Cortical learning algorithm is a neural classifier at its core. 
The aim is to model the basic learning principles of the 
neocortex at a functional level. The advancements on the 
theory of neocortex layers clarify the missing algorithmic 
properties of CLA.  The structure of the model is similar to the 
mini and macro column theories in neuroscience [15]. 
Although this paper is not focused directly on CLA, it is 
necessary to have an understanding on its internal mechanism 
to grasp the proposed architecture. Therefore, basic functional 
mechanisms are described below. 

The CLA structure consists of multiple columns of neurons 
in a grid, forming a rectangular prism of neural layers. The 
neurons of the same column have similar functionality and the 
whole column gets input from its proximal dendrites. In other 
words, all the neurons in the same column are stimulated with 
the same input fed into the CLA. The proximal dendrites have 
a receptive range on the input field. The individual neurons 
forming the columns have their own distal dendrites which are 
connected to other individual neurons in other columns. 

A. Spatial Pooler 

At any given state, the number of active columns excited by 
the input is sparsified by an inhibition system. Based on the 
experiments conducted by Numenta and the findings on 
neocortex, a sparsity of %2 is preferred [6]. This ensures that 
all the states are represented with a small set of columns. 
Therefore, the region utilizes sparse distributed representation 
to describe its state at all times. This representation has some 
very powerful capabilities and it is the backbone of CLA 
theory that satisfies vital properties to make it work [7]. 

B. Temporal Memory 

The described system up to this point is just a general 
classifier with some neuroscientific properties. The same could 
be achieved with other models such as a variance of neural 
networks. However, the real capability of CLA is the 
contextual information that the individual neurons can provide. 
While the region is stimulated with online data, the patterns of 
active columns change according to the state. For example, let 
A be the set of active columns at time t. At t+1, the input 
changes along with the active columns and assume this new 
activation is B. The neurons belonging to the columns at B 

subsample the neurons of the columns of A and start forming 
connections towards those neurons. With enough trials, the 
neural connections between different neurons become stable. 
This results in an ability to predict the activity of B when A is 
encountered. To emphasize, the connections are formed 
between neurons not the whole columns. A column is active if 
it contains any active neurons. The activation on a columnar 
level represents the state without the context. On the other 
hand, individual neurons of the columns represent the context 
of the current state, in other words, the sequence that this state 
is occurring. Therefore, the neural activation on a state C that 
came after A and B is different from a state C that came after D 
and E. Although the activated columns are the same, the 
individual neurons of the columns implicitly carry the 
information of the recent past through their connectivity. 

IV. ARCHITECTURE 

The theory of Hierarchical Temporal Memory constitutes 
of multiple computational units that are functional imitations of 
cortical regions. The core computational units are modeled 
after CLA. The general approach is to obtain a framework that 
runs on the algorithmic principles of the six layer theory of 
neocortex. In order to do this, CLA units are used to represent 
one or more layers of a single region and these units have 
differing functions based on what layer they algorithmically 
imitate. 

The current state of CLA mainly encapsulates the 
functionalities of layers II and III which are the layers that 
capture high order sequences. A CLA unit can also be used to 
emulate layer IV by configuring its parameters and 
connectivity. This layer takes the sensory/thalamic input into 
the region. It is assumed to be doing first order predictions in 
the model, meaning its predictions are based on the last sensory 
input. Although layer V is one of the most studied part of a 
region, because of its complexity, it is not yet fully understood 
and structural changes are necessary to CLA in order to 
implement it. Functionally, layer V is responsible for making 
motor neuron connections and it also is the source of the output 
coupled with very little understood layer VI. The general layer 
connectivity of the agent model can be seen in Figure 1 below. 

Fig. 1.  Detailed infrastructure of the agent model. 

A. Sensor 

The proposed architecture is compatible with a variety of 
sensor types. However, in order to utilize the learning 
capability efficiently, certain properties of the input are crucial 
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to the functioning of the system. The HTM theory builds on 
sparse distributed representations and most of the properties 
below enforce the input to obey this representation type. 

• Binary 

For the computational simplicity and practical 
implementation, the sensory input is assumed to be a binary 
input vector. This vector could represent any type of data and 
encoded in any way. The input can be multi-dimensional as the 
topology of CLA allows it. A sensor encoding topological 
information from a virtual world significantly benefits having a 
multi-dimensional structure. 

• Sparse 

Sparsity directly affects the number of different patterns 
that can be described using a fixed sized input vector. It also 
dictates the range of semantic similarity between different 
input vectors. The preferred sparsity of HTM theory is between 
%10 and %1. The neurological evidence points towards the 
sparsity of %2 [6] and empirical experiments conducted using 
Nupic [9] show that neurological sparsity levels are efficient 
for the algorithm. 

• Semantic Meaning 

Every bit of the input must have some meaning in this 
architecture. This provides the structure for similarity or 
difference comparisons between vectors. Therefore, different 
inputs would have similar active bits corresponding to the 
semantic similarity. 

Finally, there is no restriction on the size of the input and 
the layer connected to the sensory input can be mapped to any 
dimensionality or size.  

B. Layer IV 

Input is fed into cortical regions through layer IV. The 
input can be output of a region lower in the hierarchy or it can 
be sensory data from thalamus [16]. In this architecture, layer 
IV is represented as a modified CLA. The proximal dendrites 
of its columns are connected directly to the sensor of the 
system. The range of the receptive fields of the proximal 
dendrites should be according to the input structure. Studies 
point out that layer IV does first order processing which means 
that the predictions does not encapsulate high order sequences. 
Therefore, the distal dendrites of the neurons in CLA imitating 
layer IV are not connected to other neurons in the same CLA. 
They are connected to the previous state of the sensor. This 
would result in the predicting neurons of the CLA to be fired 
based on the context of the previous input. 

C. Layer II/III 

The original Cortical Learning Algorithm is mainly based 
on the functional properties of layers II and III combined. 
Therefore, the CLA imitating these layers is not modified 
structurally. The proximal dendrites of the columns are 
connected to individual neurons of the lower layer IV. The 
distal dendrites make connections horizontally with other 
neurons of the same CLA. This mechanism is capable of 
representing high order sequences as layers II and III. The 

resulting predicting neurons encapsulate the context of the 
current input based on the current high order sequence. 

D. Layer V 

The output of the cortical region originates at layer V. The 
individual cells of this layer has indirect synaptic connections 
to the motor neurons in various places such as spinal cord and 
muscles. In order to voluntarily control any behavior, the layer 
has to learn which motor neurons are controlled with which 
neuron sets first. Therefore, before any voluntary behavior, the 
relation between motor neurons and layer V cells need to be 
constructed. This construction takes place as learning by 
association. At initialization, the synapses between motor 
neurons and layer V cell can be completely disconnected or 
there can be a preset of connectivity that could quicken 
learning the relationship between motor behavior and layer V 
states. At each iteration, the active neurons slowly connect to 
the motor neurons that are active at the same time. Therefore, it 
associates its internal states with motor activity. 

Layer V can send signals for voluntary motor commands 
after the layer constructs a mapping between motor activity and 
its activation. The output of the region originating at this layer 
becomes the desired motor command itself. The detail of this 
command is relative to the place of the region place in the 
hierarchy. In the HTM theory, this output also feeds up the 
hierarchy of cortical regions. Simultaneously, the output is also 
sent to the corresponding part of the thalamus, basal ganglia. 
Therefore, the output also plays a critical role in 
corticothalamic circuit and reward circuitry involving basal 
ganglia.  

The consensus around the workflow of neocortex is not 
completely unified. While it is clear that the input enters the 
region from its layer IV, projects into layer II and III, the 
preceding steps are argued upon. There are two views at this 
point. The layer III projects to layer V or the projections to 
layers II/III and V/VI happens simultaneously. The proposed 
architecture utilizes the former point of view [17]. 

This layer hierarchically sits on top of layer II/III and 
mainly gets excited by these layers. The proximal dendrites of 
the layer V CLA unit are connected to layer III. The 
connections can either be directly to the aligning columns for 
computational simplicity or to individual neurons of layer III. 
The distal dendrite connectivity of individual neurons is just as 
in default CLA unit; lateral connections among the neurons of 
layer V. 

In [18], it is stated that the activation in layer V is 
modulated by layer VI which is the layer controlling the 
attention of a region. In terms of CLA functionality, this 
finding implies that layer V has connections to layer VI 
through its distal dendrites but this is currently not considered 
due to architecture scope. The architecture involves a single 
region. The layer VI is also responsible for feedback down the 
hierarchy. 

The activation in the layer V represents the voluntary action 
created inside the region. Therefore, it is mandatory for this 
layer to be influenced by some kind of reward circuitry which 
is discussed in the next section. According to layer V is also 
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modulated by layer I through the apical tuft of its neurons. This 
allows subcortical regions such as basal ganglia to indirectly 
adjust the activation in layer V. In the architecture, this 
mechanism is implemented through direct modulation from 
basal ganglia to layer V bypassing layer I. 

E. Basal Ganglia 

The reward circuitry is a mandatory component of any 
autonomous agent. It guides the learning, prioritizes rewarding 
behaviors and therefore naturally results in the learning 
capacity being used for salient experiences. The reward 
mechanisms in mammalian brains involve a complex 
communication between neocortex, thalamus and subcortical 
regions. Basal ganglia are considered as the planning and the 
action selection center among these structures. The general 
consensus on its functionality is that basal ganglia do a type of 
reinforcement learning. It interferes with corticothalamic 
pathways and affects the cortex via increased or decreased 
reward signals [19, 20]. Although the layer I does not have an 
explicit place in this architecture, basal ganglia actually outputs 
to this layer [21]. This layer has dendritic tufts from layers II, 
III and V. Many subcortical structures and thalamus influence 
the region indirectly via these dendritic tufts. Basal ganglia is 
one of these structures and it indirectly performs excitation and 
inhibition on layer V. This mechanism guides the behavior by 
modulating the layer V activation and selectively picks an 
output based on its reward [22]. At the same time, it also gets 
rid of conflicting response patterns generated in this layer. 

The complex reward mechanism in neocortex is simplified 
for practical modelling purposes in this architecture. Layer I 
does not have an explicit presence and basal ganglia are able to 
directly influence layer V. Having a single region in the 
proposed architecture instead of a hierarchy facilitates a more 
direct control over the individual region. As with every layer, 
basal ganglia are also emulated as a modified CLA unit. The 
proximal dendrites of the columns are connected to individual 
layer V neurons. For more efficient capacity usage, the 
activation sparsity is lowered into a few neurons becoming 
active per iteration. In the current architecture, basal ganglia do 
not store any sequential information therefore the columns can 
be single neurons and distal dendrites can be ignored. The 
functionality in general is similar to having pointers to layer V 
states. The activated neurons in basal ganglia also store the 
current stimulation value corresponding to the current layer V 
activation. This results in basal ganglia indirectly storing layer 
V states with their pleasure outcomes.  

The voluntary action selection takes places as the last 
process of the whole architecture. It is important to note that 
the aim is to capture the algorithmic properties of the basal 
ganglia and the exact functionality can be achieved in a variety 
of ways. The predictive neurons of the layer V CLA unit 
actually represents all the possible actions for the next step. If 
these neurons are fed to basal ganglia simultaneously, the 
resulting activation inside the ganglia would represent all the 
possible actions and their reward outcomes. At this point, the 
ganglia can inhibit or excite these depolarized cells according 
to a given heuristic respecting the sparsity levels of layer V. In 
the end, some of the depolarized cells of layer V will become 
active and therefore project to motor neurons creating the 

voluntary behavior. Obviously, the process involves numerous 
tweaks and trials to capture the desired behavior forming 
process. 

F. Motor Neurons 

Although the motor neurons are the output of the system, 
they are fed into layer IV along with the sensory input on each 
iteration. This allows the layer IV to represent sensory 
transitions in the context of motor activity. These neurons are 
excited by layer V and modulated by basal ganglia with 
inhibition mechanisms to cancel out alternative behaviors. This 
modulation is based on the previously experienced reward on 
similar layer V state and behavior combinations. In other 
words, at the end of each iteration layer V represents the union 
of possible behaviors with its predictive (depolarized) neurons. 
Then, basal ganglia selectively allow a set of this neural 
activation using a direct inhibition and excitation mechanism 
on these depolarized neurons.  

V. TEST ENVIRONMENT AND IMPLEMENTATION 

The architecture is an ongoing implementation as a part of a 
game. Currently it is simulated real-time inside a 3D 
environment. The platform is an in-house game engine written 
in C++, powered with DirectX 11. The architecture is 
embedded onto agents that are controlled by physical forces 
simulated by the underlying physics engine; Nvidia PhysX. 
The environment is a complex 3D workspace and generated 
procedurally. One of the important design goals is that the 
architecture should be a feasible solution as a non-playable 
character intelligence. The target hardware for the game should 
not exceed 8 gigabytes of memory. A single copy of the 
simulation is required to be lower than 1 gigabyte at runtime, 
so that it could be ran on multiple agents simultaneously. It is 
designed to run on CPU utilizing a single core per simulation. 
Below is the exact specification of the platform that the 
experiments are conducted. 

• Intel Core i7-3632QM CPU @ 2.20GHz 

• 12 GB RAM 

• Nvidia GT645M GPU 

In this study, CLA implementation is based on the 
whitepaper by Numenta [4] and the patent by Hawkins et al. 
[13] which extends the algorithm by features that solidify 
neuroscience basis. It is written as a single core simulation for 
simplicity, debugging and implementation time (Figure 2a and 
2b). However, the algorithm is highly compatible with parallel 
solutions. The performance data on the next section is obtained 
from this custom implementation. As a side note, there is a 
publicly available implementation of CLA called Nupic [9] that 
can also be utilized in this architecture. The public source code 
has C++ and Python variants. Although, these implementations 
could be modified according to the needs outlined in 
architecture overview, they are simply not able to perform in 
real-time. 
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Fig. 2a.  Columnar activity representation of the layers in the game. 

 

Fig. 2b.  Neural activity representation of the layers in the game. 

VI. EVALUATION 

A. Peformance Evaluatıon 

Debugging and profiling the whole simulation is a complex 
task by itself. Being able to debug the CLA in real-time 
requires a highly sophisticated visualizer independent from the 
rendering of the game elements (Figure 3). Decoupling the 
total rendering task, game related computations and CLA 
simulations does not serve any purpose as the proposed 
architecture is supposed to run inside a game in real-time. In 
addition, the sensor of the architecture also utilizes the physics 
engine to obtain the information from the world. The motor 
neuron activations correspond to applying forces on the 
physical parts of the agent model. 

Considering the intricate nature of the solution, profiling 
the architecture in isolation does not provide meaningful 
insight without simulating the environment and the agent. Still, 
the data on relative performance due to CLA unit size is given 
on Table 1. The comparison is based on CPU sampling 
detecting runtime occupations of functions related to the 
architecture. The number in the table represents CPU 
occupancy percentage of the architecture with respect to 
overall game. That said, the fundamental performance metric is 
the interaction responsiveness of the whole game. The 
interaction suffers as the frame rate of the whole simulation 
decreases. Obtaining around 30 frames per second is the ideal 
metric for a real-time solution with a lower bound of 20 frames 
per second on average. 

 

Fig. 3.  Visual debugger showcasing the state of the architecture. 

TABLE I.  PERFORMANCE METRICS DUE TO CLA SIZE 

Performance Comparison 

Columns 
per CLA 

Neurons 
per 

Column 

CLA 
Size 

Model 
Size 

Sampling 
Ratio 

FPS 

256 4 1024 4096 35,83 36,8 

1024 8 8192 32768 58,66 26,2 

1024 16 16384 65536 60,88 24,7 

 

B. Experimental Scenarios 

The game environment is used for creating various 
scenarios which requires the agents to form behavior chunks 
that would gradually become better at obtaining pleasure. The 
scenarios can be generalized as navigating through an 
environment which stimulates the agent depending on the place 
and the course of actions. An example scenario is represented 
in (Figure 4). The environment is separated into polygons 
through creating a Voronoi diagram out of random points. The 
agent has a sensor obtaining information about these polygons. 
There is a set S of polygons that the agent is supposed to go 
that is predetermined. It obtains pleasure by travelling to these 
polygons that are not illuminated. The polygons that do not 
belong to the set S cause pain on the agent. The agent can also 
interact with these polygons by extracting resources if there are 
any available. A successful extraction provides pleasure for the 
agent. The agent uses a force actuated model and the force is 
controlled by the motor neurons of the architecture. It can 
interact with any polygon, rotate and travel in the direction it is 
pointing at. It does teleport to a preset location after a threshold 
of pain. 

The scenario described above is a fairly complex one that 
involves a force actuated model navigating freely in a 3D 
environment and interacting with it. The agent and the 
architecture are both observed through every test session 
conducted. The information obtained through the 
accomplishments and the failures of the agent is discussed in 
the next section. 
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Fig. 4.  Test scenario demonstrating the process of forming behaviors. 

VII. DISCUSSION 

The expectation is to observe a humanly relatable learning 
process of an agent forming behaviors according to the 
stimulants of the environment. While the agent was able to 
form action sequences involving multiple steps, these were not 
consistent and did not create a complex life cycle involving 
similar behavior loops. 

Throughout the test scenarios, layer IV captures the first 
order relations and this in turn lead to sparser representations 
that layer II/III can be fed with. In time, the prediction 
performance of layer II/III increases so that the relation 
between motor activity and layer V states stabilize. This results 
in layer V being able to associate motor activity with its 
internal states and forming connections from its neurons to 
motor neurons. The states of layer V are stored in basal ganglia 
simultaneously according to their respective outcomes. As soon 
as layer V generates predictions for the next step, basal ganglia 
interfere with those depolarized cells and through 
inhibition/excitation allows some of them to fire. These 
selected neurons of layer V create the voluntary motor activity 
that is going to change the sensory input in the best way the 
architecture can predict to obtain the most pleasure. 

The main problem hindering the learning process is the 
trade-off between exploration and exploitation. If the agent is 
allowed to make optimized decisions for pleasure every time, it 
always performs the same course of action unless it predicts 
nothing. This hampers the exploration and no matter how small 
the reward is, the agent always picks the predictable route. This 
translates into doing short actions that end at the same state it 
started such as turning around itself, repeating rotation and 
movement patterns that each step is predicted. There are 
mechanisms implemented to reward novel actions and sensory 
inputs to guide the exploration but then the consistency of 
behaviors reduces dramatically. The connectivity of the CLA 
units build on statistical stability of the relation between 
sensory inputs and motor outputs. A sequence of action has to 
be repeated for multiple times in order for it to be captured. 
Therefore, the task of exploring while doing things in a 
frequency that could be learned is a great challenge.  

There is also the problem of rare events. Most of the time, 
rewarding events happen infrequently. The architecture above 
in its current form is not suitable to learn from a few examples 

as the synapse connections are made through repetitions. This 
presents a challenge in modelling those significant but rare 
events. When the learning speed is increased so that synapses 
form quicker connections, the system has problems with 
stabilizing. This leads to the problem of not being able to build 
upon the already learned relations between motor activity and 
sensory input. Every event no matter how insignificant has an 
impact on the connectivity including noise. There is a 
mechanism in place to weight the events based on their reward 
but this approach fails actually capturing the relations because 
the system needs already functioning predictions beforehand 
for this to work, like a preset basic knowledge.     

VIII. CONCLUSION 

This study has proposed a neocortex inspired architecture to 
build an autonomous agent for a 3D virtual environment. To 
the authors’ knowledge, there has not been a CLA-based 
working prototype that encapsulates the functionalities of 
layers IV, V and basal ganglia. The architecture is capable of 
forming simple voluntary behaviors if embedded onto an agent 
with an online sensor and controllable motor activity. The 
implementation performs in real-time as expected on the target 
hardware. Several scenarios have been prepared and tested on 
the autonomous agent on the gaming platform. The agent is 
able to form basic behavior chunks, however there are 
challenges such as exploration and exploitation conflicts, 
modeling infrequent yet salient events, stemming from the 
complexity of the task in hand. Finally, evaluation outputs have 
demonstrated that the functionality of the modeled neocortex 
layers are in line with their biological counterparts, thus 
making the proposed architecture a promising step towards 
forming more complex behaviors.  

IX. FUTURE WORK 

There is a concept in neuroscience studies called 
hippocampal replay. The process involves both the neocortex 
and hippocampus. The short term episodic memory is stored in 
hippocampus. Internally, these memories are replayed 
forwards, backwards and with a variety of ordering during 
sleep and awake states. Hippocampal replay is believed to be 
playing an important role of modeling infrequent events that 
the neocortex cannot capture on its own without repetition. 
Based on the findings of this study, embedding algorithmic 
properties of this mechanism into the architecture may play a 
key role in creating the life cycle of the agents.  
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Abstract—General Game Playing (GGP) aims at creating
computer programs able to play any arbitrary game at an expert
level given only its rules. The lack of game-specific knowledge and
the necessity of learning a strategy online have made Monte-Carlo
Tree Search (MCTS) a suitable method to tackle the challenges
of GGP. An efficient search-control mechanism can substantially
increase the performance of MCTS. The RAVE strategy and
its more recent variant, GRAVE, have been proposed for this
reason. In this paper we further investigate the use of GRAVE
for GGP and compare its performance with the more established
RAVE strategy and with a new variant, called HRAVE, that uses
more global information. Experiments show that for some games
GRAVE and HRAVE perform better than RAVE, with GRAVE
being the most promising one overall.

I. INTRODUCTION

The aim of General Game Playing (GGP) is to develop
agents that are able to play many arbitrary games at an expert
level, only by being given their rules. As opposed to traditional
game playing, GGP agents cannot rely on pre-coded game-
specific knowledge because the game to be played is not
known in advance. For the same reason, it is not possible
to predetermine which search method is more suited for the
game. The search method must be able to cope with a possibly
infinite number of games. Moreover, the rules of the game are
given to the agent only few seconds before the game starts,
thus the agent has to learn the best playing strategy online.
An extra challenge is posed by the fact that the agent usually
has only few seconds per turn to choose a move.

A search technique that proved successful in GGP is Monte-
Carlo Tree Search (MCTS) [1]–[3]. In its basic form MCTS is
aheuristic, it does not require any game-specific knowledge,
anytime, it can choose the move to be played within any
time budget, and selective, it favours regions of the search
tree that have the most promising moves, growing the tree
asymmetrically [4]. Nowadays, all the best GGP agents are
MCTS-based [5]–[9].

Other than GGP, MCTS has been successfully applied
in many other domains. The most popular is the game
of Go [1], for which MCTS represented a substantial step
forward. Other examples are Hex [10], Havannah [11] and
Lines of Action [12]. Moreover, the application of MCTS has
not been limited to games, but also to other domains like
combinatorial optimization problems, constraint satisfaction
problems, scheduling problems, sample-based planning and
procedural content generation [4].

Previous work [3], [13]–[19] has shown that good search-
control mechanisms can consistently improve the overall per-
formance of MCTS. Many enhancements have been proposed
to improve different phases of the search. Some have been
proposed for particular games as they rely on game-specific
knowledge [3]. This makes them less interesting for GGP.
Others, instead, are intrinsically domain-independent [13],
[15]–[18] or are domain-independent modifications of game-
specific methods [14], and are thus suitable for GGP.

Among domain-independent enhancements for the selection
phase of MCTS we can find the Rapid Action Value Esti-
mation technique (RAVE) [15], [20], [21]. RAVE has been
successfully applied in different domains, like the game of
Go [15], [20], and General Game Playing [21]. Recently, a
generalization of RAVE has been proposed, the Generalized
Rapid Action Value Estimation (GRAVE) [22]. This strategy
has been shown to perform better than RAVE on some variants
of Go and some other games. This and the fact that it does
not necessarily need game-specific knowledge make GRAVE
interesting to investigate further in the context of GGP.

The aim of this paper is to compare the performance and
the robustness of GRAVE and RAVE for GGP. Moreover,
we introduce another variant of GRAVE, called HRAVE,
that uses the root history statistics. This enables to verify
how performance is influenced by the use of information at
different levels (from more local in RAVE to more global in
HRAVE, with GRAVE being in between). In addition, we test
how the performance of these RAVE variants is influenced by
using a more informed play-out strategy instead of the one
that chooses random moves. We do so by combining all the
three strategies with MAST [13].

This paper is structured as follows. Section II gives and
overview of MCTS and the MAST search-control mechanism.
Section III describes the RAVE strategy and the variants that
we are evaluating. Sections IV and V discuss the experimental
setup and the obtained results, respectively. Finally, Section VI
gives the conclusions and mentions possible future research.

II. BACKGROUND

A. Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is a simulation-based
search method that incrementally builds a tree representation
of the search space for a game [1]–[3]. Each iteration of the
algorithm performs a complete simulation of the game from
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the root state to a terminal state, adding nodes to the tree after
each simulation and collecting information about the game
in every node. More precisely, each iteration of the MCTS
algorithm consists of the following four phases:
• Selection: the algorithm descends the tree built so far until

it reaches a node that needs expansion. At each node it
uses a selection strategy to determine which move to visit
next. The standard MCTS selection strategy is the Upper
Confidence bounds applied to Trees (UCT) [2]. Given a
state s and the set A(s) of all legal moves in s, it selects
the most promising move a∗ as follows:

a∗ = argmax
a∈A(s)

{
Q(s, a) + C ×

√
lnN(s)

N(s, a)

}
(1)

N(s) is the number of times node s has been visited dur-
ing the search, N(s, a) is the number of times move a has
been selected whenever node s was visited and Q(s, a)
is the average result obtained for all the simulations in
which move a was played in state s. The second term
of the formula is used to balance the exploitation of the
estimated best move and the exploration of less visited
moves. The constant C controls this balance.

• Expansion: this phase controls the expansion of the tree.
An expansion strategy chooses which node(s) must be
added to the tree and when. A common strategy is the
one that expands the first encountered node that has at
least one unexplored move. The node corresponding to
the state reached by playing this move is added to the tree.
If there is more than one unvisited move, one of them is
chosen randomly. Other strategies might add more than
one node at a time or prefer the selection of a promising
visited move even if there are unvisited moves in the
node. Other expansion strategies are discussed in [23].

• Play-out: starting from the last node added to the tree,
the algorithm plays the game until a terminal state is
reached. In each state the algorithm uses a play-out
strategy to choose the move to play. One of the basic
play-out strategies consists in selecting a move uniformly
at random among the legal moves in the considered state.

• Backpropagation: after reaching a terminal state, the
result of the simulation is propagated back through all the
nodes traversed in the tree. The information memorized
in the nodes depends on what the simulation and play-out
strategies need. Usually, for UCT, each node s memorizes
the values used in Formula (1).

After a certain number of iterations, the best move in the
root node is chosen to be played in the real game. The meaning
of best move depends on the implementation. It could be, for
example, the one with the highest number of visits or the one
with the highest average score. In this paper we consider the
one with the highest average score.

B. The MAST play-out strategy in GGP

The Move Average Sampling Technique (MAST) [13], [16]
is among the successful domain-independent search-control

mechanisms proposed to guide the search during the play-
out phase of MCTS. The main idea behind MAST is that a
move that is good in one state is highly likely to be good also
in other states. During the search this strategy memorizes for
each move a a global average value QMAST (a) based on the
results of all the simulations in which move a was played.
The original version of MAST was using QMAST (a) in the
Gibbs measure to compute a probability distribution over all
the moves in a state and then select one of them according to
this distribution. Later research [17], [18] has shown that an ε-
greedy strategy that chooses the move with highest QMAST (a)
with probability (1− ε) and a random move with probability
ε performs significantly better in most of the tested games.

A variant of MAST, called NST, has been proposed by Tak
et al. [17]. The NST play-out strategy keeps also track of
statistics of sequences of moves. This strategy has been shown
to outperform MAST in most of the tested games.

A characteristic of both MAST and NST is that they keep
track of the collected statistics throughout all the game. Further
gain in performance has been achieved by decaying such
statistics [24]. As the game progresses old statistics might not
be as reliable as they were before, they might refer to moves
that are strong in some parts of the game but weak in others.
Thus, it is desirable to reduce their influence over time.

III. RAVE, GRAVE AND HRAVE

A. RAVE

The RAVE selection strategy has been proposed in order to
speed up the learning process inside the MCTS tree [16], [20],
[21]. The UCT algorithm bases the selection of a move in a
node on the estimated value obtained by sampling this move
in the node multiple times. However, especially when the state
space is large, the algorithm needs many simulations before
it can sample all the moves in a node and more simulations
before it can accumulate enough samples for the moves to
reduce the variance of their estimated scores. To overcome
this issue, RAVE keeps track of other statistics, also known as
All Moves As First (AMAF) values [25], [26]. In every node
it memorizes for all legal moves the following values:
• The average result Q(s, a), obtained from all the simula-

tions in which move a is performed in state s (the same
value used in Formula (1)).

• The average result AMAF (s, a), obtained from all the
simulations in which move a is performed further down
the path that passes by node s.

This means that, when backpropagating the result of a
simulation in a certain node s of the tree, the value Q(s, a)
is updated for the move a that was directly played in the
state, and the value AMAF (s, a′) is updated for all the legal
moves a′ in s that have been encountered at a later stage of the
simulation. In this way RAVE can collect more samples and
use them to reduce the variance of the moves values estimates
for the nodes that do not have many visits. Using the AMAF
scores enables to gather more information faster, however
this information is more global than the local Q(a, s) scores.
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AMAF scores are useful for less visited nodes, but when
the number of visits increases, the Q(s, a) scores become
more reliable and the influence of the AMAF scores should
progressively decrease. This is why the RAVE algorithm keeps
track of the two scores separately and uses a weight β to
reduce the importance of the AMAF score over time.

Different variants for the RAVE move evaluation formula
and for the β parameter computation have been proposed [11],
[15], [20]. This paper uses the same formula that has been first
used in GGP by CADIAPLAYER [21]. RAVE selects a move
according to (1), where the term Q(s, a) is substituted by:

(1− β(s))×Q(s, a) + β(s)×AMAF (s, a) (2)

and the term β(s) is computed as follows:

β(s) =

√
K

3×N(s) +K
(3)

where N(s) is the number of times node s has been visited
and K is the equivalence parameter, that indicates for how
many simulations the two scores are weighted equal.

B. GRAVE

GRAVE [22] is a modification of RAVE that has been
proposed to overcome one of its drawbacks. A problem of
RAVE is that for the nodes close to the leaves of the tree not
only the Q(s, a) scores are based on a low number of samples,
but also the AMAF scores. In these nodes the estimates of the
moves values have less accuracy.

To solve this problem, for the nodes that have a number of
visits lower than a given ref value GRAVE uses the AMAF
scores of an ancestor node. Each node in the tree memorizes
its own AMAF scores, but keeps also a reference to the closest
ancestor that has a sufficient number of visits for its AMAF
scores to be considered reliable. When a node s has sufficient
visits (N(s) > ref ), it starts using its own AMAF values
instead of the ones of an ancestor, and the algorithm in that
node starts behaving like RAVE. Note that, if ref = 0,
GRAVE behaves exactly like RAVE from the beginning of the
search. The GRAVE strategy enables to increase the accuracy
of the estimates for the less visited nodes. However, the AMAF
scores of an ancestor might be less relevant for its descendants,
because these scores refer to a different game state.

Another aspect to be mentioned is the increased memory
consumption of GRAVE with respect to RAVE. The latter
needs only to store an extra statistic for each legal move in
the node. With GRAVE, instead, the AMAF scores in a node
might be used for other nodes lower in the tree that have
a different set of legal moves. Therefore each node has to
memorize the AMAF scores for all the moves that can be
encountered at any lower level in the tree.

C. HRAVE

HRAVE is exactly the same as GRAVE, except that it
always uses the AMAF scores of the current root of the tree
(i.e. the ref parameter is set to infinity).

100

60

30

HRAVE

RAVE

GRAVE

(ref=50)

Fig. 1. Information used by RAVE, GRAVE and HRAVE for move selection
in the highlighted tree node.

HRAVE shares similarities with the domain-independent
selection strategy known as Progressive History [14]. This
strategy adds to the UCT formula a bonus that depends on
the relative history of the move being evaluated. This relative
history is defined as the average result of all the simulations
where the move was played. The influence of this bonus
decreases over time as the number of visits of the node
increases and the UCT estimate becomes more reliable.

In the case of HRAVE, the AMAF score of a move that
is included in the UCT formula as shown in (2) can be
compared to the Progressive History bonus. This is because
both the AMAF score and the bonus are computed using
the same statistics. In each turn of the game, the AMAF
scores of the root of the tree correspond exactly to the history
heuristic scores used by Progressive History. Moreover, like
in Progressive History, the influence of the AMAF score
decreases over time and makes the move evaluation formula
converge to a pure UCT strategy.

A difference between HRAVE and Progressive History is
that, for HRAVE, at the beginning of the search for a given
turn, the root node already contains some statistics collected
during previous turns. Progressive History, instead, starts each
turn with an empty table. We decided to collect these statistics
also during the previous turns to have a fair comparison of
HRAVE with GRAVE and RAVE, because both of them, at
every turn except the first, start the search already having some
statistics in the AMAF tables of the nodes in the tree.

HRAVE can also be seen as the opposite of RAVE. While
the latter uses the most local AMAF information, the former
uses the most global one. GRAVE can be placed in between,
it starts with more global AMAF statistics and then converges
to the most local ones. Fig. 1 gives an example when these
three heuristics are applied in MCTS. The number reported in
each node is the number of node visits. For the selection of a
move in the highlighted node, the figure shows in which node
each algorithm looks for the AMAF statistics to use.

IV. EXPERIMENTAL SETUP

A. Games

The discussed algorithms have been tested on 15 different
games: 3D Tic Tac Toe, Breakthrough, Knightthrough, Skir-
mish, Battle, Chinook, Chinese Checkers with three players,
Checkers, Connect 5, Othello, Quad (the version played on
a 7 × 7 board), Sheep and Wolf, Tic Tac Chess Checkers
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TABLE I
CHARACTERISTICS OF THE GAMES USED FOR THE EXPERIMENTS

Game Players Simult. Constant-Sum
GROUP I

3D Tic Tac Toe 2 No Yes
Breakthrough 2 No Yes
Knightthrough 2 No Yes

Skirmish 2 No No
Battle 2 Yes No

Chinook 2 Yes No
Chinese Checkers 3P 3 No No

GROUP II
Checkers 2 No Yes
Connect 5 2 No Yes

Othello 2 No Yes
Quad 2 No Yes

Sheep and Wolf 2 No Yes
TTCC4 2P 2 No No

Zhadu 2 No Yes
TTCC4 3P 3 No No

Four (TTCC4) with two and three players, and Zhadu. Table I
gives an overview of the main characteristics of these games
specifying the number of players, if they are sequential or
simultaneous move games, and if they are constant or variable
sum games. This set of games has been chosen because it is
heterogeneous and because most of the games have been used
in previous experiments that applied RAVE to GGP [16], [21].

In the following experiments, the games in Group I of Ta-
ble I have also been used for tuning the equivalence parameter
K for the algorithms. The games in Group II, instead, have
only been used for comparing the strengths of RAVE, GRAVE
and HRAVE. The GDL description of all the considered games
can be found on the GGP-Base repository [27].

B. Setup

The aforementioned RAVE variants were implemented in
the General Game Playing code base provided by the open-
source GGP-Base project [7]. The code is implemented in Java
and each agent tested in the experiments uses a reasoner based
on Propositional Networks (PropNet, cfr. [28]).

In all the series of experiments, two agent types at a time are
matched against each other. For each match, the PropNet of the
game is generated in advance and both agents use the same
so that none of them has any advantage for having a faster
structure. Play clock and start clock are set to 1s, except for
the experiments presented in Subsection V-B that are repeated
also with start clock and play clock set to 10s.

For each game, if r is the number of roles in the game,
there are 2r different ways in which 2 types of agents can be
assigned to the roles [29]. Two of the configurations involve
only the same agent type assigned to all the roles, thus
are not interesting and excluded from the experiments. Each
configuration is run the same amount of times until the desired
number of matches have been played.

For each of the performed experiments, we report as results
the average winning percentage of one of the two involved
agents with a 95% confidence interval. For each match the
agent that achieved the highest score is considered the winner.

When both agent types achieve the same score, the outcome of
the match is considered a draw. In the first case, the winning
player gets 1 point (full win) and the other player 0 points. In
case of a draw both agent types get 0.5 points (half win).

As baseline to compare the different selection policies we
have used an agent implementing the MCTS algorithm with
UCT selection and random play-out strategy (PUCT) and an
agent implementing the MCTS algorithm with UCT selection
and MAST play-out strategy (PUCT-MAST). The UCT selection
uses the formula given in (1), with C = 0.7. For the MAST
strategy ε is set to 0.4, because it is the value that overall
performed better in [17]. Moreover, the MAST statistics are
decayed after playing every move with a factor γ = 0.2 (i.e.
20% of the statistics is kept for the next turn). This value is
set lower than the one that was found to be the best in [24]
because for each turn we have a higher number of simulations.
This means that the number of collected statistics is higher and
their influence needs to be decreased more strongly.

The aim of the first series of experiments is to tune the
equivalence parameter K used to compute the weight β(s)
in (3). The tested values for K are 10, 50, 100, 250, 500,
750, 1000 and 2000 and the parameter is tuned using the
games in Group I shown in Table I. The agents PRAVE, PGRAVE
and PHRAVE have been implemented and matched singularly
against PUCT for each value of K for at least 500 matches per
game. As selection strategy they use the RAVE, GRAVE and
HRAVE algorithm, respectively. They all use the random play-
out strategy. All of them use the value 0.2 for the C constant
because a lower value than the one used for the plain UCT
algorithm empirically showed to achieve a better performance.
For PGRAVE the ref parameter is set to 50. For each of the three
agents, the value of K that performed overall best in these
series of experiments is also used in subsequent experiments.

In the second series of experiments, the agents PRAVE,
PGRAVE and PHRAVE with the best value of K are matched
against PUCT on all the games in Table I. Testing the agents
on a wider set of games enables to detect a potential over-
fitting of the K value to the games used for tuning. Moreover,
it enables to check whether the tuned value works well also
on other games. These experiments are performed with a
start clock and play clock of 1s and then repeated with a
start clock and play clock of 10s. This is to verify how an
increased amount of time, and thus of simulations, influences
the performance of the three RAVE variants. The minimum
number of played matches per game is increased to 1000.
This provides a more precise estimate of the average winning
percentage of the agents, detecting with a higher confidence
which of the algorithms performs best.

The aim of the third series of experiments is to verify the
effect that the addition of the MAST play-out strategy has on
the three variants of RAVE. For this series of experiments the
random play-out strategy has been replaced with MAST to
obtain the agents PRAVE-MAST, PGRAVE-MAST and PHRAVE-MAST.
These agents have been matched only for the best value
of K against PUCT-MAST on all the games in Table I with
1000 matches per game. Each of these agents has the same
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TABLE II
WIN% OF PRAVE , PGRAVE AND PHRAVE AGAINST PUCT FOR DIFFERENT VALUES OF K FOR THE GAMES IN GROUP I

Game K = 10 K = 50 K = 100 K = 250 K = 500 K = 750 K = 1000 K = 2000

PRAVE vs PUCT
3D Tic Tac Toe 68.7(±4.06) 70.2(±4.00) 72.3(±3.91) 80.3(±3.47) 75.0(±3.78) 81.9(±3.36) 79.5(±3.53) 74.4(±3.81)
Breakthrough 58.2(±4.33) 60.6(±4.29) 63.8(±4.22) 65.8(±4.16) 72.2(±3.93) 72.0(±3.94) 71.6(±3.96) 65.8(±4.16)
Knightthrough 68.4(±4.08) 70.8(±3.99) 71.4(±3.96) 73.6(±3.87) 70.6(±4.00) 71.2(±3.97) 71.2(±3.97) 70.8(±3.99)

Skirmish 64.7(±4.16) 57.1(±4.28) 53.5(±4.34) 49.3(±4.35) 41.2(±4.26) 41.9(±4.27) 40.8(±4.27) 39.7(±4.23)
Battle 58.0(±3.83) 60.2(±3.78) 54.3(±3.86) 57.2(±3.81) 55.8(±3.88) 58.0(±3.85) 54.0(±3.94) 52.5(±4.00)

Chinook 45.2(±4.04) 51.5(±4.06) 55.2(±4.10) 59.2(±4.05) 57.2(±4.09) 59.3(±4.01) 55.9(±4.12) 52.4(±4.11)
Chinese Checkers 3P 63.9(±4.20) 61.1(±4.26) 63.9(±4.20) 58.7(±4.30) 64.3(±4.19) 64.9(±4.17) 59.6(±4.28) 58.5(±4.31)

Robustness 5 6 6 6 5 5 5 3
Avg Win% 61.0 61.6 62.1 63.4 62.3 64.2 61.8 59.2

PGRAVE vs PUCT
3D Tic Tac Toe 63.5(±4.21) 71.4(±3.96) 75.0(±3.78) 75.3(±3.78) 80.1(±3.49) 80.7(±3.45) 79.9(±3.51) 77.9(±3.61)
Breakthrough 52.8(±4.38) 58.4(±4.32) 61.2(±4.28) 65.0(±4.19) 67.8(±4.10) 68.6(±4.07) 65.2(±4.18) 62.2(±4.25)
Knightthrough 72.6(±3.91) 72.0(±3.94) 74.0(±3.85) 71.2(±3.97) 70.6(±4.00) 74.4(±3.83) 68.0(±4.09) 68.6(±4.07)

Skirmish 62.2(±4.20) 57.0(±4.28) 51.2(±4.34) 55.7(±4.30) 46.1(±4.31) 44.6(±4.27) 42.0(±4.28) 42.2(±4.28)
Battle 68.7(±3.38) 72.7(±3.33) 71.7(±3.29) 69.6(±3.36) 71.6(±3.31) 72.6(±3.25) 69.6(±3.46) 67.5(±3.46)

Chinook 55.0(±4.08) 64.4(±4.00) 66.6(±3.89) 67.3(±3.80) 69.6(±3.80) 70.5(±3.70) 66.5(±3.87) 64.2(±3.94)
Chinese Checkers 3P 63.9(±4.20) 67.5(±4.09) 63.3(±4.21) 63.6(±4.20) 60.0(±4.28) 64.9(±4.17) 62.5(±4.23) 57.7(±4.32)

Robustness 6 7 6 7 6 5 5 5
Avg Win% 62.7 66.2 66.1 66.8 66.5 68.0 64.8 62.9

PHRAVE vs PUCT
3D Tic Tac Toe 66.5(±4.12) 63.1(±4.22) 71.9(±3.93) 76.1(±3.74) 76.1(±3.71) 75.4(±3.75) 77.0(±3.67) 68.5(±4.04)
Breakthrough 53.6(±4.38) 57.0(±4.34) 62.6(±4.25) 65.2(±4.18) 65.4(±4.17) 60.4(±4.29) 63.2(±4.23) 59.2(±4.31)
Knightthrough 74.0(±3.85) 72.4(±3.92) 74.0(±3.85) 77.4(±3.67) 74.0(±3.85) 73.8(±3.86) 70.4(±4.01) 68.2(±4.09)

Skirmish 62.6(±4.21) 57.4(±4.31) 52.0(±4.33) 48.9(±4.33) 46.2(±4.32) 41.8(±4.26) 44.2(±4.30) 37.0(±4.18)
Battle 72.3(±3.21) 75.7(±3.25) 73.2(±3.17) 69.2(±3.37) 70.9(±3.34) 67.4(±3.44) 73.5(±3.26) 69.4(±3.48)

Chinook 54.9(±4.10) 66.0(±3.89) 66.4(±3.94) 74.9(±3.54) 72.9(±3.58) 75.4(±3.55) 73.4(±3.63) 73.8(±3.61)
Chinese Checkers 3P 67.9(±4.08) 64.1(±4.19) 66.3(±4.13) 65.5(±4.16) 62.7(±4.23) 60.3(±4.28) 61.3(±4.26) 60.2(±4.27)

Robustness 6 7 6 6 6 5 5 5
Avg Win% 64.5 65.1 66.6 68.2 66.9 64.9 66.1 62.3

settings of the corresponding version without MAST and for
the MAST strategy the settings are the same as PUCT-MAST.

As a validation of the results obtained in the previous series
of experiments, the last series of experiments matches PRAVE,
PGRAVE and PHRAVE against each other two at a time and
PRAVE-MAST, PGRAVE-MAST and PHRAVE-MAST against each other
two at a time. A total of at least 1000 matches per game
have been played. All the experiments presented in the next
sections were performed on a Linux server consisting of 64
AMD Opteron 6174 2.2-GHz cores.

V. EMPIRICAL EVALUATION

A. Parameter tuning

Table II shows the performance of PRAVE, PGRAVE and
PHRAVE against PUCT for different values of K. For each
agent, the value of K that achieves the highest robustness is
selected to be used in subsequent experiments. We compute the
robustness of a certain K for an agent by summing 1 point
for each game in which the agent with such K achieved a
statistically significant improvement over PUCT and subtracting
1 point for each game in which it obtained a statistically
significant worsening of the performance. In case more values
of K have the same robustness, we chose the one with highest
average win percentage over all the games.

For PRAVE none of the values of K reaches the maximum ro-
bustness, however, for more than one value the agent achieves
a statistically significant improvement in all games but one.

TABLE III
SIMULATIONS PER SECOND OF PUCT , PRAVE , PGRAVE AND PHRAVE

Game PUCT PRAVE PGRAVE PHRAVE
3D Tic Tac Toe 3093 2831 2920 2877
Breakthrough 1453 1378 1430 1435
Knightthrough 2285 2100 2146 2210

Skirmish 106 105 104 106
Battle 2149 2001 1898 1916

Chinook 2178 2085 2150 2144
Chinese Checkers 3P 4995 4108 4235 4229

Checkers 532 518 511 518
Connect 5 1191 1160 1144 1148

Othello 39 39 39 38
Quad 2767 2617 2627 2684

Sheep And Wolf 2110 2071 2063 2097
TTCC4 2P 1124 1277 1321 1368

Zhadu 494 484 477 480
TTCC4 3P 2058 2207 2220 2257

Among these values, K = 250 is chosen because it is the
one with the highest average win percentage. For PGRAVE the
value K = 250 is selected because among the values with
highest robustness is also the one with highest average win
percentage. Finally, for PHRAVE the value K = 50 is selected
because it is the only one that reaches the highest robustness.

B. Comparison of PRAVE, PGRAVE and PHRAVE with PUCT

In this series of experiments, PRAVE, PGRAVE and PHRAVE
are matched against PUCT, both with 1s and 10s play clock.
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TABLE IV
WIN% OF PRAVE , PGRAVE AND PHRAVE WITH BEST K AGAINST PUCT

WITH 1S PLAY CLOCK AND START CLOCK

Game PRAVE PGRAVE PHRAVE
3D Tic Tac Toe 78.4(±2.54) 74.3(±2.70) 64.0(±2.97)
Breakthrough 66.6(±2.92) 67.6(±2.90) 57.8(±3.06)
Knightthrough 73.0(±2.75) 73.6(±2.73) 71.3(±2.81)

Skirmish 47.5(±3.07) 54.5(±3.05) 59.3(±3.02)
Battle 57.0(±2.69) 69.7(±2.34) 73.7(±2.29)

Chinook 59.6(±2.84) 68.3(±2.71) 65.1(±2.74)
Chinese Checkers 3P 61.9(±3.00) 63.2(±2.98) 64.4(±2.96)

Checkers 63.5(±2.83) 70.8(±2.65) 60.7(±2.84)
Connect 5 70.8(±2.76) 75.5(±2.62) 66.8(±2.89)

Othello 36.9(±2.96) 42.9(±2.99) 57.4(±3.02)
Quad 75.1(±2.67) 73.6(±2.72) 73.3(±2.73)

Sheep And Wolf 66.0(±2.94) 62.9(±3.00) 56.7(±3.07)
TTCC4 2P 72.9(±2.73) 71.2(±2.77) 62.3(±3.00)

Zhadu 69.3(±2.86) 67.4(±2.91) 71.3(±2.80)
TTCC4 3P 52.1(±3.03) 52.6(±3.03) 53.4(±3.05)
Robustness 11 12 15
Avg Win% 63.4 65.9 63.8

Table III reports for each game the average median number of
simulations per second that each of the agents can perform.

Table IV shows the performance of PRAVE, PGRAVE and
PHRAVE with the best K against PUCT with 1s play clock and
start clock. PHRAVE is the only one that achieves a significant
improvement over PUCT in all games, despite not being the one
with the highest average win percentage. PRAVE and PGRAVE
still obtain a significant improvement in most of the games,
only in Othello they are significantly outperformed by PUCT.

Table V shows the results obtained by repeating the ex-
periment with 10s play clock and start clock. The results of
PHRAVE with K = 50 were noticeably lower (robustness = 7,
average win percentage = 53.0) than the ones of PRAVE and
PGRAVE with their best K. For this reason, the experiment for
PHRAVE was repeated with the value that produced the highest
average win percentage in Table II, K = 250. Such results,
being better than the ones of K = 50, are reported in Table V.

As can be seen, in most of the games the longer search
time reduces the performance increase of PRAVE, PGRAVE and
PHRAVE against PUCT. In Quad it even makes the use of RAVE,
GRAVE and HRAVE detrimental, substantially reducing the
win percentage around 10%. In Knightthrough and Othello
instead, it seems that more search time increases the perfor-
mance of all the three RAVE variants.

C. Comparison of PRAVE-MAST, PGRAVE-MAST and PHRAVE-MAST

with PUCT-MAST

Table VI shows the performance of PRAVE-MAST,
PGRAVE-MAST and PHRAVE-MAST with the best K against
PUCT-MAST. For most of the games the addition of MAST
as play-out strategy seems to benefit more PUCT-MAST.
PRAVE-MAST, PGRAVE-MAST and PHRAVE-MAST perform
significantly better than PUCT-MAST in most of the games.
However, for many of these games the difference in
performance achieved by PRAVE-MAST, PGRAVE-MAST and
PHRAVE-MAST against PUCT-MAST is not as high as the
difference in performance achieved by PRAVE, PGRAVE and

TABLE V
WIN% OF PRAVE , PGRAVE AND PHRAVE WITH K = 250 AGAINST PUCT

WITH 10S PLAY CLOCK AND START CLOCK

Game PRAVE PGRAVE PHRAVE
3D Tic Tac Toe 69.7(±2.81) 68.2(±2.86) 60.7(±2.99)
Breakthrough 67.5(±2.90) 65.1(±2.96) 60.4(±3.03)
Knightthrough 84.8(±2.23) 84.1(±2.27) 84.4(±2.25)

Skirmish 60.2(±3.01) 60.0(±3.00) 55.8(±3.07)
Battle 59.1(±2.19) 57.2(±2.29) 54.6(±2.35)

Chinook 39.8(±2.78) 56.6(±2.84) 71.8(±2.52)
Chinese Checkers 3P 54.0(±3.08) 54.7(±3.07) 49.7(±3.09)

Checkers 52.2(±2.77) 56.3(±2.73) 61.8(±2.69)
Connect 5 66.9(±2.36) 59.9(±2.50) 53.3(±2.47)

Othello 61.8(±2.97) 62.0(±2.97) 60.6(±2.97)
Quad 10.7(±1.87) 8.5(±1.68) 7.9(±1.64)

Sheep And Wolf 69.6(±2.85) 69.0(±2.87) 67.2(±2.91)
TTCC4 2P 61.1(±2.90) 66.4(±2.80) 65.7(±2.80)

Zhadu 63.4(±2.94) 66.5(±2.86) 68.5(±2.82)
TTCC4 3P 54.4(±2.97) 58.5(±2.95) 50.3(±3.02)
Robustness 10 13 11
Avg Win% 58.3 59.5 58.2

PHRAVE against PUCT. Some examples are the games 3D Tic
Tac Toe, Connect 5 and TTCC4 with 2 players.

The game for which MAST has the highest benefit on
PUCT is Quad. In this game PRAVE, PGRAVE and PHRAVE were
previously obtaining an improvement over PUCT, while the
corresponding agents with MAST are realizing a decrease in
performance with respect to PUCT-MAST.

Among the RAVE variants, the one that seems to benefit the
most (in about half of the games) from the use of MAST is
RAVE. This could be explained by considering that the AMAF
scores used by RAVE in the nodes with a low number of visits
only have a small number of samples. MAST can compensate
the lack of local information near the leaf nodes of the
tree. Using its global statistics, MAST steers the simulations
towards more promising parts of the state space during the
play-out improving its quality. The quality of a simulation for
GRAVE and HRAVE, instead, is already improved near the
leaf nodes by the use of the AMAF statistics of an ancestor.

TABLE VI
WIN% OF PRAVE-MAST , PGRAVE-MAST AND PHRAVE-MAST WITH BEST K

AGAINST PUCT-MAST

Game PRAVE-MAST PGRAVE-MAST PHRAVE-MAST
3D Tic Tac Toe 64.9(±2.76) 65.3(±2.75) 57.3(±2.89)
Breakthrough 78.5(±2.55) 74.6(±2.70) 72.3(±2.78)
Knightthrough 81.9(±2.39) 74.7(±2.70) 75.6(±2.66)

Skirmish 56.1(±3.04) 53.6(±3.04) 64.9(±2.92)
Battle 72.5(±2.32) 76.9(±2.20) 80.8(±2.03)

Chinook 32.2(±2.60) 61.3(±2.85) 58.3(±2.91)
Chinese Checkers 3P 58.7(±3.04) 57.5(±3.05) 56.1(±3.07)

Checkers 65.1(±2.80) 67.1(±2.74) 59.1(±2.85)
Connect 5 60.2(±2.25) 58.4(±2.29) 46.6(±2.41)

Othello 36.8(±2.94) 42.6(±3.00) 50.1(±3.06)
Quad 34.5(±2.80) 29.2(±2.65) 29.8(±2.67)

Sheep And Wolf 56.3(±3.08) 56.6(±3.07) 57.3(±3.07)
TTCC4 2P 63.3(±2.92) 66.2(±2.85) 46.6(±3.04)

Zhadu 73.8(±2.73) 64.8(±2.96) 65.1(±2.96)
TTCC4 3P 56.0(±2.98) 55.6(±2.98) 55.9(±3.01)
Robustness 9 11 8
Avg Win% 59.4 60.3 58.4
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TABLE VII
WIN% OF ALL POSSIBLE COMBINATIONS OF AGENTS WITH AND WITHOUT MAST. THE WIN% ALWAYS REFERS TO THE FIRST OF THE TWO PLAYERS.

PGRAVE vs PGRAVE-MAST vs PHRAVE vs PHRAVE-MAST vs PGRAVE vs PGRAVE-MAST vs
Game PRAVE PRAVE-MAST PRAVE PRAVE-MAST PHRAVE PHRAVE-MAST

3D Tic Tac Toe 50.4(±3.09) 51.1(±2.93) 40.1(±3.01) 41.9(±2.89) 63.0(±2.97) 57.1(±2.91)
Breakthrough 46.9(±3.09) 46.1(±3.09) 38.8(±3.02) 44.6(±3.08) 57.1(±3.07) 54.6(±3.09)
Knightthrough 52.8(±3.10) 38.7(±3.02) 49.6(±3.10) 40.3(±3.04) 48.7(±3.10) 45.6(±3.09)

Skirmish 52.3(±3.04) 54.0(±3.04) 62.6(±2.97) 59.5(±3.02) 40.7(±3.02) 44.2(±3.01)
Battle 66.8(±2.34) 54.5(±2.65) 68.4(±2.38) 62.6(±2.52) 50.0(±2.46) 48.4(±2.67)

Chinook 58.3(±2.76) 70.1(±2.41) 55.4(±2.76) 70.8(±2.38) 54.0(±2.79) 49.7(±2.84)
Chinese Checkers 3P 55.1(±3.07) 50.1(±3.09) 55.3(±3.08) 49.4(±3.10) 46.2(±3.09) 50.1(±3.10)

Checkers 53.4(±2.91) 53.1(±2.91) 46.5(±2.94) 43.0(±2.91) 54.3(±2.90) 58.5(±2.89)
Connect 5 57.9(±2.97) 47.3(±2.19) 51.0(±3.04) 39.6(±2.17) 58.7(±2.99) 57.8(±2.22)

Othello 52.8(±3.04) 54.5(±3.04) 65.0(±2.91) 65.0(±2.90) 37.5(±2.95) 36.4(±2.93)
Quad 50.5(±3.09) 42.4(±2.90) 48.9(±3.07) 44.4(±2.89) 52.5(±3.06) 53.4(±2.93)

Sheep And Wolf 51.0(±3.10) 49.2(±3.10) 43.8(±3.08) 48.8(±3.10) 57.2(±3.07) 49.8(±3.10)
TTCC4 2P 52.3(±3.03) 54.2(±2.96) 43.7(±3.03) 37.7(±2.92) 60.9(±2.96) 66.0(±2.85)

Zhadu 50.1(±3.10) 42.0(±3.06) 52.3(±3.10) 40.2(±3.04) 46.7(±3.09) 49.5(±3.10)
TTCC4 3P 48.6(±3.02) 50.0(±2.98) 52.8(±3.04) 50.4(±3.01) 48.7(±3.03) 48.5(±3.01)
Robustness 4 1 0 −4 3 3
Avg Win% 53.3 50.5 51.6 49.2 51.7 51.3

Thus, the addition of MAST in the play-out has less added
benefit to the overall simulation quality.

D. Matching RAVE variants against each other

As a validation of previous results the agents based on the
three RAVE variants have been matched two at a time against
each other. Table VII shows the obtained results. For each pair
of algorithms the table reports a column of results without
MAST and a column with MAST.

These results are in line to what has been observed in previ-
ous experiments. PGRAVE performs better than PRAVE in some
games and equally in others. The performance of PRAVE and
PHRAVE is more game-dependent. In some games they perform
equally, in games like 3D Tic Tac Toe and Breakthrough PRAVE
performs best and in games like Skirmish and Battle PHRAVE
performs best. A similar game-dependent performance can be
observed for PGRAVE and PHRAVE, but in this case there are
more games in which PGRAVE performs best. When MAST is
added to all the agents, the difference in their performance
diminishes. PGRAVE-MAST and PRAVE-MAST perform similarly,
one outperforming the other in a few games and vice-versa.
MAST also benefits both PRAVE-MAST and PGRAVE-MAST against
PHRAVE-MAST.

Finally, we can compare the results obtained for Knight-
through by PGRAVE against PRAVE with the ones in [22]. It
can be noticed that we did not achieve the same performance
increase. In [22] the player based on GRAVE achieves a win
rate of 67.8% against the one based on RAVE when both
players have a limit of 1, 000 simulations per turn and a win
rate of 67.2% when the limit is 10, 000 simulations per turn.
However, this might be due to the different formula that we
use for β and to the fact that we do not limit the number
of simulations per turn but the amount of time. Moreover,
our implementation of RAVE is achieving a higher win rate
against UCT than in [22], where the win rate of RAVE is
69.4% for 1, 000 simulations per turn and 56.2% for 10, 000.
This, therefore, reduces the potential gain by GRAVE.

TABLE VIII
AVERAGE NUMBER OF MOVE STATISTICS PER NODE OF PRAVE AND

PGRAVE

Game PRAVE PGRAVE
3D Tic Tac Toe 4.58 9.11
Breakthrough 3.49 21.14
Knightthrough 3.16 13.44

Skirmish 4.02 54.38
Battle 8.40 19.92

Chinook 2.46 13.81
Chinese Checkers 3P 2.59 16.01

Checkers 2.58 41.94
Connect 5 4.47 9.69

Othello 2.41 14.87
Quad 3.66 7.57

Sheep and Wolf 2.95 32.04
TTCC4 2P 2.27 28.82

Zhadu 2.73 23.12
TTCC4 3P 2.47 13.32

E. Memory usage

As mentioned in Section III-B, GRAVE needs to memorize
in each node the AMAF statistics for all the actions that are
encountered during every simulation that passes through the
node. The RAVE algorithm, instead, only needs to memorize
in each node the AMAF statistics for the moves that are legal
in the corresponding game state.

Table VIII shows for RAVE and GRAVE the average num-
ber of AMAF move statistics that are memorized in each node
for every game. These results give an idea of the difference
between the algorithms in memory usage. The space required
by GRAVE ranges between 2 (in 3D Tic Tac Toe) to 16 (in
Checkers) times the space required by RAVE.

VI. CONCLUSION

In this paper the performance of the GRAVE strategy was
compared to the one of the RAVE and the HRAVE strategies.
GRAVE was also tested on a larger set of games than the one
used in [22] to verify its applicability in the context of GGP.
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When combined with a random play-out strategy, we may
conclude that the performance of GRAVE is, in the worst case,
comparable with the one of RAVE both when using 1s or 10s
play clock. Not for all the tested games GRAVE was better
than RAVE, but it never had an inferior performance, except
in Connect 5 when using a 10s play clock.

Regarding HRAVE, we may conclude that its performance
is more game dependent when a random play-out strategy is
used. In some games HRAVE is either better or comparable
to RAVE and GRAVE, but there are some games where it
performs worse. Moreover, when looking at the average win
percentage, in none of the experiments its overall performance
proved to be better than both RAVE and GRAVE.

When combined with the MAST play-out strategy, GRAVE
still seems to be overall better than RAVE. However, it does
not have the same advantage over RAVE that it has when
both strategies are combined with the random play-out. MAST,
apparently, compensates the lack of information near the
leaf nodes for RAVE, closing the performance gap between
RAVE and GRAVE. There are also a few games where the
combination GRAVE-MAST actually performs worse than
RAVE-MAST. Moreover, when using MAST, HRAVE is the
strategy that appears to be the least beneficial among the three
strategies.

As seen in the experiments, the difference in performance
between RAVE, GRAVE and HRAVE is not large. Future
research could investigate further the strengths of GRAVE
over RAVE and HRAVE by tuning also its ref parameter.
Moreover, the formula proposed more recently in [15] to
compute the β parameter could be tested. According to their
findings, with this formula the performance of the three RAVE
variants could improve further. Moreover, in this paper we
only tested the combination of these strategies with MAST.
Other play-out policies might influence them in a different
way. Testing the combination with the NST play-out strategy
could be an idea for future research.
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Abstract—This paper presents a study on the robustness and
variability of performance of general video game-playing agents.
Agents analyzed includes those that won the different legs of
the 2014 and 2015 General Video Game AI Competitions, and
two sample agents distributed with its framework. Initially, these
agents are run in four games and ranked according to the rules
of the competition. Then, different modifications to the reward
signal of the games are proposed and noise is introduced in either
the actions executed by the controller, their forward model, or
both. Results show that it is possible to produce a significant
change in the rankings by introducing the modifications proposed
here. This is an important result because it enables the set of
human-authored games to be automatically expanded by adding
parameter-varied versions that add information and insight into
the relative strengths of the agents under test. Results also show
that some controllers perform well under almost all conditions,
a testament to the robustness of the GVGAI benchmark.

I. INTRODUCTION: GAMES AND COMPETITIONS

Evaluation of algorithms using games and competitions is a
common practice in the Game AI community, and to a certain
extent in the wider AI community. Games provide parame-
terizable benchmarks that allow for fast experimentation with
multiple approaches, while competitions establish a common
framework and set of rules to guarantee that these algorithms
are compared in a fair manner [1].

Recently, a new general framework for creating and playing
video games was introduced [2], [3], [4], accompanied by a
competition [5], [6]. This framework is called the General
Video Game AI Framework, and the competition the General
Video Game AI Competition; both are abbreviated “GVGAI”.
A main feature of the framework is to allow for the creation of
arbitrary games in a high-level game-specific language, which
can then be used as benchmarks for artificial (and maybe real?)
agents. A distinct advantage of GVGAI over other benchmarks
is the possibility to generate/create new games in addition
to using a pre-existing set of older, established games (as,
for example, is done in the very popular Arcade Learning
Environment [7]). Additionally, one can systematically vary
certain qualities of the games involved and examine how
different controllers react. One could even go a step further
and design games that embody specific qualities that would
advantage or disadvantage certain agent creation methods.
Until now, this ability of the GVGAI framework has not
been explored; we have not seen either carefully tuned games

aiming to portray different agent qualities, or any exploitation
of the ability to modify any of the properties of the games.

It is well-known that some game-playing methods are more
robust to imperfections in the sensors or forward model,
noise or hidden information than others. For example, A*
can play Super Mario Bros near-optimally given linear lev-
els, but tends to create “brittle” plans that rely on planned
actions executing perfectly. Monte Carlo Tree Search, with
its stochastic estimates of action values, struggles to keep up
with A*-based planning under normal conditions. However,
when noise is introduced to the model the performance of A*
drops drastically whereas MCTS performs almost as well as
before [8].

An important part of the justification for GVGAI in partic-
ular and general game playing in general is that the agents’
general intelligence is tested, as agent developers cannot tailor
their performance to a particular game. That’s why agents are
tested on unseen games, which are developed for each round of
the competition. However, the developers of agents could still
rely on certain assumptions about the GVGAI game engine,
for example about the determinism of games and reliability of
the forward model. Arguably, agents that are less dependent on
such assumptions—less brittle—are more generally capable or
“intelligent”. The obvious way to find out how brittle agents
are is to vary all aspects of the game engine and see what
happens to the performance of said agents.

This paper is an initial exploration of the effects of large-
scale modification of game characteristics. The goal is to
identify how robust game-playing algorithms are to particular
changes in the reward structure and the existence of uncer-
tainty in the form of noise.

While, to the best of our knowledge, this is the first time
that such a systematic exploration is conducted in such a large
number of games, with the explicit aim of testing robustness,
there has been some work generating games using a parameter
space and then using controllers that portrayed certain human-
like qualities in order to better understand the resulting design
parameter space [9]; once game-space is understood, it can
be searched for game variants that differ from existing games
while still being playable [10].

The rest of the paper is organised as follows; section II
describes the framework used, while Section III introduces
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a selection of controllers that we are going to use in our
evaluation. Section IV discusses the original rankings obtained
by the controllers presented previously in a subset of GVGAI
games. Section V describes the modifications done to the
games and how each controller fared. We conclude with a
short discussion in Section VI.

II. GENERAL VIDEO GAME AI

A. The Framework

The GVGAI framework provides information about the
game state via Java game objects. Its interface provides means
to create agent controllers that can play in any game defined in
the Video Game Description Language (VGDL [2], [4]). An
agent implemented in this environment must be able to select
moves in real-time, providing a valid action in no more than
40ms at each time step.

This controller receives information about the game state,
including factors like the game status (winner of the game,
score, time step), the player’s state (position, resources gath-
ered), and position of the different sprites (identified only
by an integer id for its type) in the level. The dynamics of
these sprites and the victory conditions are never given to the
player. It is the agents responsibility to discover the game
mechanics while playing. However, the agent is provided with
a forward model to reason about the environment, a tool that
allows the agent to simulate actions and roll the game forward
to one of the possible next states of the game. The forward
model is very fast and almost all successful agents simulate
hundreds or thousands of game states for each decision taken.
For more information about the interface and constituents of
the framework, the reader is referred to [5].

B. The Games

Four games (out of the 60 distributed with the framework)
have been used in this study: Aliens, Butterflies, Sheriff and
Seaquest. These games have been chosen according to the
following characteristics:
• High percentage of victories: Not even the best controllers

submitted to the competition (by rankings, the ones used
in this study) are able to achieve victories in all games
distributed with the GVGAI framework. Three of the
games selected average a percentage of victories above
90%, with only Seaquest averaging around 45%.

• Smooth scoring: All games provide small increments of
score through their play (rather than having no score
change but a point given or taken when the game is won
or lost, respectively). Games that provide a different score
landscape are left for future work.

• Different set of actions: Not all games in GVGAI provide
the same set of available actions. By choosing games with
different sets, the experiments will permit an analysis on
how this factor affects results after applying the different
game modifications.

• They are all stochastic in nature.
These four games are described next:

• Aliens: Similar to the classic Space Invaders, this game
features the player (avatar) moving along the bottom of
the screen, shooting upwards at aliens, who fire back at
the avatar. The avatar can use the actions Left, Right and
Use (to shoot). The player loses if touched by an alien or
its bullet, and wins if all aliens are destroyed. 1 point is
awarded for each alien or protective structure destroyed
by the avatar and 1 point is subtracted if the player is hit.

• Butterflies: The avatar must capture butterflies that move
randomly. If a butterfly touches a cocoon, more butterflies
are spawned. The player wins if it collects all butterflies,
but loses if all cocoons are opened. 2 points are awarded
for each butterfly captured. The avatar can use the actions
Left, Right, Up and Down.

• Sheriff: The avatar is at the center of the screen and the
objective is to kill all the bandits that move in circles
along the level, shooting at the player. There are also
some structures in the level that can be used as cover.
1 point is awarded for each bandit killed, and 1 point is
subtracted if the avatar dies. The avatar can move in the
four directions and shoot.

• Seaquest: Remake of the Atari game by the same name.
The player controls a submarine that must avoid animals
whilst rescuing divers by taking them to the surface. Also,
the submarine must return to the surface regularly to
collect more oxygen, or the player loses. The submarine’s
capacity is 4 divers, and it can shoot torpedoes at the
animals. 1 is point awarded for killing an animal with a
torpedo, and 1000 points for saving 4 divers in a single
trip to the surface. As in Sheriff, the avatar can move in
the four directions and shoot.

C. The Rankings

The GVGAI Competition rankings system, which is also
used in this paper, aims to reward those controllers that
perform well across different games, rather than relying on
differences of performance in particular games.

For each one of the games used, all controllers are sorted
according to three criteria, in the following order of im-
portance: percentage of victories, average of score achieved
and time spent on the victories (the lower, the better).
Then, controllers are awarded with points according to this
game ranking, following the Formula 1 scoring system:
{25, 18, 15, 12, 10, 8, 6, 4, 2, 1}, where 25 points are awarded
to the best controller, 1 to the tenth, and no points beyond
that rank. In order to determine the overall best, all points per
game are added up and the controller with the highest sum is
declared the winner. In case of a draw in points, the number
of first positions in a game unties the ranking, proceeding to
the highest number of second, third, etc. positions until the tie
is broken.

III. CONTROLLERS

This section describes the different controllers that have
been used in this study. The first two, Sample Open
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Loop Monte Carlo Tree Search (Sample OLMCTS, Sec-
tion III-A) and Rolling Horizon Genetic Algorithm (RHGA,
Section III-B), are sample controllers distributed with the
framework. The third controller, Open Loop Expectimax Tree
Search (OLETS, Section III-C), was the winner of the 2014
GVGAI competition. Finally, the last three controllers1 were
the winners of the three legs of the 2015 GVGAI Compe-
tition: YOLOBOT (GECCO 2015, Section III-D), Return42
(CIG 2015, Section III-E) and YBCRIBER (CEEC 2015,
Section III-F).

A. Sample OLMCTS

Monte Carlo Tree Search (MCTS) [11] is a very popular
tree search technique that iteratively builds an asymmetric
tree in memory to estimate the value of the different actions
available from a given state. Starting from the current state,
the algorithm repeats the following steps in iteration until the
time budget is over:

First, a Tree Selection process selects actions until reaching
a state from which not all possible moves have been taken.
These actions are selected according to a Tree Policy,
like for instance the Upper Confidence Bounds (UCB1; see
Equation 1 [12]), which balances between exploitation of the
best actions found so far and exploration of the ones employed
less often.

a∗ = argmax
a∈A(s)

{
Q(s, a) + C

√
lnN(s)

N(s, a)

}
(1)

where N(s) represents the number of times the state s
is visited, N(s, a) is the number of times an action a is
taken from s, and Q(s, a) indicates the empirical average of
the rewards obtained when picking an action a from s. The
exploration-exploitation balance can be tempered by the value
of C: setting high values gives priority to exploration, while
values closer to 0 reward those actions a ∈ A(s) with a higher
expected reward.

The second step, Expansion, adds a new child to the node
reached at the end of the previous one. Next, a Monte Carlo
Simulation is performed from the new node until reaching the
end game or a predetermined depth. This simulation picks
actions on each state according to some Default Policy,
which could select moves uniformly at random or biased by
an heuristic based on the features of the state. Lastly, the
Back-propagation phase uses the reward observed in the state
reached at the end of the Monte Carlo Simulation, to update
the Q(s, a) values of all nodes visited during the Tree Selection
step.

The distinction between Open Loop and Closed Loop
MCTS resides in using the forward model during the Tree
Selection phase or not. In closed loop MCTS, the algorithm
assumes that is stable to store game states on the nodes of
the tree when Expansion is performed, and therefore the Tree

1To the knowledge of the authors of this paper, the descriptions of these
controllers have not been published to date. All these controllers are accessible
for download at the competition website, www.gvgai.net

Selection step can simply navigate the tree without the need
of calculating the new states. If randomness is encountered,
instead of acting according to the tree policy, a random guess
is made as to what state one might land after an action. This
is a valid approach for all games, and indeed the only really
“correct” one but it may lead to sub-optimal performance
on stochastic scenarios (as the games used in this research
work), where one might focus too much on exploring all future
possible states, never having enough time to collect enough
information to perform well. Another approach is to behave
in an open-loop manner - Open Loop MCTS (OLMCTS) only
stores the statistics on the tree nodes, and generates the next
state using the forward model to average over the distribution
of possible next states. Note that for deterministic settings
open-loop and close-loop are the same. For more details about
this distinction, the reader is encouraged to read [13].

For the experiments performed in this experiment, the
number of moves performed on each iteration is set to 10,
and C =

√
2.

B. RHGA

Rolling Horizon Genetic Algorithm (RHGA) employs a
fast evolutionary algorithm to evolve a sequence of actions
to be executed from the current game state. It is an open
loop implementation of a minimalistic steady state genetic
algorithm, known as a microbial GA [14].

Each individual receives a fitness equal to the reward
observed in the state reached at the end of the action sequence,
which has a length of 7. Two different individuals are selected
and evaluated from a population, and the one that obtains
the worse fitness is mutated randomly, with probability 1/7,
whereas certain parts of its genome are recombined with parts
from the other’s genome with probability 0.1.

Both OLMCTS and RHGA use the same function to eval-
uate a state. The procedure works as follows: the reward
is the score of the game at that state plus a high positive
(respectively, negative) number if the game is finished with a
victory (resp. loss).

C. OLETS

Open Loop Expectimax Tree Search (OLETS), created by
Adrien Couëtoux, is an algorithm inspired by Hierarchical
Open-Loop Optimistic Planning (HOLOP, [15]). As OLM-
CTS, OLETS does not store the states in memory, but uses
the sampled sequences to build a tree.

A first difference with OLMCTS is that OLETS does not use
any roll-out and relies on the game scoring function to give a
value to the leaves of the tree. Additionally, another important
difference is that the empirical average of rewards obtained
by performing simulations is not used in the UCB1 policy
(see Equation 1). Instead, OLETS replaces Q(s, a) with the
Open Loop Expectimax (OLE) value (rM (n)), as calculated in
Equation 3).

rM (n) =
Re(n)

ns(n)
+

(1− ne(n))

ns(n)
max

c∈C(n)
rM (c) (2)
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where ns(n) the number of simulations that visited the node
n, ne(n) the amount of them that end in n, and Re(n) the
accumulated reward from this last subset. C(n) the set of
children of n, and P (n) the parent of n. For more details
about this algorithm, please consult [5].

D. YOLOBOT

This controller, created by Tobias Joppen, Nils Schroeder
and Miriam Moneke, was declared winner of the 2015 GVGAI
championship, as they obtained the highest sum of scores
across the three legs run that year. Their approach uses
pathfinding to first identify those sprites that can be reached
from the avatar’s position, creating a list with the nearest
reachable sprite of each type. At the same time, it also tries to
identify if the game is deterministic or not, using the forward
model to spot differences on states reached after applying the
same action from a given state. This is done to choose which
algorithm to use to try to discover how valuable these sprites
are within the game. If the game is deterministic, YOLOBOT
uses Best First Search (BFS) to navigate to the target sprite. In
case the game is deemed as stochastic, the algorithm of choice
is an open loop version of MCTS, in order to get closer to the
aimed sprite without losing the game due to stochasticity.

E. Return42

This controller, created by Tobias Welther, Oliver Welther,
Frederik Buss-Joraschek and Stefan Hbecker is a hyper-
heuristic that combines different algorithms which are used
depending on the type and state of the game. Initially, the
games are differentiated by being deterministic or not, a
feature checked using the forward model to determine if
multiple states derived from the same original state are the
same. If the game is deterministic, an A-Star algorithm is
used to determine future states with high scores and possibly
winning conditions. In case the game is stochastic, random
walks are used to determine the best action based on a hand-
crafted heuristic that considers score and changes on resources
and NPCs in the game.

F. YBCRIBER

This controller was submitted by Ivan Geffner, Tomas
Geffner and Felix Mirave. The algorithm is based on Iterative
Width (IW [16]) with a dynamic look-ahead scheme. A
previous version of this work can be found at [17]. YBCRIBER
employs some basic statistical learning to save information
about each sprite at each look ahead, which it then uses to
select actions in stochastic games and to prune actions over
the IW search. Additionally, a danger prevention mechanism
minimizes the chances of the avatar being killed in close
proximity of hazards.

IV. DEFAULT RANKINGS

All controllers described in Section III have been executed
100 times in each one of the 5 levels of the 4 games detailed
in Section II-B. Therefore, each controller plays 500 times on
each game. The percentage of victories, average of scores and

time spent are recorded, and non-parametric Wilcoxon Signed
Rank tests are computed to determine statistical significance
(p-value < 0.05). All experiments performed in this research
have been carried out in this manner, for the default settings
and for each one of the different environment configurations
described in Section V.

Table I shows the results for the tested controllers in the
games selected. The percentage of victories, average of scores
and time steps used to complete the game are shown here
with their respective standard error measures. First of all, it is
worthwhile mentioning that there is no superior algorithm that
achieves the best results in all games tested. Both in Aliens
and Butterflies, three controllers achieve 100% of victories, the
first metric in order of importance. Note that these controllers
are not the same in both games. Sheriff is revealed to be a
slightly more complicated game, as no controller achieves the
maximum amount of victories. It seems, however, to be easier
than Seaquest, where the best controller obtained less than
70% of victories.

The variability of these games can also be observed in two
factors: First, winners of some games can perform badly in
others (i.e., YOLOBOT is the leader in Aliens, while achieving
0.20% of victories in Seaquest; or like Return42, which is
the best controller in Seaquest but the worst one in Sheriff ).
Secondly, there is a high variance in the scores typically
achieved on each game, as Table I shows.

Table II shows the rankings derived from these results. The
controller that ranks first in this set of games is OLETS,
closely followed by YBCRIBER. It is interesting to see how
YBCRIBER ranks high albeit it does not perform the best in
any game. This is due to its high general performance (ranking
2nd or 3rd in all games), a consequence derived from this
ranking system, which rewards controllers that perform well
across different games.

V. EXPERIMENTS

This section describes the experiments performed for this
paper. Each section details the changes and results obtained
for each one of the different configurations tested.

A. Reward Penalization

In this setting, the GVGAI framework is modified so that
every time an agent performs any action, the score in the game
is reduced by 1 point. In principle, one could assume that
controllers that are able to perform well using the minimum
possible amount of moves would be rewarded in the rankings.
These rankings are shown in Table III2.

All controllers seem to resist quite well the penalizations set
to the actions performed, with the exception of Return42.
This controller is specially affected by this change, as it
is the one with the highest drop in percentage of victories
(from 81.55% to 71.10%). The first and the second controller
alternate positions compared to the original rankings (where
OLETS was 1st and YBCRIBER was 2nd).

2To save space, no tables are reported for individual games and scores
achieved, albeit some of those results are discussed.
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TABLE I
PERCENTAGE OF VICTORIES AND AVERAGE OF SCORE ACHIEVED (PLUS STANDARD ERROR) IN 4 DIFFERENT GAMES. FOURTH, SIXTH AND EIGHTH

COLUMNS INDICATE THE APPROACHES THAT ARE SIGNIFICANTLY WORSE THAN THAT OF THE ROW, USING THE NON-PARAMETRIC WILCOXON
SIGNED-RANK TEST WITH P-VALUE < 0.05. BOLD FONT FOR THE ALGORITHM THAT IS SIGNIFICANTLY BETTER THAN ALL THE OTHER 5 IN EITHER

VICTORIES OR SCORE.

Game Algorithm Victories (%) Significantly
better than ... Scores Significantly

better than ... Timesteps Significantly
better than ...

Aliens

A: YOLOBOT 100.00 (0.00) B, D, E 70.56 (0.59) B, C, D, E, F 434.55 (1.52) B, C, D, E, F
B: OLETS 98.80 (0.49) Ø 66.91 (0.64) E, F 790.96 (3.65) Ø

C: YBCRIBER 100.00 (0.00) B, D, E 69.56 (0.60) B, E, F 470.41 (1.82) B, D, E, F
D: Return42 97.40 (0.71) Ø 68.43 (0.68) B, E, F 513.13 (8.50) B, E, F
E: OLMCTS 99.20 (0.40) D 61.16 (0.52) Ø 613.02 (4.12) B

F: RHGA 100.00 (0.00) B, D, E 64.99 (0.60) E 599.38 (3.02) B, E

Butterflies

A: YOLOBOT 95.60 (0.92) E 27.80 (0.63) C, D 528.03 (24.26) E
B: OLETS 100.00 (0.00) A, E, F 26.13 (0.53) C, D 170.53 (5.74) A, E, F

C: YBCRIBER 100.00 (0.00) A, E, F 23.19 (0.43) Ø 59.45 (0.88) A, B, D, E, F
D: Return42 100.00 (0.00) A, E, F 24.59 (0.48) C 73.68 (1.38) A, B, E, F
E: OLMCTS 86.60 (1.52) Ø 31.44 (0.69) A, B, C, D 728.91 (21.82) Ø

F: RHGA 94.40 (1.03) E 32.89 (0.75) A, B, C, D 447.54 (17.48) A, E

Sheriff

A: YOLOBOT 95.00 (0.97) D 8.52 (0.09) C, D, E, F 826.31 (13.63) C, E
B: OLETS 97.20 (0.74) A, D, F 9.18 (0.07) A, C, D, E, F 679.67 (11.08) A, C, D, E, F

C: YBCRIBER 96.80 (0.79) D, F 6.09 (0.08) Ø 1006.00 (4.97) D
D: Return42 59.00 (2.20) Ø 6.49 (0.17) C 1018.96 (28.82) Ø
E: OLMCTS 97.40 (0.71) A, D, F 6.56 (0.08) C, D 1001.62 (4.69) D

F: RHGA 93.40 (1.11) D 8.04 (0.08) C, D, E 808.00 (13.47) A, C, E

Seaquest

A: YOLOBOT 0.20 (0.20) Ø 97.54 (12.69) Ø 1572.78 (2.29) Ø
B: OLETS 60.00 (2.19) A, E, F 1309.77 (74.33) A, C, E, F 1266.04 (16.90) A, E, F

C: YBCRIBER 60.60 (2.19) A, E, F 452.48 (28.84) A 1180.91 (11.55) A, B, E, F
D: Return42 69.80 (2.05) A, B, C, E, F 2858.29 (123.42) A, B, C, E, F 1170.54 (13.14) A, B, C, E, F
E: OLMCTS 46.60 (2.23) A, F 508.48 (38.61) A 1266.75 (12.99) A, F

F: RHGA 24.60 (1.93) A 301.21 (27.40) A 1384.76 (12.76) A

TABLE II
RANKINGS TABLE FOR THE COMPARED ALGORITHMS ACROSS ALL

GAMES. IN THIS ORDER, THE TABLE SHOWS THE RANK OF THE
ALGORITHMS, THEIR NAME, TOTAL POINTS, AVERAGE OF VICTORIES AND

POINTS ACHIEVED PER GAME, FOLLOWING THE F1 SCORING SYSTEM.

# Algorithm Points Avg. Wins G-0 G-1 G-2 G-3
1 OLETS 68 89.00 10 25 18 15
2 YBCRIBER 66 89.35 18 15 15 18
3 Return42 59 81.55 8 18 8 25
4 YOLOBOT 57 72.70 25 12 12 8
4 OLMCTS 57 82.45 12 8 25 12
5 RHGA 45 78.10 15 10 10 10

TABLE III
RANKINGS TABLE IN THE Reward Penalization SETTING.

# Algorithm Points Avg. Wins G-0 G-1 G-2 G-3
1 YBCRIBER 80 94.55 18 25 12 25
2 OLETS 61 89.45 10 18 18 15
3 YOLOBOT 58 72.95 25 10 15 8
4 OLMCTS 57 82.95 12 8 25 12
5 Return42 49 71.10 8 15 8 18
6 RHGA 47 80.15 15 12 10 10

Penalizations affect controllers differently, in different de-
grees, but the changes in performance are not extremely
large in this setting. Regarding scores obtained, all controllers
obtain now negative scores, but the cross comparison among
them shows stability in the results, without major changes in
performance in this metric.

TABLE IV
RANKINGS TABLE IN THE Discounted Reward SETTING.

# Algorithm Points Avg. Wins G-0 G-1 G-2 G-3
1 OLETS 78 80.70 10 25 18 25
2 OLMCTS 73 87.15 15 15 25 18
3 RHGA 58 81.15 18 18 12 10
4 YOLOBOT 56 63.90 25 8 15 8
5 Return42 44 56.45 12 12 8 12
6 YBCRIBER 43 55.95 8 10 10 15

B. Discounted Reward

In this setting, the score returned by the forward model for
a given state s is discounted depending on the depth of search
(d), according to the following scheme:

rdisc(s) = rraw(s)×Dd (3)

where D is the discount factor, set to 0.9 to produce a sig-
nificant (but not too damaging) effect on the controllers. The
question that this modification poses is to verify how robust
the controllers are to delayed rewards that are discounted in
the future. The rankings for this configuration are shown in
Table IV

This setting affects the controllers more than the previous
one, although the first ranked controller is still the same
(OLETS). In this configuration, YBCRIBER is the agent that
suffers the most significant drop on the averages of victories,
going from 89.35% to 55.95%.
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TABLE V
RANKINGS TABLE IN THE Noisy World SETTING.

# Algorithm Points Avg. Wins G-0 G-1 G-2 G-3
1 OLMCTS 83 74.75 25 8 25 25
2 Return42 63 50.70 10 25 10 18
3 YBCRIBER 53 49.00 15 18 8 12
4 RHGA 52 53.70 12 12 18 10
5 YOLOBOT 51 53.70 18 10 15 8
6 OLETS 50 49.75 8 15 12 15

It is interesting to note that reward discounting has such a
surprisingly disruptive effect on the rankings. This modifica-
tion affects the distinct agents tested in this study in different
ways, and suggests as an open question whether it would
be possible to identify concrete changes that would benefit
particular controllers. In this scenario, the biggest impact
happens in the game Seaquest, where the performances of
YBCRIBER and Return42 plummet (the latter in percentage
of victories, the former in both victories and score), OLMCTS
increases slightly, and OLETS remains the same, enough to
keep the first position in this game (and consequently, in the
overall ranking).

Another interesting observation is that both sample con-
trollers (OLMCTS and RHGA) are resilient to this setting, which
allows them to climb to the 2nd and 3rd positions of the
rankings, respectively.

C. Noisy World

In this modification, noise is added to the actions executed
by the controller. Concretely, with a probability p, a different
random action is chosen to be performed instead of the one
intended by the controller. p was set to a high value, 0.25, in
order to achieve a big impact in the controllers employed in
this study. This noise is introduced both in the real game and
in the forward model. The rankings obtained with this setting
are shown in Table V.

This modification in the game engine and forward model
produces a very important change in the rankings. The most
significant is that a new controller gains the first position in
the rankings: OLMCTS, with a relevant difference of points
and percentage of victories with the second (Return42, 19
and 24.05%). Actually, it becomes the best controller in three
out of the four games tested. On the other hand, OLETS, the
best controller in the default setting, drops to the last position.

In general, all agents observe an important drop on the av-
erage of victories achieved (between 20% and 40%), with the
exception of OLMCTS that, resilient to this modification, only
suffers a drop of 7.7%. The differences on scores achieved are
not large, with the exception of Seaquest, where all controllers
achieved significantly lower scores. The loss in Sheriff and
Aliens is smaller, and Butterflies experiences a slight increase.
This change in Butterflies could be explained by the nature of
the game (see Section II-B): higher scores are achievable only
when less cocoons remain closed, but the game is lost when
all cocoons open.

TABLE VI
RANKINGS TABLE IN THE Broken World SETTING.

# Algorithm Points Avg. Wins G-0 G-1 G-2 G-3
1 OLMCTS 85 68.50 25 10 25 25
2 YBCRIBER 58 46.50 15 15 10 18
3 YOLOBOT 56 49.75 18 8 18 12
4 OLETS 55 40.30 10 18 12 15
5 Return42 49 34.00 8 25 8 8
6 RHGA 49 42.15 12 12 15 10

TABLE VII
RANKINGS TABLE IN THE Broken Forward Model SETTING.

# Algorithm Points Avg. Wins G-0 G-1 G-2 G-3
1 OLMCTS 71 83.05 18 10 25 18
2 OLETS 63 63.80 10 18 10 25
3 YBCRIBER 60 77.15 15 12 18 15
4 YOLOBOT 58 64.05 25 8 15 10
5 RHGA 51 57.00 12 15 12 12
6 Return42 49 38.45 8 25 8 8

D. Broken World

In this setting, the same configuration as in the previous case
was used, but in this case only the real game can introduce
noise in the actions supplied, while the forward model is
always accurate. Again, p = 0.25 and the rankings are detailed
in Table VI. The idea of this modification is to test how the
agents can cope with a forward model that does not reproduce
noise in the real game.

The new results obtained with this modification are similar
to those achieved in the previous case. OLMCTS becomes the
highest ranked entry achieving the best result in the same three
games as shown in Section V-C, and drop in victory percentage
happens across all controllers.

Note that the drop in percentage of victories is higher than
in the previous scenario, where even OLMCTS loses 20.5
percentage points. This could be explained by the fact that
inaccuracies are now introduced due to the noise included in
the actions executed in the real game, but not in the forward
model. However, it is interesting to note that again one of the
sample (hence, simplest with regards to the value function)
controllers suffers this effect the least.

Finally, regarding the games in particular, Butterflies still
remains as the game where percentage of victories change the
less (hence also being the game where OLMCTS does not rank
the first).

E. Broken Forward Model

Finally, this setting proposes the complementary scenario to
the one shown in the previous section. Noise with p = 0.25
is introduced only in the forward model, while the actions
supplied to the game are never altered. The rankings for this
configuration are shown in Table VII.

In this final setting, OLMCTS achieves again the highest
position in the rankings. It is worth noting, however, that in
this case the difference with the second ranked entry (OLETS)
is only of 8 ranking points. Additionally, it only achieves the
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first position in one of the four games, and all controllers
suffer a smaller loss in the percentage of victories than in the
previous case.

An interesting observation that can be drawn from this
results is that, when noise in the actions is only present in
the real game instead of in the forward model, the agents
have more difficulties to deal with this hazard. In other words,
the algorithms tested are more robust to noise present in the
forward model (when no noise is present in the real game)
than vice-versa.

F. Overall Comparison

Figure 1 depicts the average of victories of all controllers
in the four games tested, for the different six configurations
experimented with in this research. This graphic summarizes
well the findings of this study. It is clear that the latter modifi-
cations (adding noise in different parts of the framework) affect
the controllers more than the first two changes in most of the
games (Butterflies remains as an exception to this statement,
where the loss in average of victories is smaller).

Concretely, it can be observed how the Broken World
configuration produces the higher variance in the results: a
forward model that is not able to simulate the noise on the
actions that is present in the real game is not good enough for
most controllers. However, this change does not equally affect
all agents. The ones that use simpler value functions (with less
domain knowledge, like OLMCTS) respond better to a noisy
world without a noisy forward model.

It is also worth mentioning that a forward model that
simulates noise, even at the high rate of executing a random
action with p = 0.25, can cope with both a noisy and a
non-noisy real game environment. In fact, in some occasions,
results obtained in the Broken Model configuration are
better than the ones from a Noisy World, which suggests
that these techniques (especially OLMCTS) are robust to a
noisy forward model even if the game itself is not noisy.

VI. CONCLUSIONS AND FUTURE WORK

This paper described a study on the robustness of sev-
eral good general video game AI controllers (concretely, the
winners of the four legs of the previous competitions and
some sample controllers from the GVGAI framework) when
the conditions of the rewards and/or actions are changed in
the environment. In this research, alterations in the rewards
(introducing penalties for using certain actions, or discounting
the game score) and in the action performed (either by
including noise in the real game, or in the forward model,
or both) are introduced to analyze how the rankings change.
A key finding of the research is that some of these changes can
dramatically alter the rankings of the agents, which provides
a simple way to effectively expand the set of GVGAI games.

An interesting outcome of this study is that simpler con-
trollers, those that utilize a state value function that only
focuses on score and winning conditions, achieve better results
when noise is introduced on the actions. The effect on the rank-
ing differs significantly depending on the game and the agent

and the nature of the modifications. For instance, controllers
that included an element of best-first search (Return42 and
YOLOBOT) seem to handle unexpected noise badly. This is
consistent with earlier results where MCTS is able to handle
the introduction of noise much better than A* [8].

Furthermore, not all simple controllers perform well under
noisy circumstances: RHGA is not able to climb in the
rankings as much as OLMCTS, which becomes the 1st ranked
entry in some scenarios or OLETS, which is able to keep the
second position in these settings. Furthermore, results show
that, in the noisy settings, a noisy forward model with a
non-noisy real game makes the controllers behave better than
introducing noise in the real game (either alone, or together
with noise in the forward model). The latter condition (noisy
model, deterministic world) is likely to most closely model
non-game situations such as robot control.

The results shown in this paper leave us with multiple open
questions for future investigation. A straightforward one could
be to explore the parameter space (like the values of the noise
probability p or the discount factor D) to find out at which
point they actually trigger the modifications observed in this
paper. In other words, it is possible to analyze the continuum
of values of p to identify at which point the amount of noise
introduces a change in the rankings. It would also be possible
to introduce other types or noise (like variations in the states
observed) to analyze how does that modify the rankings, and
study the effect of this in more games (especially in those
omitted by the decisions explained in Section II-B).

For instance, given that the performance of the agents does
also depend on the game used, a possible question to ask
is if it is possible to identify or classify games with respect
to what changes can make controllers go up or down in the
rankings. For instance, what features make certain games be
more indifferent to penalizations in the moves made? Could
we infer some game design lessons from these categorizations?

As different controllers react differently to the changes
made, it is worth investigating if it is possible to automatically
find the parameters that will make some controllers behave
better than others. In other words, could we find, maybe by
evolution, the values of certain parameters that would permit
us to have any ranking desired using a specific set of games?
This would parallel previous work on evolving game maps to
induce differential rankings between agents [18].

This research also proposes a new way of evaluating
controllers: the same agents in a set of games can perform
differently depending on the setting used. Therefore, it is at
least thought provoking to consider if the best controller in a
competition should be the one that resists such changes in the
environment best.

Finally, it could be argued that we are not only testing
the robustness of the controllers, but also the robustness of
the competition itself, and thus its value as a benchmark.
If the rankings of controllers only depended on the amount
and type of noise, this would mean the benchmark would be
rather brittle. However, as observed above, some controllers
do better than others under all or almost all conditions. For
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Fig. 1. Victory percentages per configuration and game.

example, OLMCTS always performs better than RHGA. It
therefore seems that the underlying challenge of the GVGAI
competition is fairly robust to perturbations.
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Abstract—Destiny is, to date, the most expensive digital game
ever released with a total operating budget of over half a billion
US dollars. It stands as one of the main examples of AAA
titles, the term used for the largest and most heavily marketed
game productions in the games industry. Destiny is a blend of a
shooter game and massively multi-player online game, and has
attracted dozens of millions of players. As a persistent game title,
predicting retention and churn in Destiny is crucial to the running
operations of the game, but prediction has not been attempted
for this type of game in the past. In this paper, we present
a discussion of the challenge of predicting churn in Destiny,
evaluate the area under curve (ROC) of behavioral features, and
use Hidden Markov Models to develop a churn prediction model
for the game.

I. INTRODUCTION

In this paper the problem of behavioral prediction in digital
games is brought into the context of the most expensive game
developed and released to date, the online shooter Destiny.
Developed and released by Bungie in September 2014, the
game cost over half a billion US dollars to develop, but
sold more than that on its first day of retail, making it the
biggest new franchise launch of all time in the game industry.
According to Bungie, the game reached a billion US dollars
in revenue around May 2015 [1].

Destiny is not only an example of the most expensive to
develop and heavily marketed titles today, also referred to
as ”AAA” games, but also defines a new form of online
game, mixing traditional individual/team-based shooter games
with elements from Massively Multi-Player Online Games
(MMOGs), and includes both Player-vs-Environment (PvE)
and Player-vs-Player (PvP) elements, combining competition
and collaboration. In terms of gameplay, Destiny is a complex
title with a variety of different game modes and wide player
freedom in terms of navigation and how to spend time in the
game, wrapped in a traditional class-based progression system
with missions and instances reminiscent of MMOGs such as
World of Warcraft.

Destiny as a popular hybrid game title is in its own right
worthy of study, but it is also of interest in a broader context:
Destiny is representative of a trend among major commercial
game titles, where publishers are moving away from the
traditional retail fire-and-forget business model, and navigating
towards a hybrid model which tries to take advantage of
the revenue streams offered by persistent online games in
the form of, for example, Downloadable Content (DLC),
micro-transactions (In-App Purchases, IAPs) and similar tools.
Destinys developers have experimented with a variety of
different revenue opportunities already, including DLC, the
sale of emotes and cosmetic items, weapon packs and more.
However, with the change in business model comes also new
requirements for analytics support. In a retail business model,
there is no direct need to monitor the population of the
players, but in a persistent game situation, the monitoring and
forecasting of player behaviour becomes important to ensuring
the revenue stream and operations of a game [2]–[5].

While smaller commercial games for mobile platforms,
notably Free-to-Play (F2P) games have been the subject of
prediction modelling recently [3]–[5], major commercial titles
have received less attention. This is possibly partly due to a
lack of accessible data, and partly due to the traditional non-
persistent nature of such titles. In the types of AAA titles that
are based on persistent game design, the situation is different
however. For MMOGs, monitoring of the player community
and prediction of their behaviour have been topics of consid-
erable interest, notably from network balancing perspectives
as these games have to balance a large population of players
across multiple servers [6]–[8]. Similarly, within the domains
of eSports – when computer games are played competitively
– analytics support has received substantial interest, with
behavioral analysis playing a similar role as in physical sports
analytics [9].

The situation in Destiny compares with all of these related
domains of inquiry but along different trajectories. Similar to
F2P games, Destiny adopts micro-transactions as a source of

2016 IEEE Conference on Computational Intelligence and Games (CIG’16) 325



revenue and feature numerous in-game currencies and reward
vectors (equipment, reputation, appearance, etc.). Similar to
MMOGs, the game is highly persistent in nature, in essence
you are never finished with the game, and there is a running
stream of updates and new content being released. The game
also supports a huge population of players operating within
the same virtual environment. Finally, similar to eSports
games, there is a substantial competitive and team-based play
element in Destiny, exemplified by the Crucible, which is the
framework for PvP play in the game. In essence, while Destiny
as a title has not seen previous attention from game analytics,
there is some related – but also very recent – work available
which can form the basis for investigating churn prediction in
the game.

In this paper the focus is on exploring the potential for
predicting player churn in AAA titles like Destiny, with the
game being used as the test case. Given the recent shifts in the
revenue generation strategies in AAA games, the game with
its hybrid design and large user base forms an ideal platform
for investigating behavioral prediction. This is augmented by
the availability of high-dimensional, time-series datasets about
player behavior thanks to the telemetry tracking of Bungie.
Access to data collected since the beginning of the history
of the game is available through an API that is already used
by the player community to inform the players, for example
through services such as destinytracker.com. A similar pattern
is observable for eSports games, where the importance of
feeding behavioral data back to the community is essential
to drive engagement in e.g. tournaments [9].

II. CONTRIBUTION

In this paper time-series behavioral data from 10,000 ran-
domly selected Destiny players are used as the basis for
investigating churn in Destiny. It is the first time this kind
of hybrid online game has formed the basis for behavioral
analysis.

The contribution of this paper is threefold: a) we present
the first behavioral analysis of Destiny, the to date most
expensive AAA-level commercial title produced in the world;
b) We present a churn prediction model for the game based
on Hidden Markov Models (HMMs), chosen due to the time
series nature of the data, and further due to their successful
application in F2P mobile game contexts [3]–[5], [10], [11].
HMM results are benchmarked against other ML models; c)
We present a thorough discussion of the kinds of behavioral
features typically tracked of player performance in online
AAA titles, and their relative usefulness in connection with
churn prediction.

III. RELATED WORK

Behavioral prediction in games is a relatively recent topic,
but has a strong tradition outside games. One of the earliest
successful churn models was presented by Mozer et al. [12],
in the area of wireless communication, and churn has been
investigated in e.g. in retail banking and insurance.

Churn prediction work in digital games has primarily taken
place across four vectors: a) F2P mobile games [3], [4]; b)
MMOGs [2], [8]; c) other games [13]–[15] and d) Game AI in
general [16]. The latter approach is the least directly applicable
to the current problem as the focus here – generally – is on
artificial agents and mimicking the behavior of players, as
compared to analyzing the behavior of the players. Due to
space constraints the focus in this section will be on work
directly related to the challenge of behavioral prediction in
online persistent games.

A. F2P mobile games

Recent work on prediction in F2P mobile games has covered
a variety of machine learning models, and is focused on either
predicting players leaving the game [4], [5], or conversely
which players that will make a purchase in the game [3],
[10], [11]. The churn problem in games was formally defined
by Hadiji et al. [5], who also identified a number of behav-
ioral features which are applicable across F2P game titles,
including several temporally-bound features such as Number
of Sessions, Avg. Time Between Sessions, Total Days Played,
Current Absence Time, and Average Playtime per Session. The
features identified by Hadiji et al. [5] were later used by Sifa
et al. [3] and others, and several similar features occur in F2P
prediction work such as Xie et al. [11], Rothenbuehler et al.
[10] and others who focused on predicting IAPs. In general,
evaluating the usefulness of these features in predicting churn
across five F2P titles, the work in F2P games has highlighted
the importance of behavioral features associated with playtime
as a function of real-world time, e.g. the Number of Sessions,
Number of Days Played and Avg. Playtime per Session were
found to be the most important features. Interestingly, the
duration of the time between play sessions have also been
found to be important to churn prediction in MMOGs, see
e.g. [8].

The methods applied range from pattern recognition and
historical analysis, simple forecasting and multiple regression,
to machine learning techniques. The latter notably includes
Decision Trees [DTs] and variants such as Random Forest
[3], [5], Support Vector Machines [11] and Hidden Markov
Models [HMMs] [4], [10].

As yet deep learning methods have not been applied in
behavioral prediction in games but forms a potentially inter-
esting addition to the current arsenal of game analysts due
to the ability of deep learning methods to handle sparse and
imbalanced data, which are typical in behavioral telemetry
situations [2], [3], [5]. There is as yet not enough publicly
available knowledge to draw conclusions about which behav-
ioral features provide the best result across different games, or
which ML models work best for predicting player behavior,
but commonly reported accuracies lie above 0.8, meaning that
predicting player behavior in F2P games is definitely possible.
It should be noted that these games are generally also much
more restrictive in their design in terms of player agency than
MMOGs and AAA-level titles such as Destiny. In essence,
they are simpler games.
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B. MMOGs

The focus of behavioral modeling in MMOGs has from
the onset had a quite different focus than work in the F2P
space, namely that these lines of research originate in network
science. Some of the earliest work includes Kawale and Sri-
vastava [17] who investigated churn in the MMOG EverQuest
II using social network analysis as the basis, proposing a churn
model based on social influence among players. However, the
precision and recall rates obtained were approximately 50%,
which led Borbora et al. [18] to try out other classifiers,
similarly using EverQuest II data and hybrid methods with
a binary decision approach, defining churners as players who
cancelled their subscription or been inactive for 2 months.
Also with the focus on MMOGs, Nozhnin [19] focused on the
first few minutes of gameplay in the game Aion, investigating
triggers for churn. The author highlighted the challenge of
feature selection in behavioral prediction in games.

Focusing on the two MMOGS World of Warcraft and
Warhammer Online, Pittman and Gauthier [7] mined client-
server streams from client servers measuring player distribu-
tions using data such as session length and high-level move-
ments of the players, with the focus on informing MMOG
server architecture. Feng et al. [8] applied traffic analysis to a
three-year dataset from the MMOG EVE Online. The results
indicated that churn rates in the game varied across the lifespan
of the game, generally increasing with the age of the game.
Furthermore, Thawonmas et al. [6] analyzed player revisitation
in terms of returning to play the game, as well as returning to
specific in-game areas, in the MMOG Shen Zhou Online. The
primary behavioral features used were login time and login
frequency.

C. Other games

Outside the confines of MMOGs and F2P mobile games,
behavioral prediction has been the topic of a few publications,
across a variety of games. For example, one of the earliest in-
vestigations into behavioral prediction in AAA-level commer-
cial games was performed by Mahlman et al. [20], who used
Decision Trees to predict retention in the action-adventure
game Tomb Raider: Underworld. Sifa et al. [21] built a
tensor factorization based representation learning framework
to incorporate the movement information of numerous players
into the retention prediction process for the sandbox game Just
Cause 2.

Within the genre of Multi-player Online Battle Arena
(MOBA) games, Yang et al. [22] presented an approach for
discovering and defining patterns in combat tactics among
winning teams in the eSports title DOTA 2, based on graph
representation. Schubert et al. [9] developed an algorithm for
dividing eSports matches into encounters, which were then
used as the basis for prediction models focusing on match
outcome in DOTA 2.

Operating with data from the Steam game distribution
and -hosting client, Bauckhage et al. [23] modelled play-
ers engagement to games using lifetime analysis across five
major commercial titles. Modeling the players interest as a

hidden variable the authors extracted playtime information
and showed how the interest can be represented in terms of
lifetime distributions and their corresponding processes. This
work formed the first attempt at an explanation of the power
law pattern evident in many studies of playtime and retention
in games to that point. The work was followed up by Sifa
et al. [15] who found similar patterns across more than 3000
game titles, working with over five billion hours of play across
more than six million players.

In summary, prediction has in the field of game analytics
been focused on F2P games, with a deeper history in online
games such as MMOGs. However, prediction is also finding
uses within 3D navigation, progress prediction, or predicting
what kind of problems specific players will encounter, etc. The
vast majority of the current knowledge about these application
areas rests within the industry, where the combined resources
for behavioral research outranks academic research by at least
a factor of ten, and only small glimpses of such business-
sensitive knowledge is available through industry talks and
presentations.

IV. DESTINY: GAMEPLAY

Destiny is formally a science fiction-themed online first-
person shooter game which has been blended with a num-
ber of features reminiscent of MMOGs, notably a persistent
online world, as well as with Role-Playing Games (RPGs),
notably character development along a number of trajectories,
which also occur in many MMORPGs (Massively Multi-player
Online Role-Playing Games). The game was developed by
Bungie, and published by Activision in September 2014. The
game is only available on major gaming consoles and requires
the player to be always-online.

In terms of comparisons with earlier work on behavioral
prediction in games, Destiny forms a unique case in that it
shares design elements and mechanics that are found within
the types of games this earlier work has focused on, without
being similar to any previous game that has formed the basis
for predictive analytics. For example, similar to F2P games,
Destiny features microtransactions and purchasable content,
but also has other features as noted above. Similar to prediction
work on other types of games, Destiny features team-based
combat reminiscent of MOBAs [9].

To understand these differences, and the impact this has
on feature selection, it is necessary to explain how Destiny
operates as a game.

The core mechanics of Destiny are those of a traditional
FPS, and include run, jump, crouch and shoot as well as
simple melee combat. The interface provides information such
as ammunition, health, a mini-map and floating information
text over enemies. Other mechanics more resemble RPGs,
with character classes, attributes and levels based on earnt
experience points, all feeding into the complex damage system.
Enemies typically take multiple hits to kill, although some
weak enemies can be easily dispatched and headshots provide
additional damage. Destiny also features an inventory system,
a range of collectibles and crafting.
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The setting is an extensive persistent game world, explo-
ration driven by quests and available activities in the form
of player-versus-environment (PvE) and player-versus-player
(PvP) content. Single and multi-player elements both feature
heavily, in the style of MMORPGs such as Everquest and
World of Warcraft. There are also clear relationships to team-
based FPS games, such as Call of Duty and Team Fortress,
although the persistent game world sets it apart from those
games. The overall game experience is one of fast paced
combat action with players presented with multiple options
in a large persistent world. One unusual feature for an online
multi-player game, and one which has caused considerable
controversy within the player base, is the limited in-game
support for player to player communication.

Story missions direct the player through settings across the
solar system, from Earth to the moon and out to the other
planets and may be completed with other players but can
typically be completed alone. Group activities in Destiny are
based around a fireteam of three players. Strikes and the
larger and more involved Raids are instanced co-operative
group content for three and six players, respectively. Other co-
operative group-based content, known as public events, take
place in the persistent world, where all players that can reach
the site of the event can participate.

PvP content (known as Crucible matches) takes place in
instanced environments and involve one or two fireteams a
side, for a maximum of twelve players. PvP modes include
team and individual deathmatch, area control and some less
well-known forms, although other familiar modes, such as
capture the flag, are absent. The size of the teams gives the
matches more of a feel of other small scale PvP content,
such as World of Warcraft arena battles and small team battles
possible in games such as Counter-strike, rather than the larger
teams possible in many online FPS games that do not have a
persistent world.

The restricted communication options, particular the lack of
any text based chat channels, produces a different experience
to many other MMO games, particularly those played on a
PC. Voice communication was, at initial release, only possible
between members of pre-formed fireteams, usually consisting
of players who know each other outside the game. Recently
added is the option of voice communication to players who are
randomly put into teams by the matchmaking service in both
PvE and PvP content. These voice-chat features are opt-in.

V. DEFINITIONS

The term churn here refers to the process of a player leaving
the game indefinitely and discontinuing to be a customer.
While it is natural for most players to eventually turn away
from a game over time, for games with hybrid revenue models
such as Destiny holding onto players for as long as possible
not only increases revenue but maintains a higher density of
player interaction in the MMOG setting. Therefore, retaining
players by either encouraging churned players to return or
preventing current players from churning in the near future
has a vast impact on the success of the game overall.
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Fig. 1: Total playtime distribution in the log scale.

More specifically, the goal in this work is to identify
players who are about to churn rather than those that have
already churned. Enticing a churned player back to the game
is less likely to be successful than encouraging a currently
active player to continue playing [4]. By analyzing a player’s
time series data, we seek to predict whether that player is
about to churn by identifying patterns of disengagement in in-
game activity and how often they play. Additionally, we are
predicting late churn of players who have been playing the
game for at least a month; this is opposed to predicting early
churn in players who have only recently begun playing.

VI. MODELING

This section starts with an outline of the Destiny dataset
that was used in the experiments in Section VII. It then
gives a detailed account of how the data is pre-processed and
labeled in preparation for classification. This pre-processing is
focused on preparing the data for use with a HMM classifier.
This section then concludes with the specifics of the features
used, the setup of the HMM classifier, and the non-temporal
classifiers that were tested for comparison purposes.

A. Dataset

The dataset used in this study contains detailed daily be-
havioral information of more than 10000 Destiny players with
24118 characters that have been randomly sampled from all
of the players that played the game at least for two hours.
Grouped by the game modes, the dataset contains general
metrics about in-game activities such as average scores per
kills and number of deaths as well as very detailed information
about the gameplay such as the suicides and the performed
resurrections. The data covers 17 months of activity starting
from September 2014 to January 2016 and the total playtime
played by the players is 1,809,564 hours and the average per
player is 158 hours. Figure 1 1 shows a log scaled histogram
of total playtime.

B. Data Pre-processing and Labeling

A subset of players was randomly sampled from all players
of the game who played for at least two hours. This threshold
is set to eliminate bias imposed by people who never migrate
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Fig. 2: Example of labeling sequences in time-series data of a player as churned (CHR), about-to-churn (ATC) or in-game
(ING) with C = 4. Black notches on the timeline are weeks with no play data and each colored X marks a week where at
least 120 seconds of play time was recorded. Labels below the timeline show the rule that determined the class assignment.

to becoming actual players of the game, e.g. people who install
the game but never play it, or only play it very briefly. The
exact placement of the threshold can of course be debated, but
was in the current instance based on an investigation of the
approximate playtime it takes to navigate the earliest step of
the tutorial elements in the game.

The dataset provides daily snapshots of each players ac-
tivities, performance, and achievements for every day that
they played during the sample period. However, this data was
further aggregated into weekly snapshots for each sampled
player, where days that the player had no activity were filled
with null values. If playtime was less than 120 seconds in
a week, that week is considered to have no activity and is
zeroed out. This threshold value was chosen through intuition
but could be further explored through sensitivity analysis.

Aggregation is done because of irregular play behaviour
between players within a week. For example, because Destiny
play sessions require players to be heavily engaged with the
game (unlike say with ”casual” games), it is likely that a busy
schedule will prevent them from playing for many days in a
row. If a player is not active for a few days, it is unlikely that
they have churned therefore leading to incorrect predictions.

For the same reason, we define a churn window (C) such
that if there is no data for a player during at least a C weeks
period, then that player is considered to have churned during
that time. Note that this means that it is possible for a player
to churn for a period of time and then return. In all of our
experiments, we set C = 4. The reason for this can be seen in
Figure 3 where each point represents a sampled player, plotted
against their playtime (in seconds) and their average absence
from the game (in days) during the sample period. The density
of the plotted player data is much higher for values of average
absence less or equal to 28 (i.e. 4 weeks).

All of the classification techniques used to predict churn
in this paper are trained through supervised learning and so
requires the data to contain class labels. Sequences of weeks
are labeled as either churned (CHR), about-to-churn (ATC),
or in-game (ING). However, all CHR data is discarded and
instead we use ATC for positive samples and ING for negative
samples for classifier training and testing purposes.

The data is processed backwards through time. If there is
no player activity for C weeks or more, then those weeks are
grouped into a sequence and that sequence is given a label
of CHR. Any weeks with activity that are within C weeks

Fig. 3: Play time (in seconds) vs. average absence (in days)
for each sampled player during the sampled time.

before the CHR sequence starts are again grouped together
and given the label ATC. All other sequences of weeks with
activity are given the label ING. Additionally, because players
may return after C weeks of inactivity, it is possible to have
more than one of each sequence type for each player. It is also
possible for sequences to be less than C weeks long if, for
example, an ATC period is surrounded by CHR periods and
doesn’t have activity that is at least C weeks apart. If these
sequences are shorter than C − 1 weeks long, then they are
discarded. This means that both CHR and ING sequences can
span C − 1 or more weeks, while ATC sequences are either
C − 1 or C weeks long. Once these sequences are identified,
they are added to a pool of sequences from all players. It is
from this pool that training and test set data is drawn to be
used with the classifiers.

This process can be seen in the example in Figure 2. The
center black line indicates the timeline while each X marks a
week where the player played the game. Here, the player plays
for just two weeks before churning but then returns, plays
consistently for a number of weeks, their play time becomes
more sparse, and then they churn again. As the first two weeks
of play are less than our C − 1 threshold, this sequence is
discarded along with the CHR sequences. The two central ING
and ATC sequences are extracted and added to the global pool
of sequences.
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C. Features
All the features below are discretised by comparing the cur-

rent feature value with that of a rolling average and assigning
a value of (0, 1, 2) corresponding to (less, same,more) tags.
The rolling average for feature x at week t + 1 is calculated
as σx,t+1 = σx,t + α ∗ (xt − σx,t), where α = 0.4 is used as
a weighting parameter for the experiments below. If the value
for the current week is within 20% of the rolling average, it is
given the discretised value for being the same as the average.
Otherwise, it is given the value of more or less depending on
whether it was greater or less than that of the rolling average
beyond the 20% threshold.

In choosing features to use, we tested many combinations
using experiments similar to those found in the experimental
results (Section VII) below to find those that yielded the best
HMM performance. The Destiny dataset provides 35 player
performance statistics regarding what they did in the game
and how well they did it. However, the best combination that
we could find (and that we use in the experimental results
below) only utilizes three of these, as well as three engineered
temporal statistics regarding how often they played. Each week
of recorded play is represented by a vector of the following
feature values:

• Mean Lifespan: Total number of seconds played divided
by the number of times the player has died since they
started playing.

• Kill-Death Ratio: Total number of kills the player has
divided by the total number of deaths since they started
playing.

• Activities Completed Ratio: The ratio of activities that
the player completed to the number of activities that they
entered.

• Current Absence: Number of weeks the since the player
last played. A week with less than 120 seconds of activity
has a value of 1, the second consecutive week of no
activity will have a value of 2, and so on. If a week
contains at least 120 seconds of play time, then this value
is 0.

• Current Absence to Mean Absence Ratio: Mean Absence
takes into account all absence periods, excluding the
current one.

• Weeks Present Ratio: Number of weeks this player has
been active divided by the total number of weeks since
they first registered to the game.

D. Classifiers
As we are dealing with time series data, the main classifier

that we examine is a multinomial Hidden Markov Model
(HMM). The HMM models are learned using the hmmlearn
Python library (https://github.com/hmmlearn/hmmlearn). Se-
quences of data are extracted in the pre-processing step as
each constitutes a sequence of observations to be used by the
HMM, with the features of each week making up a single
observation.

Two HMM models were trained, one for the ATC class and
one for the ING class. By passing the respective data to each

model, they were trained to recognize patterns corresponding
to the specified class. During testing, the models take a
sequence of observations and it returns the log likelihood that
the sequence was produced by the given model, thus giving a
probability of the sequence belonging to that class.

If an observation (a single week) in a test set sequence
has not been seen by a multinomial HMM during the training
phase, then that entire sequence will be unclassifiable. If the
sequence is classifiable by one model but not the other, then
the predicted class is that of the model that can classify it, even
if the log likelihood is low. If the sequence is unclassifiable
by both models, then the prediction defaults to ATC.

We also compare the performance of this HMM with that
of several other classifiers, utilizing the scikit-learn Python
library (http://scikit-learn.org/stable/). As these are non-time
series models, each week in the dataset is given the class label
of the sequence that it is a part of. Each week is then joined
with C − 2 other neighboring active weeks to create a single
sample with n ∗ (C − 1) features. For example, each sample
will have three separate Kill-Deaths-Ratio features, one for
each week. In our case, we use the n = 6 features listed
earlier and C = 4, giving 18 features per sample. This is
done in order to provide at least some measure of temporal
data to the classifiers. We also tested the classifiers by treating
each week as a single sample with n = 6 features but this
performed worse than the n ∗ (C − 1) setup. It is also worth
noting that using the original feature values performed better
than the pre-processed discretised values for all of these non-
temporal classifiers and so these original features are used in
the results shown below.

VII. EXPERIMENTAL SETUP AND RESULTS

This section discusses the results of the HMM classifier
versus the other non-temporal classifiers across the temporal
data. As the HMM training process is stochastic in nature
and can lead to different models even when provided with the
same training data, the results for the HMM show the average
performance of 15 training and testing cases using the same
training and set sets. Meanwhile, all other classifiers use strat-
ified 10-fold cross validation on the same training set as the
HMM. The results for these classifiers show the performance
of the best model identified by cross fold validation running
on the same test set as the HMM.

The training set and test set were formed by splitting the
sampled data on the date of the 20th of October, 2015. Any
sequences with weeks entirely before or on this date were
added to the training set, while those with weeks entirely after
or spanning both sides of this date were added to the test
set. In total there were 12086 ATC sequences and 3996 ING
sequences in the training set. There were 3065 ATC and 927
ING sequences in the test set. In terms of individual weeks,
there were 69287 ATC weeks and 49962 ING weeks in the
training set and 33497 ATC weeks and 35235 ING weeks in
the test set. Only 0.9% of sequences were unclassifiable by
the ING HMM model while 0.4% were unclassifiable by the
ATC model.
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TABLE I: Results of the best models found for non-temporal
classifiers and the mean HMM performance on the same
training and test data sets. Bold values are best in column.

Classifier Prec Acc Recall F1 AUC
Theoretical Random
Classifier

0.75 0.5 0.5 0.6 0.5

Bagging 0.54 0.55 0.49 0.51 0.56

Naive Bayes 0.55 0.57 0.70 0.61 0.61

Nearest Neighbor 0.52 0.53 0.57 0.54 0.54

Gradient Boosting 0.56 0.58 0.63 0.59 0.61

Decision Tree 0.55 0.57 0.60 0.58 0.59

Discriminant Analysis
(Quadratic)

0.54 0.56 0.73 0.62 0.60

Discriminant Analysis
(Linear)

0.54 0.56 0.75 0.63 0.61

Ada Boost 0.56 0.58 0.66 0.60 0.61

Logistic Regression 0.54 0.57 0.75 0.63 0.61

Random Forest 0.54 0.56 0.76 0.63 0.60

Hidden Markov Model 0.92 0.53 0.43 0.57 0.77

A. Results

Table I shows the results of these tests, given as precision,
accuracy, recall, F1 score (all with no bias in the binary
classification threshold), and area under ROC curve (AUC).
Bold values indicate the classifier that performed the best for
the given metric. Theoretical results of a random classifier
are also provided, calculate from the class distributions in the
previous section. From these results we can see that the HMM
far outperforms the other classifiers on precision, meaning that
when it predicts that a player is about-to-churn (ATC), then it
is highly likely that the player will churn. However, the HMM
recall is the worst, which means the HMM is conservative
in its predictions and is failing to identify at least half of
ATC players. The fewer true positive predictions also gives
the HMM the worst accuracy.

This result is opposite to many of the non-temporal clas-
sifiers, such as the Random Forest classifier, that has a high
recall but a low precision. These classifiers are acting quite
liberally in predicting that players are ATC. Overall the HMM
performs best with respect to the AUC, suggesting a better
balance between precision and recall overall with various
prediction thresholds. Figure 4 shows the ROC curves of the
HMM model pairs with the minimum, maximum, and median
AUC values. This figure highlights that, especially for the best
performing HMM, the recall (true positive rate) climbs rapidly
as false alarm rate (false positive rate) increases. This suggests
that by using an unbalanced binary prediction threshold to be
slightly more generous with positive predictions, the HMM
could increase recall to a reasonable level while not sacrificing
too much precision.

B. Discussion

There is a choice to be made in which classifier would be
best to deploy to the real-world, based upon the results shown
here. Let us assume, for example, that players identified as
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Fig. 4: The ROC curves for the best, worst, and median pair
of HMM models found after 15 separate stochastic training
runs.

ATC at any given time are offered an incentive by Bungie to
continue playing Destiny. If this incentive is costly to Bungie
or could hurt the in-game economy (such as giving players
a rare in-game item), then precision is more important as
the company would only want to give such an expensive
incentive to those who are truly about to churn. However, if
say the incentive is just a common in-game item corresponding
to the players level then a higher recall is more important:
it is less important if the non-churning player receives this
bonus, as long as more players are encouraged to stay in the
game. Overall, the HMM will also provide the best balance
between these two simply by adjusting the binary classification
threshold.

HMMs were chosen as the focus here as a representative of
classifiers that have the ability to factor in additional temporal
information from the in-game behavior of the players, in this
case performance-based features. However, similar to work in
F2P and MMOGs, the best performance relies on a mixture
of in-game and temporal features, the latter describing how
often the player was active. Of interest is that the combination
of these features provided similar performance to that of [10]
(based upon their provided ROC curve) who operated in a F2P
game context, even though the authors only use specifically
temporal features. There is a vast difference in the relative
complexity of the design and mechanics between Destiny and
F2P games. It is also interesting to see the importance of
temporal features across these diverse game situations, which
was speculated on in the work of Bauckhage et al. [23] and
Sifa et al. [15], who hypothesized an underlying model of
player interest in games from observing playtime distributions
across more than 3000 games.

It may then be argued that the player performance features
offer little benefit for churn prediction and that both the HMM
and the non-temporal classifiers would be better served using
only temporal features. Temporal features have previously
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shown promise as a genre agnostic feature set for a wide
variety of F2P games [5] and a single-player sandbox game
[21]. However, when testing feature combinations similar to
those used by [5], [21], we witnessed significantly poorer
performance in both types of classifiers. This suggests that
features used for successful churn prediction in F2P mobile
and single player games may not be applicable in the context
of MMO console games. This highlights the need for more
research into potentially generalizable feature sets for game
analytics. In the absence of those general features though,
it remains important to consider the genre of the game and
the context of the data when addressing the churn prediction
problem.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper detailed time-series behavioral feature data
from 10,000 randomly selected players from the hybrid FPS
online game Destiny have been analyzed for the purpose of
building a churn prediction model. Based on an application
of Hidden Markov Models, a churn prediction model is
presented. The HMM model has been benchmarked against an
array of classifiers, and the relative performance of different
approaches described and discussed. The results presented
highlight the differences in the demands on the behavioral
features used for prediction across game types, as is clear
when comparing work across F2P mobile games, MMOGs,
single-player games and now hybrid online games.

The work included here represents a first step towards
building behavioral prediction models in Destiny and similar
games. The results form a step on the way to developing
robust predictive models for AAA-level commercial game
titles, similar to the models currently available in F2P mobile
games. With the increasing focus within major commercial
game titles towards extending the interaction period, churn
prediction models are an important first step in developing
games that are user-responsive and able to adapt to prevent
player disengagement, as is currently being explored in F2P
mobile games [4] and Game AI [16].

Future work will focus on improving the precision and recall
rates, for example by further feature engineering, moving
beyond performance-based and temporal metrics, such as
progression metrics (e.g. character level, faction reputation,
missions accomplished). Future work will also investigate
the potential for predicting other aspects of player behavior,
notably related to monetization, social behavior and game
content absorption. The latter forms an example of game-based
behavioral predictions that directly target informing design, as
compared to the monetization and retention focus common in
prediction work in games, and forms a venue in game analytics
that has not been well explored.
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Abstract—Designing a (video) game such that it is balanced -
i.e. fair for all players - is a prevailing challenge in game
design. Perhaps counter-intuitively, games that are symmetric
with respect to (board) design, starting conditions, and the
employed action set, are not necessarily fair games. Indeed,
perfect play from all players does not automatically lead to a
draw, but may probabilistically favour e.g., the first player to
move. Even more so, asymmetric games – in which the action
set of one player is typically highly distinct from that of another
player – are generally unbalanced unless meticulous care has been
taken to ensure that the asymmetry in the design does not skew
win probabilities. In this context, the present paper contributes
a method for automatically balancing the design of asymmetric
games. It employs Monte Carlo simulation to analyse the relative
impact of game actions, and iteratively adjusts attributes of the
game actions till the game design is balanced by approximation.
To assess the effectiveness of the proposed method, experiments
were performed with automatically balancing a set of tower-
defence games. Preliminary experimental results revealed that the
proposed method (1) is able to identify the principal component
of a game’s imbalance, and (2) can automatically adjust the game
design till it is balanced by approximation.

I. INTRODUCTION

It is generally acknowledged that a (video) game needs to be
balanced in order to be enjoyable [1]. Informally speaking, this
entails that every player, given they possess equal skill, should
have the same probability of winning the game. In symmetrical
games, where each player can always choose from the same
action set and can always start from a position analogous to
that of the opponent player(s), this is generally assumed by
default (cf., rock-paper-scissors). As such, derived from Herik
et al. [2], we consider a game a balanced (i.e. fair) game if it
is a game-theoretical draw, and both players have roughly an
equal probability on making a mistake. In games containing
asymmetrical choices however – like most multiplayer strategy
games – each player typically starts with a set of actions that
is highly distinct from that of other players, making balancing
the game design particularly challenging [3]. Foremost, the
challenge follows from attributing the relative impact of an
action on the win probability. That is, the effectiveness of an
individual action is not directly apparent, as it is dependent on
the context in which it is executed.

As current-day video games typically contain dozens to hun-
dreds of different types of (unit / building) actions, it has
become highly challenging for a human designer to identify the
precise action which causes the game design to be imbalanced.

Currently game designers rely on extensive and expensive
human testing [4], requiring a considerable amount of time
and effort which can even go far past the public release of a
game. As such, developing a method which can automatically
identify (and correct) the cause of an unbalanced game would
accelerate the design process, and can be assumed to positively
impact game design practise.

The contribution of the present paper, therefore is a method
for automatically balancing the design of asymmetric games. It
employs Monte Carlo simulation to analyse the relative impact
of game actions, and iteratively adjusts attributes of the game
actions till the game design is balanced by approximation.

II. RELATED WORK

In related work, Jaffe [5] investigates the restricted-play bal-
ance framework, arguing for a mathematical formulation of
game balance in which carefully restricted agents are played
against standard agents. The work foremost contributes to the
field of quantitative balance analysis, and is related to that
of Nelson [6], who conceptually explores strategies for auto-
matically extracting balance information from games. Also,
Mahlmann et al. [7] have previously investigated evolving
card sets to automatically balance the game of Dominion. Van
Rozen et al. [8] have performed work on generating balanced
tower defence games using MicroMachinations.

Indeed, the topic of automated game balancing is of general
interest to the gaming community (cf. e.g., Elias et el. [9],
Chapter 4.4). As such, Kim et al. [10] investigated a system
to collect and visualise data from user studies, called TRUE.
Their system analyses player deaths to find the cause of unin-
tended difficulty artefacts introduced during development. De-
beauvais et al. [11] uses aggregated data from the racing game
Forza Motorsport 4 to analyse how players use and customise
driving assists; enabling them to balance the difficulty level
of the game. Also, Lewis and Wardrip-Fruin [12] collected
and analysed large quantities of game data from the popular
MMORPG World of Warcraft which they used to investigate
common player assumptions, such believed imbalances in
specific game classes being more efficient for reaching the
maximum character level. Indeed, while a plethora of research
exists on dynamic difficulty adjustment (DDA), deep analysis
of the balance of a game design – and its principal components
– and the automated balancing thereupon, is still a relatively
under-explored field.
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Fig. 1: Action history of a best of three rock, paper, scissor game.

III. METHOD

Here we describe our method to automated game balancing
of asymmetric video games. It consists of maintaining an ad-
ministration of action histories (III.A) in the form of an action
history tree (III.B). We give an example of an (im)balanced
game, (III.C), and describe our procedure to identifying actions
of high impact on a game’s win probability (III.D); the method
builds upon Monte Carlo tree search (MCTS) techniques.

A. Action history

We consider the action history in a game to be the concatena-
tion of actions taken by a player within the game, leading
to a certain outcome. For instance, looking at a game of
best of three rock-paper-scissors (RPS). If player one plays
scissor, rock, scissors and player two plays paper, paper,
rock this leads to player two winning the game and player
one losing. The action history of this RPS game is thus
(scissor × paper), (rock × paper), (scissor × rock) which
leads to a loss for player one and a win for player two.

B. The action history tree

The simulated action histories are stored in a tree structure.
The root node of the tree is the first action of player one, and
is succeeded by the the first action of player two, then the
second action of player one, etc. In every node the observed
number of wins, draws, and loses subsequent to that action is
stored; the metrics are derived from all simulated playouts from
this node onward. Figure 2a shows the action history tree for
the action history shown in Subsection III-A. Adding another
action history to the tree, player one (Scissor, Rock, Scissor)
vs. player two (Paper, Rock, Rock), results in Figure 2b.

C. Example of an (im)balanced game

Consider the – balanced – rock-paper-scissors (RPS) game; a
zero-sum hand game usually played between two people, in
which each player simultaneously forms one of three shapes
with an outstretched hand. The action set for both players is
identical, and the game is designed such that each player has
an identical probability of winning the game. To create an
imbalanced game on the basis of RPS, a fourth action called
Spock can be introduced. The Spock action only loses against
paper, and replaces rock of player one in the second play
of the best of three RPS game (Table Ia). As a result the
win ratio of the game becomes skewed towards player one
(Table Ib) making RPS+Spock an imbalanced game. As such,
the Spock action can be identified as an action with high impact
on the game’s win probability, in this case skewing the win
probability in favour of player one.
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Fig. 2: Action history tree.

TABLE I: Results of RPS+Spock in the second play of the game (a),
and the outcome of 10000 best of three RPS+Spock games (b).

(a)

P2
Rock Paper Scissor

P1

Rock Tie P2 P1
Paper P1 Tie P2

Scissor P2 P1 Tie
Spock P1 P2 P1

(b)

Winner Ratio

Player one 42%
Tie 25%
Player two 33%

D. Discovering high impact actions in a game

In complex, actual video games, play-out information such
as that in Table Ia and Ib is typically unavailable, among
other reasons because game actions generally can not be
directly pitted against each other in isolation. What is feasible,
however, is observing the win ratio of simulated games, and
monitoring the actions played to construct a means of analysis
– such as building an action history tree.

Having an imbalanced game, the goal is to identify high
impact actions which are leading to a win disproportionately
more often than a loss. In an effort to calculate the impact
of an action on a game one first has to look at the average
win/draw/lose ratio (AWR, ADR, ALR) following an action
of a player. In other words, does an action in general lead to
a win more often than other actions of the same player.

AWRaction =
∑A

a a.win/
∑A

b (b.win+ b.draw + b.lose)

ADRaction =
∑A

a a.draw/
∑A

b (b.win+ b.draw + b.lose)

ALRaction =
∑A

a a.lose/
∑A

b (b.win+ b.draw + b.lose)
where A = all nodes of action in the action history tree

In the example of RPS+Spock of Table IIb, spock outperforms
all other actions of player one in AWR and ALR, with the
AWR of spock (49%) being substantially above the overall
win ratio of 42% (Table Ib). Second, we introduce AWRa,w,
ADRa,w and ALRa,w which is defined as the AWR, ADR,
ALR of an action a given the absence of action w; it is cal-
culated via Algorithm 1. That is, procedure CalcWDLRatio
calculates the average win/draw/loss ratio of an action a in
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TABLE II: Average win, draw and lose ratio after a specific action
got played.

(a) Rock-paper-scissors

AWR ADR ALR

P1
Rock 0.37 0.26 0.37
Paper 0.37 0.26 0.37

Scissor 0.36 0.26 0.38

P2
Rock 0.38 0.25 0.37
Paper 0.37 0.26 0.37

Scissor 0.36 0.27 0.37

(b) Rock-paper-scissors-spock

AWR ADR ALR

P1

Rock 0.42 0.24 0.33
Paper 0.40 0.25 0.34

Scissor 0.39 0.25 0.35
Spock 0.49 0.21 0.29

P2
Rock 0.32 0.24 0.44
Paper 0.34 0.25 0.40

Scissor 0.35 0.24 0.41

TABLE III: The calculated impact for each action of player one in
RPS+Spock.

Action Impact

Rock -0.06
Paper -0.04
Scissors -0.03
Spock +0.11

the game if the action w would not exist. If the average
win/draw/loss ratio is affected, a can be considered dependent
on w. Procedure CalcInternal is an internal subroutine of
procedure CalcWDLRatio. The result of the algorithm is a
vector containing [

AWRa,w

ADRa,w

ALRa,w

]
Finally we define the impact I of an action b as how much does
b affect other actions towards a higher win ratio when used in
the same game. In other words, how big of a positive/negative
impact does a specific action have on other actions and
ultimately the game.

I(b) =
∑A

a (AWRa −AWRa,b) + 0.5× (ADRa −
ADRa,b)− (ALRa −ALRa,b)

where A = all nodes of action in the action history tree

We surmise that in an imbalanced game, where the win
probability is skewed towards one player (race / class, etc.),
the action with the highest impact of the winning player is the
source of the imbalance. In our example, having calculated the
impact I of every action b with Algorithm 1, one observes that
of all actions that player one can use in RPS+Spock (Table III),
the imbalanced action spock of player one can be identified as
the action with the highest impact on the game.

IV. SIMULATOR

For our experiments, we investigate a highly asymmetric type
of strategy game, namely the popular tower defence (TD)
games. A typical TD game (illustrated in Figure 3) is highly

Algorithm 1 Calculate AWRa,w ADRa,w and ALRa,w

1: procedure CALCWDLWITHOUT(a,w)
2: result = [0,0,0]
3: for all node in actionHistoryTree.startingNodes do
4: result += CalcInternal(a, w, node, false)
5: end for
6: total = result[0] +result[1] +result[2]
7: return result /= total
8: end procedure
9:

10: procedure CALCINTERNAL(a,w, node, found)
11: result = [0,0,0]
12: if node.player != a.player then
13: for all child in node.children do
14: result += CalcInternal(a, w, child, found)
15: end for
16: return result
17: end if
18: if node.action = a then
19: result += node.result
20: found = true
21: else if node.action = w then
22: if found then
23: return -node.result
24: else
25: return result
26: end if
27: end if
28: for all child in node.children do
29: result += CalcInternal(a, w, child, found)
30: end for
31: return result
32: end procedure

asymmetric, in that one player can spawn units that traverse a
predetermined path (to attack the tower of the opponent), while
the opponent player can construct buildings alongside the path
that attack these units (to defend the tower). The offensive
player wins if she succeeds in destroying the tower of the
opponent, the defensive player wins if she can withstand these
attacks. Indeed, the actions that players can take are highly
distinct from each other, and balancing their effectiveness
generally requires meticulous manual balancing.

We developed a simulator for real-time TD games, which –
for rapid experimenting – provides the ability to decouple
graphics from actual gameplay.1 Indeed, TD is a genre which
is popular within the gaming community and offers a variety of
research opportunities such as dynamic difficulty adjustment,
map generation, and player modelling [13], [14], [15]. Our
hope is that the developed simulator may contribute to such
related branches of research as well.

A. Experimental Implementation

The developed simulator contains two races, the human race
and the alien race. Both races are distinguished by the towers
they can build (IV-E3), while having the same selection of
units and upgrades to choose from (IV-E). In this section we
first give a brief overview of how the developed game works
before explaining each design aspect in detail.

1The developed simulator is publicly available at Github https//github.com/
philiiiiiipp/multiplayer-balancing
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Fig. 3: Example 6× 6 tower defence game field.
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Fig. 4: Representation of the example 6× 6 game field in Figure 3.

In our simulated TD games, two players are playing against
each other. The game is played simultaneously on two identical
maps; one for the alien player, one for the human player.
Each player builds towers on their own map. Also, each player
sends creeps (units) to the other player’s map. Each player can
upgrade the units it will send to the other players map (once
an upgrade was chosen, all consecutive sent units will have
the improved attributes, units already sent stay the same). If a
unit reaches the end of a player’s map without getting ‘killed’
this player loses a live. If a player is at 0 or less lives, he/she
loses. If that happens to both players at the same time it’s a
tie.

B. Game field

The game field or map consists of a n × n grid of fields. A
field can be either a tower field or a unit field. The tower
fields belong to the player playing on that map for placing
towers, while the unit fields are where the opposing players
units will be walking. Units get spawned at the start field and
are walking towards the end field. Each tower field can be
uniquely identified by its position starting with zero at the top
left corner and ending at N-1 in the bottom right where N
denotes the total amount of tower fields of the map (Figure 3).

New game maps can easily be created using the notation
of Figure 4 inside a text file and placing it inside the root
directory. The framework will automatically parse the file and
convert it into a map if all of the following attributes are met.
First, exactly one start field S and exactly one end field E must
be present at the boundary regions of the map. Second, the start
and the end fields must be connected via unit fields. Third, in
every map, the way units walk must be uniquely identifiable.
Meaning, a unit field must be adjacent to exactly two other
unit fields with the exception of the start and end field which
have to have exactly one adjacent unit field.

C. Towers

In the simulator, races differ from each other with respect to
the towers that are available to them. Every tower in the game

TABLE IV: Possible unit upgrades that the players may select.

Id Attribute Initial Increase per upgrade

H Health 1.0 +0.7
M Movement 1.0 +0.4
A Amount 1.0 +0.75

is exclusive to one race. Where the human race can build the
fire, ice and archer tower, the alien race has the chain lightning,
parasite and shock tower. To provide a realistic challenge to
our method, every tower (action) is given two attributes, the
damage dealt with each shot, and the distance that it can shoot.
The distance or range of a tower is denoted in game fields
reachable from the place the tower got build using horizontal,
vertical or diagonal movement. In addition, most towers have
a unique special ability, as detailed in Table V and Table VI.

D. Game cycle

At the start of every game both players enter with the same
amount of lives and an instance of the same n × n map.
Subsequently, the game cycles through the following three
steps. (1) Both players choose one action which gets executed
right away. An action can either be to send units, to upgrade all
subsequent units in health, movement or amount or to build
a tower on one of the free tower fields of the players map.
(2) The already placed towers will pick a unit inside their
range to shoot at. The decision which unit is picked at a given
point is dependent on the type of tower choosing the target.
Fire, archer and chain lightning towers will shoot at their last
damaged target. If their last target is either dead or out of
range, they choose a target at random. Ice, parasite and shock
towers will preferably shoot at a unit currently not influenced
by their special ability. If no such unit exists they will choose
a target at random too. (3) All units walk appropriate to their
movement attribute towards the end of the game field. If a unit
walks out of the map the player playing on that map loses a
life.

If after step 3 none of the three criteria are met, the game
continues with step 1. The three end criteria are (1) a player
has 0 or less lives (the other player wins), (2) both players
have 0 or less lives (tie), or (3) game exceeded the maximum
amount of cycles (tie).

E. Actions

In the simulated tower defence game, two types of actions are
available, that is (1) actions which are available to both races
like upgrading and sending units, called global actions, and
(2) actions only available to players of a certain race, called
race specific actions, such as placing a specific tower.

1) Upgrading units: At every step of the game, a player can
choose to (1) upgrade one of the attributes of the units, or
(2) upgrade the amount of units that is spawned at starting
position. A unit has two attributes, health and movement.
Health describes the amount of damage a unit can take until
they get removed from the map. Movement describes the
amount of fields a unit walks along its path at every step.

2) Sending units: If at any step a player chooses to send units,
the game will create units using the attributes of Table IV.
Every attribute a will be set to:
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TABLE V: Towers available to the Human race.

Id Tower Damage Range Special

F Fire 0.6 1 Damages all units on one field
I Ice 1 1 Reduces movement speed by 90% for 3

steps
A Archer 1 3 -

TABLE VI: Towers available to the Alien race.

Id Tower Damage Range Special

C Chain lightning 0.4 1 Damages 3 units less than 3 fields
apart

P Parasite 0 1 Lets the hit unit walk backwards
for 2 steps

S Shock 1 1 Reduces movement speed to 0 for
3 steps

Ia + ta ∗ Ua (1)

where Ia is the initial value of attribute a, ta denotes the
amount of times a was upgraded, and Ua denotes the increase
per upgrade. While all three attributes hold floating point
values, the amount attribute only takes the integer-part into
account. E.g., if the amount is 2.5, then only 2 units will be
spawned.

3) Placing towers: Next to actions available to both races, each
race can build towers that are unique to its race (discussed in
Section IV-C). Where the human race can build the fire, ice and
archer tower, the alien race has the chain lightning, parasite
and shock tower. Every tower has two attributes, the damage
dealt with each shot and the distance it can shoot in game
fields (Table V and Table VI).

V. EXPERIMENTS

Here, we discuss two experiments that test our method to
automated game balancing in an asymmetric tower defence
video game. The first experiment evaluates to what extent our
method can identify and automatically correct an imbalance
in a reasonably well-balanced asymmetric game. The second
experiment evaluates to what extent our method can identify
and automatically correct an imbalance in a strictly imbalanced
asymmetric game.

A. Data generation

The generation of player data was performed with two Monte
Carlo tree search (MCTS) [16] agents playing against each
other. One MCTS agent was playing the alien race, the other
MCTS agent was playing the human race. The two MCTS
agents learned from 100.000 playouts of playing against each
other (backpropagating rewards to learn effective behaviour),
and the last 5.000 action histories were used to populate the
action history tree.

The specific MCTS algorithm used by the agents is referred
to as Upper Confidence Tree (UCT) [16] which is extending
the Upper Confidence Bound algorithm by Auer et al.[17] to
trees. UCT combines the exploration and the building of the
tree. The tree starts at the root node, after which the algorithm

iterates through three phases: the bandit phase, the tree building
phase, and the random walk phase.

The bandit phase starts in the root node where to agent
continually chooses an action/child node until arriving in a
leaf node. The decision which action is taken at every step
is handled as a multi armed bandit problem. The set As of
possible actions a in a node s defines the child nodes (s, a)
of s. The selected action a∗ maximises the upper confidence
bound:

r̂s,a +
√
ce log(ns)/ns,a (2)

over all a in As with r̂s,a describing the average reward
accumulated by selecting action a in state s, ns the total
number of times node s was visited and ns,a the amount of
times action a was taken from node s. The term ce handles the
exploration vs. exploitation trade-off where a high ce favours
exploration and a low ce exploitation.

The tree building phase is entered upon arrival in a leaf node.
An action is selected uniformly at random and added as a child
node of s.

The random walk phase begins after the new child node was
added to the tree. At every step an action is taken (uniformly
or heuristically) until the game ends. At this point the acquired
reward ru is back propagated towards the root node and all
nodes in this tree run are updated:

r̂s,a ←
1

ns,a + 1
(ns,a × r̂s,a + ru) (3)

ns,a ← ns,a + 1; ns ← ns + 1 (4)

Both MCTS agents where initialised with the same values for
all experiments in the following sections. I.e., r̂s,a initial is
0.5, and ce is 3 ∗

√
2. The terminal reward ru for an agent is

dependant on the outcome of the game:

ru =


10 if agent won
Lplayed − Lmax if draw
−2 ∗ Lmax if agent lost

with Lmax denoting the maximum allowed game length and
Lplayed the actual game length.

B. Experiment 1

This first experiment evaluates to what extent our method can
identify and automatically correct an imbalance in a reasonably
well-balanced asymmetric game.

1) Experimental setup: All tower attributes were initialised
manually with the designer’s best intention to create a balanced
game (Table VII). The game runs on two different maps,
a three by three map (Figure 5a) and a four by four map
(Figure 5b) where each player starts with 10 lives and the
maximum game length is set to 100 steps. Every run was
repeated three times and all numbers in the following section
depict the average of those. After the agents have played
against each other, the resulting win ratio is calculated, the
attributes of the tower with the highest impact of the winning

2016 IEEE Conference on Computational Intelligence and Games (CIG’16) 337



TABLE VII: Experiment 1 – Tower attributes.

Id Tower Damage Range Special

F Fire 0.6 1 Damages all units on one field
I Ice 1 1 Reduces movement speed by 90%

for 3 steps
A Archer 1 3 -

C Chain lightning 0.5 1 Damages 3 units less than 3 fields
apart

P Parasite 0 1 Lets the hit unit walk backwards
for 3 steps

S Shock 0.5 1 Reduces movement speed to 0 for
3 steps

(a) Three by three map (3x3) (b) Four by four map (4x4)

Fig. 5: Maps used in the two experiments.

faction will be decreased and the experimental trial is repeated
until the difference in win ratio is smaller than 1% and the
game considered balanced.

2) Results on 3x3 map: Analysis of the provided game design
reveals a considerable difference in win ratio between the
alien and the human player, with the alien player being 34%
more likely to win the game against the human player on the
3x3 map (the human player wins 38%, the alien player 51%,
the game ties 11%). This observation leads to the conclusion
that this game is imbalanced in favour of the alien player.
Calculating the impact of each tower (Figure 6) reveals the
chain lightning tower has the largest impact on the game of
the alien player.

Following the hypothesis that in an imbalanced game the
action with the largest impact, is the action that is presumably
causing the imbalance (cf. Section III), the damage of the chain
lightning tower was gradually lowered from 0.6 to 0.3 (Ta-
ble VIII). Lowering the damage output of the chain lightning
tower ultimately resulted in a balanced game (Table VIII).
Interestingly a direct correlation between the decline of the
chain lightning tower’s impact (Figure 7) and the decline of
the alien players win ratio could be observed, indicating that,
indeed, the chain lightning tower was the action causing the
imbalance.

To verify these results, indeed, one could argue that the same
effect would have been achieved lowering the attributes of the
shock and/or parasite tower. To investigate this, the experiment
was repeated using three different settings (Table IX), where
the attributes of the parasite and/or shock tower where lowered.
Looking at the results of each setting in Table X, even
substantially lowering the attributes of any alien tower other
than the chain lightning tower does not have the same effect
on the game as lowering the attributes of the chain lightning
tower.
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Fig. 6: Impact of every tower using the attributes in Table VII.

TABLE VIII: Win ratio human vs. alien agent depending on the
damage of the chain lightning tower.

0.6 0.5 0.4 0.3

Human 0.38% 40% 42% 44%
Tie 0.11% 11% 12% 12%
Alien 0.51% 49% 46% 44%

Calculating the impact of the towers over the course of the
different settings (Figure 8) one can observe that neither
settings has a significant impact on the values. The chain
lightning tower remains the tower with the highest impact,
supporting to the conclusion that it was in fact the chain
lightning tower which caused the game to be imbalanced, and
was as such corrected adjusted for establishing a balanced
game design.

3) Results on 4x4 map: In contrast to the 3x3 map, the analysis
of the proposed game design reveals a win ratio in favour of
the human player, winning the game 17% more often than the
alien player (the human player wins 48%, the alien player 41%,
the game ties 11%). This indicates that this game is imbalanced
in favour of the human player. To find the action responsible
for the imbalance, an analysis of the impact of each tower was
performed (Figure 9). It reveals that of all towers, the archer
tower is the tower with the highest impact on the game.

To assert the correctness of the analysis, we employ the
same process as in the previous section. First the damage
of the archer tower was gradually lowered until a predictably
balanced game was achieved (Table XI). When lowering the
damage of the archer tower to 0.4, a balanced game is
achieved. Again, a clear correlation between a lower damage
and a decrease in impact of the archer tower can be observed
(Figure 10).

To independently verify that the archer tower was indeed the
source of the imbalance in the human race, we again try to
achieve balance lowering the attributes of the other towers
(fire and ice) (Table XII). As in the previous section, even
substantially lowering the attributes of the other towers did not
result in a balanced game (Table XIII). The win ratio changed
slightly in favour of the alien player, but the human player
still won the game around 7% more often. This leads to the
conclusion, that the archer tower was in fact the source of
the imbalance as suggested by its impact, and was correctly
adjusted to achieve a balanced game design.

4) Discussion of the results: In this experiment, the proposed
method was tested on two different maps using the same
tower attributes. On both maps a balanced game was achieved
automatically after adjustment of the correctly identified im-
balanced action. On both maps a correlation between decrease
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Fig. 7: Impact of the lightning tower, lowering its damage output
from 0.6 to 0.3.

TABLE IX: The different settings the experiment was repeated with.
Each setting uses Table VII as a foundation.

Setting

A Parasite effect reduced to 2 steps
B Parasite and shock effect reduced to 1 step
C Setting B and shock tower damage reduced to 0.25

of tower attributes and decrease of impact could be seen when
balancing the highest impact tower (HIT), while the impact
of it even increased if other towers attributes got lowered;
this follows naturally, as the HIT will become more and more
important as other towers get weaker.

C. Experiment 2

This second experiment evaluates to what extent our method
can identify and automatically correct an imbalance in a strictly
imbalanced asymmetric game, regardless of initial values of
the action attributes.

1) Experimental setup: To test the proposed method, the
following system was setup to automatically balance the tower
defence game. This happens in two steps, first the tower
attributes are initialised at random using the ranges described
in Table XIV. Second, the thus created game is balanced
using three different methods subsequently while recording the
balancing steps applied by each of them.

A balancing step is defined as the decrease of one attributes
value of a chosen tower using the arithmetic in Table XIV to
slowly lower the attribute action. The attributes get selected
in turns. For example, if the shock tower gets selected three
times, the damage attribute will be lowered first, followed by
the duration attribute, followed by the damage attribute. The
experiment was repeated 10 times on the same 3 × 3 map
used in experiment 1 where every player starts with 10 lives
and the maximum game length is set to 100 steps. A game is
considered balanced if the difference between the human and
the alien win ratio is below 1%.

We employ three methods for automated balancing, (1) balance
the tower with the highest impact of the winning faction, (2)
balance a random tower of the winning faction, and (3) balance
a random tower of the winning faction with the exception
of the tower with the highest impact. If the impact attribute
does accurately predict the unbalanced tower, then the first
method should use considerably fewer balancing steps than
the one choosing randomly while the method excluding the
high impact action should use more.

2) Result: The experimental results reveal that using the im-
pact to balance a game (method 1) – with an average of

TABLE X: Win ratio human vs. alien agent given setting A, B, or C.

Setting A Setting B Setting C

Human 39% 40% 41%
Tie 11% 11% 11%
Alien 50% 49% 48%
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Fig. 8: Impact of every tower after applying setting A, B, or C.

8.1 balancing steps – it is by approximately 65% faster than
choosing random towers (Table XV), outperforming method
2 in 10 out of 10 runs. Avoiding the high impact tower in
method 3 is 35% worse than picking it randomly (excluding
the runs it did not result in a balanced game) and over 2 times
worse than using the impact to balance the game. Method 3
never outperforms method 1 but does outperform method 2 in
2 out of 10 times. Method 3 was the only method which did
not result in a balanced game in 3 out of 10 times.

3) Discussion of the results: This second experiment indicated
that the proposed method can identify and automatically cor-
rect an imbalance in a strictly imbalanced asymmetric game,
regardless of initial values of the action attributes. Indeed,
it may be argued that favourable initial parameter settings
may render balancing the design a relatively straightforward
task. As the present experiment showed, if this actually would
have been the case, choosing random actions should have
outperformed our method at least once in the course of this ex-
periment. This however, was not the case. Balancing the action
with the highest calculated impact consistently outperformed
choosing randomly and was on average 65% faster in creating
a balanced game. While the experiment should be considered a
first step in our investigation, the experimental results indicated
that the proposed automated balancing method is able to
successfully balance a game design regardless of parameter
values suggested by the game designer.

VI. CONCLUSION

Creating a well balanced multiplayer game is a challenging
and tedious task requiring a large amount of of human player
feedback. The challenge however can be significantly reduced
by understanding which actions cause a game to be unbal-
anced. As such, the present paper contributed a method for
automatically balancing the design of asymmetric games. It
employs Monte Carlo simulation to analyse the relative impact
of game actions, and iteratively adjusts attributes of the game
actions till the game design is balanced by approximation. To
assess the effectiveness of the proposed method, experiments
were performed with automatically balancing a set of tower-
defence games. Preliminary experimental results revealed that
the proposed method (1) is able to identify the principal
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TABLE XI: Win ratio human vs. alien agent depending on the damage
of the archer tower.

1.0 0.8 0.6 0.4

Human 48% 47% 46% 44%
Tie 11% 11% 11% 11%
Alien 41% 42% 43% 45%

component of a game’s imbalance, and (2) can automatically
adjust the game design till it is balanced by approximation.

For future work, we will particularly investigate how the
present linear computational effectiveness of the method may
be enhanced further, and how the method may be embedded
in mixed-initiative game-design toolkits.
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Fig. 10: Impact of the archer tower while lowering the damage from
1.0 to 0.4.

TABLE XII: The different settings the experiment was repeated with.
Each setting uses Table VII as a foundation.

Setting

A Fire tower damage set to 0.4
B Setting A and frozen effect reduced to 40%
C Setting B and ice tower damage reduced to 0.5
D Setting C and fire tower damage reduced to 0.2

TABLE XIII: Win ratio human vs. alien agent given setting A, B, C,
or D.

Setting A Setting B Setting C Setting D

Human 47% 48% 46% 46%
Tie 11% 11% 11% 11%
Alien 42% 41% 43% 43%

TABLE XIV: Experiment 2 – Tower attributes.

Id Tower Attribute Range Balancing step

F Fire damage 0.0 - 1.0 ∗0.9

I Ice damage 0.0 - 1.0 ∗0.9
hindrance 0.0 - 1.0 ∗0.9
duration 1 - 9 −1

A Archer damage 0.0 - 1.0 ∗0.9

C Chain lightning damage 0.0 - 1.0 ∗0.9
jumps 1 - 5 −1
length 1 - 5 −1

P Parasite damage 0.0 - 1.0 ∗0.9
duration 1 - 9 −1

S Shock damage 0.0 - 1.0 ∗0.9
duration 1 - 9 - 1

TABLE XV: Experiment 2 – The amount of times a tower’s attribute
had to be adjusted in order to achieve a balanced game. (∗) = Balance
could not be achieved.

Method 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Avg.

1. 3 5 18 5 2 8 11 14 1 14 8.1
2. 4 9 19 6 9 18 15 26 3 25 13.4
3. 14 41 23 24 ∗ 9 13 ∗ 3 ∗ 18.1
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Abstract—The recent advances in deep neural networks have
led to effective vision-based reinforcement learning methods that
have been employed to obtain human-level controllers in Atari
2600 games from pixel data. Atari 2600 games, however, do
not resemble real-world tasks since they involve non-realistic
2D environments and the third-person perspective. Here, we
propose a novel test-bed platform for reinforcement learning
research from raw visual information which employs the first-
person perspective in a semi-realistic 3D world. The software,
called ViZDoom, is based on the classical first-person shooter
video game, Doom. It allows developing bots that play the game
using the screen buffer. ViZDoom is lightweight, fast, and highly
customizable via a convenient mechanism of user scenarios. In
the experimental part, we test the environment by trying to
learn bots for two scenarios: a basic move-and-shoot task and
a more complex maze-navigation problem. Using convolutional
deep neural networks with Q-learning and experience replay,
for both scenarios, we were able to train competent bots, which
exhibit human-like behaviors. The results confirm the utility of
ViZDoom as an AI research platform and imply that visual
reinforcement learning in 3D realistic first-person perspective
environments is feasible.

Keywords: video games, visual-based reinforcement learning,
deep reinforcement learning, first-person perspective games, FPS,
visual learning, neural networks

I. INTRODUCTION

Visual signals are one of the primary sources of information
about the surrounding environment for living and artificial
beings. While computers have already exceeded humans in
terms of raw data processing, they still do not match their
ability to interact with and act in complex, realistic 3D
environments. Recent increase in computing power (GPUs),
and the advances in visual learning (i.e., machine learning
from visual information) have enabled a significant progress in
this area. This was possible thanks to the renaissance of neural
networks, and deep architectures in particular. Deep learning
has been applied to many supervised machine learning tasks
and performed spectacularly well especially in the field of
image classification [18]. Recently, deep architectures have
also been successfully employed in the reinforcement learning
domain to train human-level agents to play a set of Atari 2600
games from raw pixel information [22].

Thanks to high recognizability and an easy-to-use software
toolkit, Atari 2600 games have been widely adopted as a
benchmark for visual learning algorithms. Atari 2600 games
have, however, several drawbacks from the AI research per-
spective. First, they involve only 2D environments. Second, the
environments hardly resemble the world we live in. Third, they

are third-person perspective games, which does not match a
real-world mobile-robot scenario. Last but not least, although,
for some Atari 2600 games, human players are still ahead of
bots trained from scratch, the best deep reinforcement learning
algorithms are already ahead on average. Therefore, there is
a need for more challenging reinforcement learning problems
involving first-person-perspective and realistic 3D worlds.

In this paper, we propose a software platform, ViZDoom1,
for the machine (reinforcement) learning research from raw
visual information. The environment is based on Doom, the
famous first-person shooter (FPS) video game. It allows de-
veloping bots that play Doom using only the screen buffer.
The environment involves a 3D world that is significantly
more real-world-like than Atari 2600 games. It also provides a
relatively realistic physics model. An agent (bot) in ViZDoom
has to effectively perceive, interpret, and learn the 3D world
in order to make tactical and strategic decisions where to go
and how to act. The strength of the environment as an AI
research platform also lies in its customization capabilities.
The platform makes it easy to define custom scenarios which
differ by maps, environment elements, non-player characters,
rewards, goals, and actions available to the agent. It is also
lightweight – on modern computers, one can play the game at
nearly 7000 frames per second (the real-time in Doom involves
35 frames per second) using a single CPU core, which is of
particular importance if learning is involved.

In order to demonstrate the usability of the platform, we
perform two ViZDoom experiments with deep Q-learning [22].
The first one involves a somewhat limited 2D-like environ-
ment, for which we try to find out the optimal rate at which
agents should make decisions. In the second experiment, the
agent has to navigate a 3D maze collecting some object and
omitting the others. The results of the experiments indicate that
deep reinforcement learning is capable of tackling first-person
perspective 3D environments2.

FPS games, especially the most popular ones such as Unreal
Tournament [12], [13] , Counter-Strike [15] or Quake III
Arena [8], have already been used in AI research. However,
in these studies agents acted upon high-level information like
positions of walls, enemies, locations of items, etc., which
are usually inaccessible to human players. Supplying only
raw visual information might relieve researchers of the burden

1http://vizdoom.cs.put.edu.pl
2Precisely speaking, Doom is pseudo-3D or 2.5D.
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of providing AI with high-level information and handcrafted
features. We also hypothesize that it could make the agents
behave more believable [16]. So far, there has been no studies
on reinforcement learning from visual information obtained
from FPS games.

To date, there have been no FPS-based environments that
allow research on agents relying exclusively on raw visual in-
formation. This could be a serious factor impeding the progress
of vision-based reinforcement learning, since engaging in it
requires a large amount of programming work. Existence
of a ready-to-use tool facilitates conducting experiments and
focusing on the goal of the research.

II. RELATED WORK

One of the earliest works on visual-based reinforcement
learning is due to Asada et al. [4], [3], who trained robots
various elementary soccer-playing skills. Other works in this
area include teaching mobile robots with visual-based Q-
learning [10], learning policies with deep auto-encoders and
batch-mode algorithms [19], neuroevolution for a vision-based
version of the mountain car problem [6], and compressed
neuroevolution with recurrent neural networks for vision-based
car simulator [17]. Recently, Mnih et al. have shown a deep
Q-learning method for learning Atari 2600 games from visual
input [22].

Different first-person shooter (FPS) video games have al-
ready been used either as AI research platforms, or application
domains. The first academic work on AI in FPS games is
due to Geisler [11]. It concerned modeling player behavior in
Soldier of Fortune 2. Cole used genetic algorithms to tune bots
in Counter Strike [5]. Dawes [7] identified Unreal Tournament
2004 as a potential AI research test-bed. El Rhalib studied
weapon selection in Quake III Arena [8]. Smith devised a
RETALIATE reinforcement learning algorithm for optimizing
team tactics in Unreal Tournament [23]. SARSA(λ), another
reinforcement learning method, was the subject of research in
FPS games [21], [12]. Recently, continuous and reinforcement
learning techniques were applied to learn the behavior of tanks
in the game BZFlag [24].

As far as we are aware, to date, there have been no
studies that employed the genre-classical Doom FPS. Also,
no previous study used raw visual information to develop bots
in FPS games with a notable exception of the Abel’s et al.
work on Minecraft [2].

III. VIZDOOM RESEARCH PLATFORM

A. Why Doom?

Creating yet another 3D first-person perspective environ-
ment from scratch solely for research purposes would be
somewhat wasteful [27]. Due to the popularity of the first-
person shooter genre, we have decided to use an existing game
engine as the base for our environment. We concluded that it
has to meet the following requirements:

1) based on popular open-source 3D FPS game (ability to
modify the code and the publication freedom),

Figure 1. Doom’s first-person perspective.

2) lightweight (portability and the ability to run multiple
instances on a single machine),

3) fast (the game engine should not be the learning bottle-
neck),

4) total control over the game’s processing (so that the
game can wait for the bot decisions or the agent can
learn by observing a human playing),

5) customizable resolution and rendering parameters,
6) multiplayer games capabilities (agent vs. agent and agent

vs. human),
7) easy-to-use tools to create custom scenarios,
8) ability to bind different programming languages (prefer-

ably written in C++),
9) multi-platform.
In order to make the decision according to the above-listed

criteria, we have analyzed seven recognizable FPS games:
Quake III Arena, Doom 3, Half-Life 2, Unreal Tournament
2004, Unreal Tournament and Cube. Their comparison is
shown in Table I. Some of the features listed in the ta-
ble are objective (e.g., ‘scripting’) and others are subjective
(“code complexity”). Brand recognition was estimated as the
number (in millions) of Google results (as of 26.04.2016)
for phrases “game <gamename>”, where <gamename> was
‘doom’, ‘quake’, ‘half-life’, ‘unreal tournament’ or ‘cube’.
The game was considered as low-resolution capable if it was
possible to set the resolution to values smaller than 640×480.

Some of the games had to be rejected right away in spite
of high general appeal. Unreal Tournament 2004 engine is
only accessible by the Software Development Kit and it lacks
support for controlling the speed of execution and direct screen
buffer access. The game has not been prepared to be heavily
modified.

Similar problems are shared by Half-Life 2 despite the
fact that the Source engine is widely known for modding
capabilities. It also lacks direct multiplayer support. Although
the Source engine itself offers multiplayer support, it involves
client-server architecture, which makes synchronization and
direct interaction with the engine problematic (network com-
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Table I
OVERVIEW OF 3D FPS GAME ENGINES CONSIDERED.

Features / Game Doom Doom 3 Quake III: Arena Half-Life 2 Unreal
Tournament

2004

Unreal
Tournament

Cube

Game Engine ZDoom[1] id tech 4 ioquake3 Source Unreal
Engine 2

Unreal
Engine 4

Cube Engine

Release year 1993 2003 1999 2004 2004 not yet 2001
Open Source 3 3 3 3 3
License GPL GPLv3 GPLv2 Proprietary Proprietary Custom ZLIB
Language C++ C++ C C++ C++ C++ C++

DirectX 3 3 3
OpenGL 33 3 3 3 3 3 3
Software Render 3

Windows 3 3 3 3 3 3 3
Linux 3 3 3 3 3 3 3
Mac OS 3 3 3 3 3 3

Map editor 3 3 3 3 3 3 3
Screen buffer access 3 3 3 3 3
Scripting 3 3 3 3 3 3
Multiplayer mode 3 3 3 3 3 3
Small resolution 3 3 3 3 3 3 3

Custom assets 3 3 3 3 3 3 3
Free original assets 3 3

System requirements Low Medium Low Medium Medium High Low
Disk space 40MB 2GB 70MB 4,5GB 6GB >10GB 35MB
Code complexity Medium High Medium - - High Low

Active community 3 3 3 3 3

Brand recognition 31.5 16.8 18.7 1.0 0.1

munication).
The client-server architecture was also one the reasons for

rejection of Quake III: Arena. Quake III also does not offer any
scripting capabilities, which are essential to make a research
environment versatile. The rejection of Quake was a hard
decision as it is a highly regarded and playable game even
nowadays but this could not outweigh the lack of scripting
support.

The latter problem does not concern Doom 3 but its high
disk requirements were considered as a drawback. Doom 3 had
to be ignored also because of its complexity, Windows-only
tools, and OS-dependent rendering mechanisms. Although its
source code has been released, its community is dispersed.
As a result, there are several rarely updated versions of its
sources.

The community activity is also a problem in the case of
Cube as its last update was in August 2005. Nonetheless, the
low complexity of its code and the highly intuitive map editor
would make it a great choice if the engine was more popular.

Unreal Tournament, however popular, is not as recognizable
as Doom or Quake but it has been a primary research platform
for FPS games [9], [26]. It also has great capabilities. Despite
its active community and the availability of the source code,
it was rejected due to its high system requirements.

Doom (see Fig. 1) met most of the requirements and allowed
to implement features that would be barely achievable in other

3GZDoom, the ZDoom’s fork, is OpenGL-based.

games, e.g., off-screen rendering and custom rewards. The
game is highly recognizable and runs on the three major
operating systems. It was also designed to work in 320× 240
resolution and despite the fact that modern implementations
allow bigger resolutions, it still utilizes low-resolution textures.
Moreover, its source code is easy-to-understand.

The unique feature of Doom is its software renderer. Be-
cause of that, it could be run without the desktop environment
(e.g., remotely in a terminal) and accessing the screen buffer
does not require transferring it from the graphics card.

Technically, ViZDoom is based on the modernized, open-
source version of Doom’s original engine — ZDoom, which
is still actively supported and developed.

B. Application Programming Interface (API)
ViZDoom API is flexible and easy-to-use. It was designed

with reinforcement and apprenticeship learning in mind, and
therefore, it provides full control over the underlying Doom
process. In particular, it allows retrieving the game’s screen
buffer and make actions that correspond to keyboard buttons
(or their combinations) and mouse actions. Some game state
variables such as the player’s health or ammunition are avail-
able directly.

ViZDoom’s API was written in C++. The API offers a
myriad of configuration options such as control modes and
rendering options. In addition to the C++ support, bindings
for Python and Java have been provided. The Python API
example is shown in Fig. 2.
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1 from vizdoom import *
2 from random import choice
3 from time import sleep, time
4

5 game = DoomGame()
6 game.load_config("../config/basic.cfg")
7 game.init()
8

9 # Sample actions. Entries correspond to buttons:
10 # MOVE_LEFT, MOVE_RIGHT, ATTACK
11 actions = [[True, False, False],
12 [False, True, False], [False, False, True]]
13 # Loop over 10 episodes.
14 for i in range(10):
15 game.new_episode()
16 while not game.is_episode_finished():
17 # Get the screen buffer and and game variables
18 s = game.get_state()
19 img = s.image_buffer
20 misc = s.game_variables
21 # Perform a random action:
22 action = choice(actions)
23 reward = game.make_action(action)
24 # Do something with the reward...
25

26 print("total reward:", game.get_total_reward())

Figure 2. Python API example

C. Features

ViZDoom provides features that can be exploited in dif-
ferent kinds of AI experiments. The main features include
different control modes, custom scenarios, access to the depth
buffer and off-screen rendering eliminating the need of using
a graphical interface.

1) Control modes: ViZDoom implements four control
modes: i) synchronous player, ii) synchronous spectator, iii)
asynchronous player, and iv) asynchronous spectator.

In asynchronous modes, the game runs at constant 35 frames
per second and if the agent reacts too slowly, it can miss
some frames. Conversely, if it makes a decision too quickly,
it is blocked until the next frame arrives from the engine.
Thus, for reinforcement learning research, more useful are the
synchronous modes, in which the game engine waits for the
decision maker. This way, the learning system can learn at its
pace, and it is not limited by any temporal constraints.

Importantly, for experimental reproducibility and debugging
purposes, the synchronous modes run deterministically.

In the player modes, it is the agent who makes actions
during the game. In contrast, in the spectator modes, a human
player is in control, and the agent only observes the player’s
actions.

In addition, ViZDoom provides an asynchronous multi-
player mode, which allows games involving up to eight players
(human or bots) over a network.

2) Scenarios: One of the most important features of ViZ-
Doom is the ability to run custom scenarios. This includes
creating appropriate maps, programming the environment me-
chanics (“when and how things happen”), defining terminal
conditions (e.g., “killing a certain monster”, “getting to a cer-
tain place”, “died”), and rewards (e.g., for “killing a monster”,

Figure 3. ViZDoom allows depth buffer access.

“getting hurt”, “picking up an object”). This mechanism opens
endless experimentation possibilities. In particular, it allows
creating a scenario of a difficulty which is on par with the
capabilities of the assessed learning algorithms.

Creation of scenarios is possible thanks to easy-to-use
software tools developed by the Doom community. The two
recommended free tools include Doom Builder 2 and SLADE
3. Both are visual editors, which allow defining custom maps
and coding the game mechanics in Action Code Script. They
also enable to conveniently test a scenario without leaving the
editor.

ViZDoom comes with a few predefined scenarios. Two of
them are described in Section IV.

3) Depth Buffer Access: ViZDoom provides access to the
renderer’s depth buffer (see Fig. 3), which may help an agent
to understand the received visual information. This feature
gives an opportunity to test whether the learning algorithms
can autonomously learn the whereabouts of the objects in
the environment. The depth information can also be used to
simulate the distance sensors common in mobile robots.

4) Off-Screen Rendering and Frame Skipping: To facil-
itate computationally heavy machine learning experiments,
we equipped ViZDoom with off-screen rendering and frame
skipping features. Off-screen rendering lessens the perfor-
mance burden of actually showing the game on the screen and
makes it possible to run the experiments on the servers (no
graphical interface needed). Frame skipping, on the other hand,
allows omitting rendering selected frames at all. Intuitively,
an effective bot does not have to see every single frame. We
explore this issue experimentally in Section IV.

D. ViZDoom’s Performance
The main factors affecting ViZDoom performance are the

number of the actors (like items and bots), the rendering
resolution, and computing the depth buffer. Fig. 4 shows how
the number of frames per second depends on these factors.
The tests have been made in the synchronous player mode on
Linux running on Intel Core i7-4790k. ViZDoom uses only a
single CPU core.
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Figure 4. ViZDoom performance. “depth” means generating also the depth
buffer.

Figure 5. The basic scenario

The performance test shows that ViZDoom can render
nearly 7000 low-resolution frames per second. The rendering
resolution proves to be the most important factor influencing
the processing speed. In the case of low resolutions, the
time needed to render one frame is negligible compared to
the backpropagation time of any reasonably complex neural
network.

IV. EXPERIMENTS

A. Basic Experiment

The primary purpose of the experiment was to show that
reinforcement learning from the visual input is feasible in
ViZDoom. Additionally, the experiment investigates how the
number of skipped frames (see Section III-C4) influences the
learning process.

1) Scenario: This simple scenario takes place in a rectan-
gular chamber (see Fig. 5). An agent is spawned in the center
of the room’s longer wall. A stationary monster is spawned
at a random position along the opposite wall. The agent can
strafe left and right, or shoot. A single hit is enough to kill

the monster. The episode ends when the monster is eliminated
or after 300 frames, whatever comes first. The agent scores
101 points for killing the monster, −5 for a missing shot,
and, additionally, −1 for each action. The scores motivate the
learning agent to eliminate the monster as quickly as possible,
preferably with a single shot4.

2) Deep Q-Learning: The learning procedure is similar to
the Deep Q-Learning introduced for Atari 2600 [22]. The
problem is modeled as a Markov Decision Process and Q-
learning [28] is used to learn the policy. The action is selected
by an ε-greedy policy with linear ε decay. The Q-function
is approximated with a convolutional neural network, which
is trained with Stochastic Gradient Decent. We also used
experience replay but no target network freezing (see [22]).

3) Experimental Setup:
a) Neural Network Architecture: The network used in the

experiment consists of two convolutional layers with 32 square
filters, 7 and 4 pixels wide, respectively (see Fig. 6). Each
convolution layer is followed by a max-pooling layer with
max pooling of size 2 and rectified linear units for activation
[14]. Next, there is a fully-connected layer with 800 leaky
rectified linear units [20] and an output layer with 8 linear
units corresponding to the 8 combinations of the 3 available
actions (left, right and shot).

b) Game Settings: A state was represented by the most
recent frame, which was a 60 × 45 3-channel RGB image.
The number of skipped frames is controlled by the skipcount
parameter. We experimented with skipcounts of 0-7, 10, 15,
20, 25, 30, 35 and 40. It is important to note that the agent
repeats the last decision on the skipped frames.

c) Learning Settings: We arbitrarily set the discount
factor γ = 0.99, learning rate α = 0.01, replay memory
capacity to 10 000 elements and mini-batch size to 40. The
initial ε = 1.0 starts to decay after 100 000 learning steps,
finishing the decay at ε = 0.1 at 200 000 learning steps.

Every agent learned for 600 000 steps, each one consisting
of performing an action, observing a transition, and updating
the network. To monitor the learning progress, 1000 testing
episodes were played after each 5000 learning steps. Final
controllers were evaluated on 10 000 episodes. The experiment
was performed on Intel Core i7-4790k 4GHz with GeForce
GTX 970, which handled the neural network.

4) Results: Figure 7 shows the learning dynamics for the
selected skipcounts. It demonstrates that although all the
agents improve over time, the skips influence the learning
speed, its smoothness, as well as the final performance. When
the agent does not skip any frames, the learning is the slowest.
Generally, the larger the skipcount, the faster and smoother the
learning is. We have also observed that the agents learning with
higher skipcounts were less prone to irrational behaviors like
staying idle or going the direction opposite to the monster,
which results in lower variance on the plots. On the other
hand, too large skipcounts make the agent ‘clumsy’ due to the

4See also https://youtu.be/fKHw3wmT_uA
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Figure 6. Architecture of the convolutional neural network used for the experiment.

lack of fine-grained control, which results in suboptimal final
scores.

The detailed results, shown in Table ??, indicate that the
optimal skipcount for this scenario is 4 (the “native” column).
However, higher values (up to 10) are close to this maximum.

We have also checked how robust to skipcounts the agents
are. For this purpose, we evaluated them using skipcounts
different from ones they had been trained with. Most of the
agents performed worse than with their “native” skipcounts.
The least robust were the agents trained with skipcounts less
than 4. Larger skipcounts resulted in more robust agents.
Interestingly, for skipcounts greater than or equal to 30, the
agents score better on skipcounts lower than the native ones.
Our best agent that was trained with skipcount 4 was also the
best when executed with skipcount 0.

It is also worth showing that increasing the skipcount influ-
ences the total learning time only slightly. The learning takes
longer primarily due to the higher total overhead associated
with episode restarts since higher skipcounts result in a greater
number of episodes.

To sum up, the skipcounts in the range of 4-10 provide
the best balance between the learning speed and the final
performance. The results also indicate that it would be prof-
itable to start learning with high skipcounts to exploit the
steepest learning curve and gradually decrease it to fine-tune
the performance.

B. Medikit Collecting Experiment

The previous experiment was conducted on a simple sce-
nario which was closer to a 2D arcade game rather than a true
3D virtual world. That is why we decided to test if similar
deep reinforcement learning methods would work in a more
involved scenario requiring substantial spatial reasoning.

1) Scenario: In this scenario, the agent is spawned in a
random spot of a maze with an acid surface, which slowly,
but constantly, takes away the agent’s life (see Fig. 8). To
survive, the agent needs to collect medikits and avoid blue
vials with poison. Items of both types appear in random
places during the episode. The agent is allowed to move
(forward/backward), and turn (left/right). It scores 1 point for
each tick, and it is punished by −100 points for dying. Thus,
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Figure 7. Learning dynamics depending on the number of skipped frames.

Table II
AGENTS’ FINAL PERFORMANCE IN THE FUNCTION OF THE NUMBER OF

SKIPPED FRAMES (‘NATIVE’). ALL THE AGENTS WERE ALSO TESTED FOR
SKIPCOUNTS∈ {0, 10}.

skipcount
average score ± stdev

episodes learning time [min]
native 0 10

0 51.5± 74.9 51.5± 74.9 36.0± 103.6 6961 91.1

1 69.0± 34.2 69.2± 26.9 39.6± 93.9 29 378 93.1

2 76.2± 15.5 71.8± 18.1 47.9± 47.6 49 308 91.5

3 76.1± 14.6 75.1± 15.0 44.1± 85.4 65 871 93.4

4 82.2 ± 9.4 81.3 ± 11.0 76.5± 17.1 104 796 93.9

5 81.8± 10.2 79.0± 13.6 75.2± 19.9 119 217 92.5

6 81.5± 9.6 78.7± 14.8 76.3± 16.5 133 952 92

7 81.2± 9.7 77.6± 15.8 76.9± 17.9 143 833 95.2

10 80.1± 10.5 75.0± 17.6 80.1 ± 10.5 171 070 92.8

15 74.6± 14.5 71.2± 16.0 73.5± 19.2 185 782 93.6

20 74.2± 15.0 73.3± 14.0 71.4± 20.7 240 956 94.8

25 73 ± 17 73.6± 15.5 71.4± 20.8 272 633 96.9

30 61.4± 31.9 69.7± 19.0 68.9± 24.2 265 978 95.7

35 60.2± 32.2 69.5± 16.6 65.7± 26.1 299 545 96.9

40 56.2± 39.7 68.4± 19.0 68.2± 22.8 308 602 98.6
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Figure 8. Health gathering scenario

it is motivated to survive as long as possible. To facilitate
learning, we also introduced shaping rewards of 100 and −100
points for collecting a medikit and a vial, respectively. The
shaping rewards do not count to the final score but are used
during the agent’s training helping it to ‘understand’ its goal.
Each episode ends after 2100 ticks (1 minute in real-time) or
when the agent dies so 2100 is the maximum achievable score.
Being idle results in scoring 284 points.

2) Experimental Setup: The learning procedure was the
same as described in Section IV-A2 with the difference that
for updating the weights RMSProp [25] this time.

a) Neural Network Architecture: The employed network
is similar the one used in the previous experiment. The differ-
ences are as follows. It involves three convolutional layers with
32 square filters 7, 5, and 3 pixels wide, respectively. The fully-
connected layer uses 1024 leaky rectified linear units and the
output layer 16 linear units corresponding to each combination
of the 4 available actions.

b) Game Settings: The game’s state was represented by
a 120 × 45 3-channel RGB image, health points and the
current tick number (within the episode). Additionally, a kind
of memory was implemented by making the agent use 4 last
states as the neural network’s input. The nonvisual inputs
(health, ammo) were fed directly to the first fully-connected
layer. Skipcount of 10 was used.

c) Learning Settings: We set the discount factor γ = 1,
learning rate α = 0.00001, replay memory capacity to 10 000
elements and mini-batch size to 64. The initial ε = 1.0 started
to decay after 4 000 learning steps, finishing the decay at ε =
0.1 at 104 000 episodes.

The agent was set to learn for 1000 000 steps. To monitor the
learning progress, 200 testing episodes were played after each
5000 learning steps. The whole learning process, including the
testing episodes, lasted 29 hours.

3) Results: The learning dynamics is shown in Fig. 9. It
can be observed that the agents fairly quickly learns to get the
perfect score from time to time. Its average score, however,
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Figure 9. Learning dynamics for health gathering scenario.

improves slowly reaching 1300 at the end of the learning. The
trend might, however, suggest that some improvement is still
possible given more training time. The plots suggest that even
at the end of learning, the agent for some initial states fails to
live more than a random player.

It must, however, be noted that the scenario is not easy and
even from a human player, it requires a lot of focus. It is so
because the medikits are not abundant enough to allow the
bots to waste much time.

Watching the agent play5 revealed that it had developed a
policy consistent with our expectations. It navigates towards
medikits, actively, although not very deftly, avoids the poison
vials, and does not push against walls and corners. It also
backpedals after reaching a dead end or a poison vial. How-
ever, it very often hesitates about choosing a direction, which
results in turning left and right alternately on the spot. This
quirky behavior is the most probable, direct cause of not fully
satisfactory performance.

Interestingly, the learning dynamics consists of three sudden
but ephemeral drops in the average and best score. The reason
for such dynamics is unknown and it requires further research.

V. CONCLUSIONS

ViZDoom is a Doom-based platform for research in vision-
based reinforcement learning. It is easy-to-use, highly flexible,
multi-platform, lightweight, and efficient. In contrast to the
other popular visual learning environments such as Atari
2600, ViZDoom provides a 3D, semi-realistic, first-person
perspective virtual world. ViZDoom’s API gives the user
full control of the environment. Multiple modes of operation
facilitate experimentation with different learning paradigms
such as reinforcement learning, apprenticeship learning, learn-
ing by demonstration, and, even the ‘ordinary’, supervised
learning. The strength and versatility of environment lie in

5https://www.youtube.com/watch?v=re6hkcTWVUY
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is customizability via the mechanism of scenarios, which can
be conveniently programmed with open-source tools.

We also demonstrated that visual reinforcement learning is
possible in the 3D virtual environment of ViZDoom by per-
forming experiments with deep Q-learning on two scenarios.
The results of the simple move-and-shoot scenario, indicate
that the speed of the learning system highly depends on the
number of frames the agent is allowed to skip during the
learning. We have found out that it is profitable to skip from
4 to 10 frames. We used this knowledge in the second, more
involved, scenario, in which the agent had to navigate through
a hostile maze and collect some items and avoid the others.
Although the agent was not able to find a perfect strategy,
it learned to navigate the maze surprisingly well exhibiting
evidence of a human-like behavior.

ViZDoom has recently reached a stable 1.0.1 version and
has a potential to be extended in many interesting directions.
First, we would like to implement a synchronous multiplayer
mode, which would be convenient for self-learning in mul-
tiplayer settings. Second, bots are now deaf thus, we plan
to allow bots to access the sound buffer. Lastly, interesting,
supervised learning experiments (e.g., segmentation) could be
conducted if ViZDoom automatically labeled objects in the
scene.
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Abstract—Procedural content generation has shown promise
in a variety of different games. In this paper we introduce a new
kind of game, called Artefacts, that combines a sandbox-like envi-
ronment akin to Minecraft with the ability to interactively evolve
unique three-dimensional building blocks. Artefacts does not only
allow players to collaborate by building larger structures from
evolved objects but also to continue evolution of others’ artefacts.
Results from playtests on three different game iterations indicate
that players generally enjoy playing the game and are able to
discover a wide variety of different 3D objects. Morever, while
there is no explicit goal in Artefacts, the sandbox environment
together with the ability to evolve unique shapes does allow for
some interesting gameplay to emerge.

I. INTRODUCTION

In recent years there has been a growing interest in procedu-
ral content generation (PCG). This field includes algorithms
and methods for generating a wide variety of different types
of content (e.g. levels, three-dimensional objects, textures,
stories, 3D caves etc.) that can be part of the virtual world
of a video game [4, 5, 8, 10, 12, 19, 25]. One advantage of
automatically generating game content is the reduced amount
of work required by artists and game designers. Besides
production cost reduction, games have also benefited from
the novel gameplay emerging from PCG techniques [19].
Additionally, PCG can increase a game’s replay value because
content is constantly updated and varied throughout different
play sessions.

A main inspiration for the game presented here is
Minecraft1, which is a sandbox video game that allows players
to build three-dimensional structures together with others
from a selection of predefined cubes made out of different
materials (e.g. stone, wood). Minecraft encourages players to
play creatively by giving them a variety of different ways to
play the game. While the cubes are predefined, Minecraft does
employ a PCG-based approach to generate the 3D worlds for
the players to explore.

In the new game presented here, called Artefacts, players
can collaboratively build 3D structures in a sandbox environ-
ment similarly to Minecraft. However, in contrast to Minecraft,
in which players only have a predefined number of cubes to
chose from that all have about the same shape, Artefacts allows

1Copyright (c) 2011 Mojang

Fig. 1. Artefacts - The Video Game. Players in Artefacts can collaboratively
evolve unique 3D objects in an open physics sandbox and combine them to
build larger structures.

players to create an unlimited variety of differently shaped
3D building blocks through an evolutionary computation (EC)
approach. EC methods in particular have proven effective
at automatically generating diverse content for games such
as weapons in Galactic Arms Race (GAR [7]), levels for a
competitive multiplayer FPS game [13], flowers in the social
video game Petalz [16], or even complete games [5, 24].

The 3D objects in Artefacts are genetically encoded by a
special kind of neural network called a compositional pattern
producing network (CPPN; [3, 20]). The generative CPPN
encoding enables players to breed an unlimited variety of
different 3D objects with regularities such as symmetry or rep-
etition. Importantly, the NEAT algorithm [21], which evolves
the CPPNs in this paper, allows the 3D objects to become
increasingly complex and more intricate over generations.

Players in Artefacts can guide evolution by choosing from
a set of artefact seeds that spawn around a planted object.
Importantly, players can collaborate in the breeding process
by picking up seeds produced by others and continuing evo-
lution from there. Moreover, players are able to manipulate

2016 IEEE Conference on Computational Intelligence and Games (CIG’16) 349



the placement of objects in three-dimensional space and can
express their creativity by building a wide variety of different
structures using the evolved artefacts.

There are no explicit goals in Artefacts. The game was
designed to encourage players to explore and to play with
the ability to evolve and build with 3D objects, which means
that players can use the artefacts in any way they see fit. For
example, players can focus on building tall structures or on
destroying other peoples’ structures.

To investigate what type of new game affordances Artefacts
offers, both quantitative and qualitative data from a series of
playtests were collected and analyzed. The results from the
initial playtests suggest that, while still in an early stage, the
novel combination of evolved 3D objects in an open world is a
promising game concept that offers many potential directions
to expand upon.

II. BACKGROUND

This section first discusses existing work combining PCG
with video games and concludes by reviewing the technical
building blocks of the PCG algorithm employed in Artefacts.

A. Procedural Content Generation

When applied to games, PCG allows game elements (e.g.
maps, textures, items, quests, etc.) to be generated algorith-
mically rather than through direct human design [5, 8, 25].
For example, the popular Diablo series2 features procedurally
generated dungeons that players explore as a central focus of
the game. Like Diablo, many other PCG approaches similarly
rely on a fixed set of parameters and randomness to generate
content within a heavily constrained space of possibilities.
However, a recent focus is to apply artificial intelligence
approaches to enable more open-ended generation of PCG.

In particular, evolutionary computation and other search-
based approaches [25] can limit the need for hand-designed
rules, and may thus further save on PCG development costs.
More interestingly, it also enables design of new content
outside the scope of a fixed space of rules. One popular
technique is interactive evolutionary computation (IEC [23]),
in which the user in effect guides an evolutionary algorithm.
An example of IEC applied to video games is provided by
NeuroEvolving Robotic Operatives (NERO [22]), in which
players guide the evolution of a team of fighting robots.
In another example, called Galactic Arms Race (GAR [7]),
weapons are evolved automatically based on user behavior,
and in the social Petalz video game, players can evolve an
unlimited variety of different flowers [16]. Further examples
include Avery et al. [1], who evolved several aspects of a
tower defense game, Shaker et al. [18] who evolved levels for
the platform game Super Mario Bros, Olsted et al. [13] who
interactively evolved levels for a competitive multiplayer FPS
game, and Togelius and Schmidhuber [24], who experimented
with evolving the rules of the game itself.

The particular evolutionary representation that is applied to
represent evolved 3D objects in Artefacts, is reviewed next.

2Copyright Blizzard Entertainment, http://blizzard.com/

(a) CPPN (b) CPPN to Image

Fig. 2. Compositional Pattern Producing Networks for 2D Images. (a)
CPPNs can use a variety of different functions like sigmoids, Gaussian, sine
and many others in contrast to more traditional ANNs with sigmoid activation
functions (b) The CPPN example in this figure inputs two arguments x and
y that are interpreted as coordinates in two-dimensional space. Applying
the CPPN to all the coordinates and drawing them with an ink intensity
determined by its output results in a two-dimensional image.

B. Compositional Pattern Producing Networks (CPPNs)

The 3D objects in Artefacts are generated by a variation
of artificial neural networks (ANNs), called compositional
pattern producing networks (CPPNs [20]), which differ in their
set of activation functions and how they are applied. While
ANNs often contain only sigmoid or Gaussian activation
functions, CPPNs can include both such functions and many
others. The choice of CPPN functions can be biased toward
specific patterns or regularities. Additionally, unlike typical
ANNs, CPPNs are usually queried across a space of possible
input patterns to represent a complete image or pattern.
Specifically, CPPNs produce a phenotype that is a function
of n dimensions, where n is the number of dimensions in
physical space. For each coordinate in that space, its level
of expression is an output of the function that encodes the
phenotype. Figure 2 shows how a two-dimensional phenotype
can be generated by a function of two parameters that is
represented by a network of composed functions. CPPNs in
effect encode patterns at infinite resolution and can be sampled
at whatever resolution is desired.

Successful CPPN-based applications include Picbreeder
[17], MaestroGenesis [9], EndlessForms [3], the Galactic
Arms Race (GAR) video game [7], folded wire robots [15],
and virtual soft-body robots [2]. Clune and Lipson [3] intro-
duced a modification to the general CPPN representation to
produce 3D objects, which is the basis for the object repre-
sentation in Artefacts. It is described in detail in Section III-B.

C. Neuroevolution of Augmenting Topologies (NEAT)

Because CPPNs are ANNs, they can be evolved with the
Neuroevolution of Augmenting Topologies (NEAT) algorithm
[21], which is the standard neuroevolution algorithm for such
purposes [6, 17, 20]. Neuroevolution in general has shown
promise in a variety of different games [14].

NEAT begins with a population of simple neural networks
or CPPNs and then adds complexity over generations by
adding new nodes and connections through mutations. Novel
topologies gradually accumulate, thereby allowing diverse
and complex phenotype patterns to be represented. No limit
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is placed on the size to which topologies can grow. New
structures are introduced incrementally as structural mutations
occur, and only those structures survive that are found to be
useful (traditionally through fitness evaluations and through
player selection in this paper). In effect, then, NEAT searches
for a compact, appropriate topology by incrementally increas-
ing the complexity of existing structure. A complete overview
of NEAT can be found in Stanley and Miikkulainen [21]. For
evolving content, complexification means that content (e.g. 3D
objects in Artefacts) can become more elaborate and intricate
over generations.

III. ARTEFACTS – THE VIDEO GAME

Artefacts (publicly available at https://cristi.itch.io/artefacts)
has been designed as an open world in which players can
explore and interact with evolving objects. An important aspect
of the game is the social multiplayer component, which allows
players to collaborate in the evolution of the 3D objects but
also – similarly to Minecraft – in the construction of larger
structures. In other words, Artefacts is a construction game
with a potentially infinite number and variety of resources.
Players experience the game through a first-person perspective
and can perform the standard first-person actions such as
walking, running and jumping. The game aims to create an
immersive experience in which the players feel as being part
of the world they are creating.

A. Development and Multiplayer Framework

Players can easily host their own multiplayer games and
play together with others in the same virtual space. The game
and its multiplayer component were implemented using the
Unity game engine3 and its built-in networking framework.
The CPPN implementation is based on UnityNEAT4, which is
a port of the C] implementation of NEAT, called SharpNEAT5.

B. Generating 3D Artefact Objects

The algorithm to generate the 3D artefacts is based on the
CPPN object representation introduced by Clune and Lipson
[3]. Instead of CPPNs with two inputs that can generate two-
dimensional images (Figure 2), CPPNs to generate 3D objects
have three inputs x, y, and z. The algorithm works by (1)
inputting the coordinates of each point p (e.g. x=1, y=3, z=2),
of a three-dimensional voxel volume (e.g. a grid of 5 × 5 ×
5 voxels) into the CPPN, (2) activating the network, and (3)
determining if the voxel at that particular position p should
be filled if the CPPN output is higher than some threshold, or
empty otherwise. The coordinate input values are normalized
within the [-1, 1] range before being passed into the CPPN.

The voxel array outputted by the CPPN is processed by the
Marching Cubes algorithm [11], which generates a 3D mesh
representation that can be easily rendered by common graphics
APIs. After the polygonal surface is determined, the algorithm
calculates the normal for each of the vertices.

3https://unity3d.com/
4https://github.com/lordjesus/UnityNEAT
5http://sharpneat.sourceforge.net/

Fig. 3. Artefact Generation. 3D objects created with the representation
introduced by Clune and Lipson [3] and with the “blockier” Artefacts
modification (right).

(a) Inventory Selection (b) Planting and Positioning

Fig. 4. User Interface. (a) Players can store seeds in their inventory and
plant them anywhere in the virtual world. (b) Players can also position and
rotate the artefacts before they are planted.

The voxel volume size in Artefacts, which is set to 16 ×
16 × 16 units, tries to strike a balance between the level of
detail of the generated 3D meshes and the time required by
the Marching Cubes algorithm to create the mesh. As a bias
towards rounded objects, the distance from the center of the
workspace volume is given as an additional input to the CPPN.

In contrast to the approach by Clune and Lipson [3], the
CPPN representation in this paper is slightly modified to create
meshes with sharper edges that give the artefacts a “blockier”
aesthetic. The CPPN output values are processed in the fol-
lowing way: (1) During the calculation of the output value for
each coordinate, the algorithm keeps track of the minimum
min and maximum max produced values. (2) The central
value c between the minimum and maximum is calculated.
(3) For each position p, a voxel is created if CPPN output
m ≥ c. In addition to the 3D mesh, the CPPN also determines
RGB color values for each artefact through three additional
outputs. Figure 3 shows an example of objects generated with
the original representation (left) and the modified min/max
representation (right).

C. Game Mechanics Overview

While exploring their environment, players can find and
interact with artefacts of different shapes and colors evolved by
themselves and other players. The user interface was created
with the goal of making each available player action as
intuitive as possible. Players have an inventory, which allows
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Fig. 5. 3D Artefact and Offspring. When an artefact is planted it produces
five smaller seed artefacts through mutation, which can be picked up by the
players. Once planted, the seed produces a full-sized artefact. Mutations on
the parent CPPN (e.g. adding new nodes and connections or changing the
weight of a connection) create offspring that, while resembling the parent,
vary in different ways. By selecting which seeds they prefer, players can
guide evolution based on their personal taste.

them to store collected artefact seeds. They can select seeds
by scrolling through them (Figure 4a) and plant selected seeds
in the virtual world (Figure 4b). Planting a seed produces a
full-sized artefact and spawns five offspring seeds surrounding
the artefact (Figure 5). These offspring seeds are created by
mutating the parent artefact, and while similar to their parents,
they can vary in interesting ways. The created seeds can be
picked up and planted by others, allowing multiple players to
collaboratively influence the lineage of an evolving artefact. It
is also possible to select two seeds from the inventory, thereby
performing a crossover between them.

While planting artefacts, players have precise control over
their position and rotation. By holding down the right mouse
button, artefacts can be rotated about different axes through the
keyboard, with a rotation speed of 100 degrees per second.
Players can also move around while holding the artefact to
position it anywhere in the virtual world. Once an artefact has
been planted, it can be picked up and repositioned by other
players. Players can also take screenshots of their creations,
from which some are shown in the next section.

IV. PLAYTESTS AND ITERATIVE DEVELOPMENT

While developing Artefacts, an iterative development ap-
proach was chosen. New features were added progressively,
tested and evaluated based on player questionnaires. Espe-
cially the user interface (UI) went through many iterations.
Besides the UI, the controls to interact with the artefacts also
changed significantly together with the way different artefacts
physically interacted with each other. In the following sections
we present the three game iterations in chronological order
together with the results of the player questionnaires. Partici-
pants were not given concrete instructions on how to play and
were only encouraged to explore the game’s affordances.

A. Experimental Parameters

The available CPNN activation functions were Linear, Bipo-
lar sigmoid, Gaussian and Sine, all with equal probability
of being added. Offspring had a 45% probability of weight

TABLE I
RESULTS OF FIRST ITERATION MULTIPLAYER TEST

Total number of players 7
Number of sessions 4

Number of players in each session 5
Average duration per session (in minutes) 16

Average # artefacts planted per session 158
Average # mutations per session 113
Average # crossovers per session 45

Average # seeds picked up per session 227
Average # player contributing per artefact 2.3

Max # player contributing per artefact 6
Average # artefacts planted per players 29

Total # artefacts planted 633
Total # of spawned seeds 633 * 5 = 3,165
Total # of collected seeds 908

Max generation 54
Total # of mutations 453
Total # of crossovers 180

mutation, 20% chance of node addition, 20% of adding a new
connection, and a 15% probability of deleting a connection.
The mutation probabilities were set to relatively high values
to ensure that players see fast evolutionary progress while still
producing offspring that resembles the parent artefacts.

B. First Version
Seven people participated in the playtest of the first game

version on site at the IT University of Copenhagen. However,
due to technical limitations, only five players could play the
game at the same time. In the first iteration of the game,
all artefacts were controlled by rigid-body physics, i.e. they
were affected by gravity and could collide with each other.
The testers played for approximately one hour (divided into
four separate sessions with five players each) and filled out a
questionnaire afterwards.

A summary of the results is shown in Table I. Players
planted a total of 633 artefacts and collected 908 seeds. Not
surprisingly, players seemed to plant more artefacts in less
time as they got accustomed to the game mechanics and user
interface. Figures 6a,b show some of the evolved artefacts,
which come in a variety of shapes and colors, and a tall
structure that was built by multiple players.

Picking up seeds evolved by others allowed users to con-
tinue evolution and collaborate on the design of other players.
Up to six players contributed to the lineages of some artefacts6,
with 2.3 players contributing on average per artefact. This
suggests that the multiplayer component of the game allows
meaningful interactions to emerge between players and the
artefacts they create. Of the 3,165 spawned seeds, 908 were
picked up by players, which is roughly 28%. The reason that
players did not pick up every seed is likely due to the fact
that (1) some of the produced offspring look similar to each
other, and (2) players decide whether or not to pick up seeds
based on their aesthetic preferences.

Interestingly, the placement of artefacts in the virtual world
appears to form one or more clusters (i.e. a large number of

6While only five participants could play at the same time, players that left
the game made room for others to join, making lineage contributions of more
than five players possible.
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(a) First Version (b) First Version (c) Second Version (d) Second Version

Fig. 6. Artefacts Evolved by Players During the First and Second Version. The CPPN-based representation allowed players to evolve a variety of different
3D objects (a). Players also tried to build taller structures together in the first version of the game (b), which proved quite difficult because it was not possible
to permanently combine two artefacts. In the second version, players were able to glue artefacts together, thereby allowing the construction of a wider variety
of different structures (c, d).

Fig. 7. Artefact Placement. The placement of the artefacts and observations
during the playtest suggest that players often build structures together, thereby
creating clusters of objects in the virtual world.

artefacts in a close distance from each other) and a number of
artefacts spread across different directions (Figure 7). These
results and observations from the playtest indicate that players
often build structures with others or in their vicinity, instead
of building structures by themselves in isolation.

1) Questionnaire Results: To analyze the players’ subjec-
tive experience, they were asked to fill out a questionnaire
after playing. A total of seven questionnaires were filled
out. To characterize patterns in the players’ responses, they
were labeled with tags and then aggregated tags were created
consisting of several related ones. The following is a list of
tags for each of the answered questions from the first playtest:

• Most interesting part: interaction with other players (2),
creating unique shapes (4), physical interactions (2),
combining artefacts (1)

• Least interesting part: hard to build large structures (2),
buggy interface (1), lack of more gameplay elements
(2), structures getting destroyed by other players (1),
interaction with other players (1)

• Could be better: having a way to easily connect (glue)
artefacts (2), players flying around (1), buggy interface
(1), more physical rules (3), more shapes in the beginning

(1), having some predefined goals (1)
• About evolving artefacts: difficult to predict (1), should

have more initial variation (1), intuitive (2), player felt
curious (3), breeding seeds should be more visible (1)

• More interesting in multiplayer than it would be in single-
player: yes (6), the same (1)

• About combining (breeding) artefact seeds: outcome
was sometimes unexpected (2), interesting outcome (2),
fun/cool (2), could be more elaborate (1)

• About building structures: difficult (3), objects are too
light (1), not so intuitive (1), more building controls (1),
physics was a limiting factor (1), could be better with
different sized artefacts (1)

The questionnaire answers and observations during the
playtest indicate that players enjoyed (1) creating unique
artefacts, (2) the physical interactions between artefacts and
(3) the element of an open world, in which one can play
together with others. Most players thought that the process of
planting seeds was intuitive and clear. However, some players
found it difficult to understand how combining seeds worked
while others reported that it was difficult to predict the result
of mutations and crossover. Additionally, some players would
have preferred more variation in the seeds that are initially
created to populate the world.

While the ability to create unique artefacts in a physics
sandbox allowed some emergent gameplay (e.g. building the
tallest structure), composing more complex structures proved
challenging; objects would tend to easily knock each other
down while the players were trying to place them next to
each other.

For example, building the stacked structure in Figure 6b
proved to be a very difficult task because players needed to
place artefacts with extreme precision for the structure not
to collapse. Players had to create an additional supporting
structure that allowed them to climb high enough to place more
artefacts on top of the already existing structure. Furthermore,
some players were frustrated by the fact that anyone can
interact and therefore destroy someone’s constructions.
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C. Second Version

The first playtest provided valuable information about the
players’ experience and potential ways to improve it. In
addition to minor bugfixes and interface improvements, more
variation was added to the seeds initially present in the world
by randomly evolving them for 10 up to 20 generations.
Players now also had the ability to delete seeds and artefacts.
The biggest change from the first version of the game was
the added ability to attach or “glue” artefacts together by
placing them so close to each other that they touch each
other’s bounding boxes. These modifications aimed to make
it easier for the players to combine artefacts into larger and
more complex structures.

Four participants that were new to the game took part in the
second playtest. Because it focused on testing more specific
game adjustments, performing two sessions (lasting 13 and 10
minutes) was deemed sufficient. Players evolved a total of 190
artefacts, 42% of those through crossover. Figure 6c,d show
examples of structures built during the second user test: a large
tower build by multiple players and a structure resembling a
spaceship. While the new game modifications made it easier
to build tall structures, the artefacts could still collide with
each other, making it difficult to place them precisely next to
each other.

1) Questionnaire Results: After playing the game, the par-
ticipants were again asked two answer a questionnaire about
their experience:

• Most interesting part: manipulating the evolution of arte-
facts (1), playing with other people (1), building struc-
tures (1), attaching artefacts to each other (1), variety of
shapes (1)

• Least interesting part: attaching shapes was buggy (1),
lack of more gameplay elements (1), artefacts do not
evolve significantly enough (1), the flat plane environ-
ment (1)

• Could be better: hard to figure out how to combine
seeds (1), more varied and complex shapes (4), attaching
artefacts (1)

• About evolving artefacts: selection was counter-intuitive
(1), felt repetitive (1), intuitive (1), artefacts look too
much like boxes (1), player felt curious (1)

• More interesting in multiplayer than it would be in single-
player: yes (3), equally interesting (1)

• About combining (breeding) artefact seeds: there should
be more control over the outcome (2), some repeating
archetypes (1), outcome could be more varied and com-
plex (2)

• About building structures: many glitches (3), fun/cool (2),
difficult (1), could be more interesting by having objects
of different durability (1)

The answers from the questionnaire and observations during
the playtest suggest that players enjoyed breeding artefacts and
trying to control the direction in which they evolved. However,
they felt that there could be more variation in the created
artefacts. While the CPPN representation can produce different

3D objects, as shown in Figure 6, the volume in which the
artefacts are generated in is always cube-shaped, resulting in
many artefacts with flat sides that do not vary much in size.
In the future it will be interesting to experiment with different
3D object encodings, allowing players to scale the artefacts,
or to control the shape of the volume used to generate them.

In comparison to the first game iteration, the new modifi-
cations did in fact facilitate the construction of more complex
structures. Players found it easy to attach artefacts together
and to build on top of them. However, some issues remained
that should be addressed to further enhance the experience of
building structures. First of all, it was hard to align artefacts
precisely with each other; artefacts move based on physical
forces and synchronizing these physical simulations over the
network was challenging. As a result, the artefacts could
sometimes end up in a state in which the client-side objects
failed to keep up with the server-side objects. Secondly,
fitting artefacts together sometimes proved difficult; some had
very different forms, not exactly fitting next to each other
like the pre-made building blocks in games like Minecraft.
Additionally, due to computational constrains, convex colliders
were used on shapes that were concave, which meant that the
colliders did often not match the exact shape of the object.

While some issues remained, the results from the second
playtest suggested that the changes made after the first test
did improve the players’ experience. It also provided valuable
information on how to further enhance the game experience.

D. Third Version

The final playtest took place online instead of in a physical
location. We allowed players to create their own servers that
other players could join to play together. The game was made
publicly available and was advertised for approximately two
weeks. In that period the web page was visited 372 times,
while the game was downloaded 35 times. However, only eight
people that downloaded the game generated enough data for
any analysis.

Based on the results of the first two playtests, physical
interactions between artefacts were disabled (i.e. they could
now intersect) and the artefacts themselves were not affected
by gravity anymore. While the previous iterations showed
that physical interactions between objects can allow for some
interesting gameplay to emerge, the new modifications aimed
to make it easier for players to build larger and more organic
looking structures since the artefacts could now overlap.
Additionally, the controls for placing the artefacts were fine-
tuned, allowing for more precision and control.

A summary of the results of the final playtest are shown
in Table II. Because of the small number of players for all
eight games there was only one person playing the game at
a time. The collected results suggest that players of the third
game version found it much easier to control the placement
of artefacts. Additionally, players were able to build structures
faster than before, without spending too much time trying to
work around the physical constraints of the previous versions.
As Figures 8 and 1 show, players were able to more easily
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(a) (b) (c) (d)

Fig. 8. Artefacts Evolved in the Third Game Version. By disabling physics and collisions between artefacts, players were able to more easily build a
variety of different structures. Players bred a variety of 3D objects (e.g. long sticks, blocks) that allowed them to build different types of structures such as a
tree (c) or a staircase (a).

TABLE II
RESULTS OF THIRD ITERATION MULTIPLAYER TEST

Total number of players 8
Total number of artefacts planted 95

Max generation 51
Total number of mutations 90
Total number of crossovers 5

Average game duration (in minutes) 5
Average number of artefacts planted per player 12

Average number of mutations per player 11
Average number of crossovers per player 1

Average number of seeds picked up per player 16

build a variety of different structures such as a staircase, a
robot, and a tree-like artefact. While disabling the physical
interactions between artefacts might prevent some of the
earlier emergent gameplay, it did allow players to have more
creative freedom over the structures they were building. A
video of some gameplay footage form the third version can
be found at the project page: https://cristi.itch.io/artefacts.

While only a small number of people downloaded the game,
the feedback received from the ones that did was mostly
positive. Below are a number of quotes received from the
players: “Fun, made a giant spiral staircase”, “Nice concept,
keep it up!”, “Nice interface, easy to use. I quickly got
frustrated trying to place objects together accurately. You may
consider adding a ”snap” so objects are flush against each
other. Overall a nice sandbox, waiting to see how you expand
on this”.

While the playtests would have ideally included a larger
number of participants, even the tests with few players suggest
that it is possible to create interesting and novel gameplay by
evolving 3D objects in a sandbox video game.

V. DISCUSSION AND FUTURE WORK

This paper presented a novel PCG-based game, which
allows players to evolve 3D objects and use those objects to
build larger physical structures. The results indicate that play-
ers enjoyed creating unique objects and were curious about the
process of evolving them in an open world environment shared
with others. The novel game mechanics in Artefacts allowed
for some emergent gameplay, with players building structures

individually and collaboratively. Because players share the
same physical space, they were able to collaboratively evolve
artefacts and extend the lineages of artefacts evolved by others.

While the game concept shows promise, we imagine a
variety of further studies and improvements that would make
it more engaging in the future. Since our playtests were
performed with a rather small number of players, an important
next step is a larger multiplayer experiment. What type of
objects could be evolved by thousands of players collaborating
and what type of physical structures could they build? An
important question in this context is if a game like Artefacts
could allow players to express their creativity in ways similar
to a game such as Minecraft. A step towards answering these
questions is the creation of a dedicated Artefacts server that
enables a persistent virtual world, allowing many players to
join at the same time.

Based on the players’ questionnaire answers and observa-
tions during the playtests it became obvious that some would
have enjoyed the addition of more gameplay elements. We
imagine that in the future the game could have competitive
elements that reward players for the unique structures they
build or the objects they evolve. Additionally, the game could
benefit from a resource-based system in which artefacts are
limited and seeds have to be traded to get different variations.
Furthermore, being able to interact in a more meaningful
way with other players (e.g. talking to other players, trading
artefacts etc.) and adding more physical rules (e.g. bouncing,
springs etc.) could provide the player with a larger set of
affordances. Giving players the means to share or sell the
objects they evolved, similar to how players sell flowers in
the marketplace in the Petalz video game [16], could not only
allow the artefacts to create economic value but also increase
the level of social interaction between players.

The current version of the game has a number of technical
limitations. For example, the artefacts evolved in the game
generally look very abstract and do not always resemble famil-
iar shapes. In the future it might be possible to blend handmade
content with generated artefacts. For instance, textures could
be applied to the artefacts to create a variety of more natural
looks. However, the biggest current limitation in the game is
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the lack of a persistent world that players could join at any
point. With the current implementation of the game such a
world was not computationally feasible. The most expensive
operation was the querying of the CPPNs to generate the
3D objects, which lead to too long waiting times when a
player wanted to join a server with many existing objects. In
the future, this process could be accelerated by incrementally
querying the objects closest to the player or by executing the
Marching Cubes algorithm on the GPU instead of the CPU.

VI. CONCLUSION

Artefacts, a novel sandbox video game, allows players to
interactively and collaboratively breed an endless variety of
3D objects. Importantly, players can build larger structures
together with others by combining evolved objects. An it-
erative development approach was chosen, in which a total
of three different game versions were tested. While the first
physics-based iteration allowed some interesting gameplay
to emerge, the final version in which physics and gravity
were disabled, enabled players to build the greatest variety
of different structures. Even though only a small number of
people participated in the playtests, their feedback suggests
potential for the game concept, and search-based PCG games
in general. In the future it will be interesting to see what types
of objects many players can evolve together in a persistent
Artefacts world, and what structures they might build.
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Abstract—Creating controllers for NPCs in video games is
traditionally a challenging and time consuming task. While
automated learning methods such as neuroevolution (i.e. evolving
artificial neural networks) have shown promise in this context,
they often still require carefully designed fitness functions. In this
paper, we show how casual users can create controllers for Super
Mario Bros. through an interactive evolutionary computation (IEC)
approach, without prior domain or programming knowledge.
By iteratively selecting Super Mario behaviors from a set of
candidates, users are able to guide evolution towards behaviors
they prefer. The result of a user test show that the participants
are able to evolve controllers with very diverse behaviors, which
would be difficult through automated approaches. Additionally,
the user-evolved controllers perform as well as controllers evolved
with a traditional fitness-based approach in terms of distance
traveled. The results suggest that IEC is a viable alternative
in designing diverse controllers for video games that could be
extended to other games in the future.

I. INTRODUCTION

In recent years it has become more and more popular
for video games to enable users to create and share game
content. The examples are many and include Sony’s puzzle
game Little Big Planet1, Nadeos racing game TrackMania that
allows users to build race tracks2 and the recent Super Mario
Maker, in which users can build their own Mario levels3. The
user-created content most often comes in the form of levels;
very few games let the user create or modify the behavior
or underlying structure of the Non-Player-Characters (NPCs).
Usually, the NPC behaviors are constructed by programmers
and function in predetermined and static ways.

In this paper we show that casual users are able to create
sophisticated behaviors for the Super Mario Bros. video game
by using a simple interface to evaluate several candidate
behaviors that is reiterated upon. The approach is based on
interactive evolutionary computation (IEC) [19] and requires
no prior knowledge of neither AI methods nor programming.
The developed IEC framework presents users with a selection
of GIFs that show short level playthroughs, from which they
can then choose the parents of the next generation. Human-
in-the-loop approaches, such as IEC, have shown promise in

1http://littlebigplanet.playstation.com
2http://en.wikipedia.org/wiki/TrackMania
3http://en.wikipedia.org/wiki/Super Mario Maker

a variety of different domains [9, 19, 21], because they allow
human intuition to guide the search process.

The IEC results in this paper are compared to an automated
fitness-based search. Interestingly, users were able to not
only interactively evolve a variety of interesting and unique
behaviors but also behaviors that perform competitively in
comparison to the automated search. Additionally, and poten-
tially more important, users reported that they (1) had fun
while evolving Mario behaviors, and (2) felt that they had an
impact on evolution. These results indicate that IEC could be
a viable and entertaining approach to empowering players to
create their own NPC behaviors.

This paper is organized as follows. Section II reviews the
evolutionary computation methods this project builds upon,
followed by a brief description of the Super Mario domain
and game mechanics in Section III. In Section IV the domain
representation, methods and core algorithms are described in
detail. In Section V we give a description of our experiments,
followed by the results in Section VI. Section VII highlights
several pitfalls of the current approach and discusses future
work that could improve it.

II. BACKGROUND

This section gives a brief introduction to neuroevolution
(NE) in general and the NeuroEvolution of Augmenting
Topologies algorithm (NEAT), which evolves the Mario con-
trollers in this paper. Lastly, we review several examples in
which NE has been combined with IEC.

A. The Mario Framework

The Mario framework has been used extensively for various
AI related research projects and gameplay competitions4.
Projects range from imitating player behavior [10], evolving
behavior trees through grammatical evolution [12], or creating
content based on player experience [11], to Mario controllers
optimized through reinforcement learning [20].

B. Neuroevolution

Neuroevolution (NE), the artificial evolution of artificial
neural networks (ANNs), takes inspiration from the process
that created our biological nervous system and has shown

4For more info see: http://www.marioai.org/gameplay-track
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promise in a variety of different domains [3], and video games
[13]. Typically, a population of neural networks controlling
an agent is tested in a given environment, in which those
individuals with higher scores – based on some defined fitness
criteria – will have a higher chance of being recombined and/or
mutated to produce the next generation of solution candidates.

In this paper, the neural networks controlling Mario are
evolved with the NEAT algorithm [17]. NEAT begins with
a population of simple neural networks and then adds com-
plexity over generations by adding new nodes and connections
through mutations. By evolving networks in this way, the
topology of the network does not need to be known a priori;
NEAT searches through increasingly complex networks to find
a suitable level of complexity. For a complete overview of
NEAT see Stanley and Miikkulainen [17]. Most importantly,
such complexification, which resembles how genes are added
over the course of natural evolution, allows NEAT to establish
high-level features early in evolution and then later elaborate
on them.

C. Interactive Evolutionary Computation

In interactive evolutionary computation (IEC), users make
aesthetic decisions by rating individual candidates, thereby
deciding which individuals breed and which ones die instead
of relying on fitness functions designed by developers [19].
Several examples of combining NE and IEC exist, such as
users evolving 2D pictures in Picbreeder [16], 3D models
through EndlessForms [2] or sound timbres [6].

The combination of IEC and NE has also allowed the
creation of new types of games [13]. In the Galactic Arms
Race video game [4], weapons are evolving based on how
frequently they are shot by the players, and in the social game
Petalz [14, 15], players can breed their own unique flowers.
Other examples include the NERO game, in which players
breed an army of robots in order to fight a team evolved by
other players [18]. Each robot in NERO is controlled by a
neural network evolved by the NEAT algorithm. By designing
different training exercises players can train their robots to
behave in specific ways when encountering various challenges
on the battlefield.

Recently, a video from Seth Bling showing the evolution of
a neural network for Super Mario World, has gathered over
two million YouTube hits5. The popularity of this work shows
the potential of using video games to reach a broader audience.
However, so far, none of the aforementioned approaches allow
players to design NPCs in a totally user-driven process, which
the approach in this paper will try to attempt.

III. SUPER MARIO GAME MECHANICS

This section describes the game environment and the pos-
sible actions the Mario controlling ANN can perform. Super
Mario is a world-famous game franchise, containing several
games both in 2D and 3D. The game used in this paper is a
modified version of the Infinite Super Mario Bros., originally

5https://www.youtube.com/watch?v=qv6UVOQ0F44

created by Markus Persson and modified by Julian Togelius
and Sergey Karakovskiy for the Mario AI competition6. The
Mario framework features many of the same enemies and types
of levels as the original games, though the specific terrains are
randomly generated.

A. Level Terrain

In each level the avatar Mario has to overcome different
challenges with the goal to ultimately reach his princess at the
end of the game. To successfully navigate the levels, Mario
needs to be able to notice changes in the terrain such as holes
that he could fall into or obstacles. Several types of blocks,
which can be interacted with, are scattered throughout the
level, some of which will yield either coins or power-ups.
Likewise, coins are dispersed and can be collected.

B. Enemy Types

Mario is also facing a multitude of enemies. Most of them
are either walking on the ground, jumping around or flying
in the air. The majority can be killed by jumping on them,
but some have spikes on their backs that prevents this kind of
attack. All of them can be shot by fireballs as well. More
uncommon are missiles shot from canons and flowers that
continuously appear from and disappear into green tubes. The
former can be destroyed by jumping on them, while the latter
can only be shot by a fireball.

C. Mario States

The character of Mario can exist in three different states:
small, big and big with fire-shooting ability. Every time Mario
is hurt by an enemy he regresses to a lower state, and dies if he
is hurt in the small state. The previously mentioned power-ups
can advance his state to a higher level.

D. Actions

In the original game, players can control Mario through the
Nintendo controller, with buttons right, left, down, up, A and
B. Mario is able to move left or right, at a normal or fast
speed, crouch, jump in the air and, if he is in the right state,
shoot fireballs. In the Infinite Super Mario Bros. version the
AI controlled Mario’s have access to the same controls.

IV. METHODS AND REPRESENTATION

This section details the implemented algorithms, neural
network setup and IEC interface.

A. Neural Network Setup

The ANN controlling Mario in this paper, receives a 3 ×3
grid of cells centered around Mario as input, in which different
cell values represent different terrain types (Figure 1). In detail,
the specific values are as follows: 1.0 = ground, 0.2 = coin,
0.0 = unreachable ground or air, −0.2 = question mark box,
−0.5 = breakable standard box, −0.75 = green tube, and
finally −1.0 for a hill piece.

6http://www.marioai.org
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Figure 1. Mario Representation. The controlling ANN receives a 3 ×
3 grid as input together with information about the distance and angles to
enemies, and conditional domain variables canJump and onGround. The
ANN outputs (shown at the top-right corner) determine the action that Mario
performs each tick.

Additionally, the ANN receives the distance and angle to
the two nearest enemies relative to Mario; the enemy type
is currently not provided to the network. The values for
both angle and distance are normalized in the range [−1, 1].
The domain conditional inputs canJump and onGround are
represented as either −1.0 (false) or 1.0 (true).

The ANN has six outputs: right, left, up, down, jump, and
fire. If the output value for an action is higher than a threshold
of 0.5, the particular button is pressed. Mario can perform
multiple actions at the same time (e.g. shooting and jumping),
except to run left and right. In case both left and right are
chosen by the ANN, the one with the highest activation is
performed; if both have the same value Mario will not move.

As the Mario framework implementation is written in JAVA,
the framework in this paper is build on the NEAT and
Java Genetic Algorithms Package (JGAP)7 based framework
Another NEAT Java Implementation (ANJI)8.

B. The IEC Interface

The motivation for the IEC approach in this paper is the
potential to enable casual users to create Mario controller
without any technical skills. Figure 2 shows the developed IEC
interface, which aims to accomplish this goal. While the user
is watching, a total of nine controllers are playing – one after
the other – through a small part of a Mario level. The number
of presented controllers tries to strike a balance between giving
the user enough variety to choose from while still allowing a
reasonable quick evaluation of all behaviors shown.

During the playthroughs, GIFs are recorded for each of
the different controllers that show Mario in action. Once the
whole population has been played and recorded, a window

7http://jgap.sourceforge.net
8http://anji.sourceforge.net/

Table I
EVOLUTIONARY APPROACHES.

Approach Evaluation
Fitness-based Controller Fitness function awarding

cells passed
IEC Free Play Controller User without any specific

goal
IEC Competition Controller User with the goal to pass

as many cells as possible

with all nine recorded GIFs is shown to the user (Figure 2).
The user is then able to evaluate and compare each individual
in the population and select one preferred controller by simply
clicking on the particular GIF. Based on the user’s selection,
the next generation of controllers is created through mutating
the selected individual and the process starts again. That
way users can guide the evolutionary search towards Mario
behaviors they find interesting.

V. EXPERIMENTS

To test whether users can evolve Mario behaviors, a user
study was performed on site at the IT University of Copen-
hagen with a total of 20 participants. Each participant was
asked to evolve controllers for 20 generations through the
interface presented in Section IV. Additionally, we divided
the participants in groups of ten and gave them different in-
structions in order to determine under what conditions certain
behaviors evolve. The first ten participants were given no
constraints as what to create, and were encouraged to evolve
whichever behaviors they preferred. The other ten were told
to evolve controllers that could travel as far as possible in the
level. The second user study was set-up as a contest with a
small prize for the best performing controller, to give some
additional incentive for the players to do their best.

After the users evolved Mario controller for 20 generations,
they were asked to answer two questions on a scale from 1–6
(where 6 is best). The questions read as follows:

1) How much impact do you feel that your choices had on
the evolutionary process?

2) How much fun was it to develop your AI this way?
Controllers evolved through IEC were compared to con-

trollers evolved with a traditional automated fitness-based
approach. The fitness for the automated approach was the
number of cells passed at the end of the simulation. The
simulation was terminated if Mario reached the end of the
level, he died or the time limit was reached. Additionally,
to create more robust controllers, the starting position of the
avatar was moved every four generations to a different location
in the same level, for both the automated and IEC approach
(Figure 3). Table I shows an overview of the three approaches.

A. Experimental Setup and Parameters

The duration of GIFs shown to the users is initially set to
2,1 seconds, but increases gradually each generation, with a
maximum of 4 seconds in the final generation. As it is often
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Figure 2. The IEC User Interface. The user is presented with nine small playthroughs recorded as GIFs, from which the parent for the next generation can
be chosen. The IEC approach offers casual users the ability to breed Mario controllers without requiring technical skills.

easier to eliminate inferior behaviors at earlier generations, the
duration was limited in the beginning to reduce user fatigue.

The population size was set to nine for both the automated
and IEC approach. The number of generations was set to 20.
Offspring had a weight mutation chance of 0.55, 0.01 chance
of node addition, and 0.01 chance of link addition.

VI. RESULTS

The IEC results are based on the ten participants of each
experiment and the fitness-based results are collected from ten
independent evolutionary runs. Figure 4 depicts a general trend
for all approaches to improve over generations. In particular,
there is a significant increase in performance for all methods
comparing first and last generations (p < 0.05; Student’s t-
test). The pair-wise differences between the approaches are on
the other hand not significantly different, which indicates that
both automated and IEC approaches (free play and competi-
tive) are able to evolve similar performing Mario controllers.

Not surprisingly, for all three approaches there are drops
in performance when Mario’s starting position is moved in
generations 5, 9, 13 and 17. Not only does the level layout
change at a new starting position, which might break less
general controllers, later parts of the level often contain new
object types (e.g. a question mark box) that the ANN controller
first has to learn to respond to.

Additionally, the results show that the standard deviation for
cells passed for the user-evolved controllers is often higher
than for the automated approach. This difference indicates
that a fitness-based approach tends to create more uniform
controllers, while there is more variety in the type of behaviors
evolved through IEC, which we examine next.

A. IEC Evolved Behavior Examples

Indeed, the participants in the user tests were able to evolve
controllers displaying a variety of different behaviors. While
most users would first focus on creating controllers capable
of jumping and moving to the right (a strategy often also
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Figure 3. Training Starting Positions. To encourage the evolution of general behaviors, the starting position of Mario is moved every four generations to
the next pre-defined position in the same level.

Figure 4. Training Performance. Shown are average cells passed during
training over generations. The vertical red lines indicate the generations when
Mario is set to a new position in the level.

discovered by the automated fitness-based search), some tried
to evolve more specific and unique behavior.

Examples include behaviors that would try to collect as
many coins as possible or rush through the level without pay-
ing attention to enemies or coins. Other controllers would act
more cautiously, standing still and ducking when encountering
enemies, and would only move once the enemies were behind
Mario to his left.

Figure 5 shows a unique IEC created Mario behavior
called living-on-the-edge. Mario would first try to run into
enemies when in his normal state, and then try to keep a
specific distance to the enemy in the small Mario state (see
Section III-C for details on the different Mario states).

More aggressive Mario controllers such as im-gonna-kill-
everything-that-moves-mario, which tries to jump on every en-
countered enemy while shooting fireballs in all directions, was
also evolved in the IEC free play session. Other participants
would try to evolve slightly more pacifistic Mario behaviors
that used enemies as pads to jump higher, progressing more
easily through difficult obstacles in the level (e.g. a high
cliff). The reader is encouraged to take a look at the video
accompanying this paper (available at https://goo.gl/Ell82m),
to get a better sense of the types of controllers that were
evolved and the IEC system in action.

Table II
QUESTIONNAIRE RESULTS.

Questions Average Rating Standard Devia-
tion

Q1: Impact on evolution 4.29 0.8
Q2: Amount of fun when
evolving

4.88 1.0

B. Questionnaire Results

The results from the questionnaire are shown in Table II. In
general, the participants felt that they had significant impact on
evolution with an average rating of 4.29 out of 6. However,
there were no participants who felt that they had complete
control, which could be due to the fact that (1) Mario’s starting
position was moved every fourth generation leading to drops
in performance and unexpected behaviors, or that (2) IEC is
simply a stochastic process.

Maybe slightly surprising, over 25% gave the maximum
score when asked about the level of fun they had breeding
Mario controllers, with a score of 4.88 on average. The user
responses indicate that IEC-based interfaces have potential for
other video games as well, which can benefit from casual users
evaluating and evolving NPC behaviors. Similarly to games
like NERO [18] and EvoCommander [5], the results in this
paper suggest that the process of evolving NPC behaviors can
be a novel and entertaining game mechanic.

C. Generalization Test

NPC controllers employed in video games should be able
to deal with variations in their environment and ideally gen-
eralize to situations they might not have encountered during
training. To test the generality of the evolved behaviors in
this paper, the selected IEC and fitness-based controllers from
each generation are tested in ten variations of the level they
were trained in. In each variation the level layout, amount and
location of enemies, enemy types, tubes, coins and breakable
boxes is changed randomly.

Figure 6 shows the generalization performance of the three
approaches. IEC free play reaches the highest generalization
performance, however, the pair-wise differences between the
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(a) (b) (c)
Figure 5. Storyboard of the “living-on-the-edge” Mario controller. The controller runs into an enemy (a) and then after converting to the smallest Mario
state (b), walks as close to the enemies as possible without touching it (c).

Figure 6. Generalization Performance. The controllers selected during
training in each generation are tested on their ability to perform in levels they
have not seen during training. Each controller is evaluated on ten different
level layouts.

approaches are not significant. Similarly to the training perfor-
mance, all approaches have a statistically higher generalization
performance when comparing the first to the last generation
(p < 0.05). The performance of the controllers on the
generalization test is mostly comparable to the performance
in training, indicating that the evolved behaviors are able to
deal with some variation in the layout of levels.

Overall the results suggest that casual users are able to
evolve a variety of unique behaviors that often also perform on
par to controllers evolved with a fitness-based approach. It is
important to note that the main goal of this comparison is not
to determine which method produces the highest performing
controllers, but rather to establish a base-line that the IEC-
based approaches can be compared to. Inevitably, some will ar-
gue that by giving the fitness-based approach more generations
it would eventually outperform the IEC approach. While this
is likely true, the main advantage of the IEC approach is that
even in a game like Mario (i.e. a game whose main goal it is to
just advance to the right), players can guide evolution towards
unique and interesting behaviors that would not have been
rewarded by a naive fitness-based approach (see Section VI-A
for examples).

VII. DISCUSSION AND FUTURE WORK

This section discusses the strengths and weaknesses of the
presented approach to create Mario controllers. We also try to
articulate suggestions for improvements and draw perspectives
to other projects and methods.

A. Representation

There exist a variety of different ways to represent the Mario
world to an ANN-based controller, which differ in terms of
the number of ANN inputs and level of sensory abstraction.
The representation chosen in this paper tries to strike a balance
between selecting the inputs that the controller needs in order
to perceive its world, and keeping their number as small as
possible; each additional input can lead to an increase in
the evolutionary search space and greater demands on the
information processing capabilities of the network.

The number of inputs for each object type (e.g. terrain grid
size, number enemies) can also have a significant influence
on the behavior of the agent. Representing too many enemies
and having too small a grid, means the network will initially
be highly sensitive to nearby enemies and less sensitive to the
terrain. While the ANN can be trained to compensate for this
or its inputs can be scaled, it will require additional training
time or domain-dependent manual tweaking.

B. User Fatigue

As IEC can be a time consuming process, user fatigue
can be an issue. To produce a desired and usable result the
process of iteratively selecting behaviors can take many hours.
In the current system it takes approximately 60 seconds per
generation, both to record the GIFs and to choose among them.
The current implementation is not optimal as users have to
wait for the recording of each GIF, and even though they can
watch the controllers perform during this process, it increases
the evaluation time significantly.

Initially, we experimented with combining IEC with an
automated fitness-based search in between each IEC step
to speed up the evolutionary process. The automated search
would run for a few generations, rewarding Mario for moving
towards the right. However, this addition sometimes introduced
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an unwanted bias, leading evolution away from the direction
sought by the user (e.g. a Mario controller that moves left).

User fatigue can also be negatively influenced if the con-
trollers presented to the user are all very similar; unvaried
controllers might not be very meaningful for the user to
choose between. As proposed by Woolley and Stanley [21],
a potential solution to this problem could be novelty-assisted
interactive evolution (NA-IEC). By combining IEC with nov-
elty search [7], a divergent evolutionary search method, the
users would only choose from candidate solutions of novel
behaviors, thereby accelerating the evolutionary search. Addi-
tionally, to gain insights into the quality of user-evolved versus
automation-evolved behaviors, the IEC approach should be
compared to a novelty search based approach. Another future
extension to accelerate the IEC approach could be a rank-
based IEC approach that was introduced by Liapis et al. [8]
for content generation. The rank-based approach has shown
advantages over the standard IEC approach with respect to
speed of convergence.

C. User Evaluation

A potential pitfall to the human evaluation step is the relative
short duration of the GIF; the user only gets a small glimpse
of Mario’s behavior. Currently, the duration of the GIF is a
compromise between how long the user should have to wait for
the recording and how much gameplay the user needs to see
in order to evaluate the controller properly. A solution could
be to automatically learn a model of the user [1] and only
show a few longer playthroughs to the user that the learned
user model is uncertain about.

In the initial generations the ANNs often perform seemingly
random behaviors. Instead of starting from random controllers,
users could instead build upon the work of others, similar to
how users collaborate in Picbreeder [16].

VIII. CONCLUSION

The presented approach allows users, for the first time, to
interactively evolve behaviors for Super Mario. The results
show that controllers evolved with IEC perform similarly
well compared to a fitness-based search in terms of distance
traveled, but importantly display more varied strategies and
behaviors. Moreover, the IEC users reported that they had fun
while evaluating and evolving controllers. In the future, this
system could be extended to other video games and to allow
many users to evolve behaviors collaboratively online.
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Abstract—This paper extends prior work in generating two
dimensional micro for Real-Time Strategy games to three di-
mensions. We extend our influence map and potential fields
representation to three dimensions and compare two hill-climbers
with a genetic algorithm on the problem of generating high
performance influence map, potential field, and reactive control
parameters that control the behavior of units in an open source
Real-Time Strategy game. Results indicate that genetic algorithms
evolve better behaviors for ranged units that inflict damage
on enemies while kiting to avoid damage. Additionally, genetic
algorithms evolve better behaviors for melee units that concen-
trate firepower on selective enemies to decrease the opposing
army’s effectiveness. Evolved behaviors, particularly for ranged
units, generalize well to new scenarios. Our work thus provides
evidence for the viability of an influence map and potential fields
based representation for reactive control algorithms in games, 3D
simulations, and aerial vehicle swarms.

I. INTRODUCTION

Real-Time Strategy (RTS) games are a sub-genre of video
games where players gather resources to build units to fight
and defeat adversaries. Players collect resources to power up an
economy that can then produce military units used to destroy
opponent units and economy. RTS games thus incorporate
elements of strategic economic development and tactical battle
management that adds complexity to game play. As such,
many interesting CI and AI research challenges exist within the
game genre [1], [2], [3]. First, dynamic environments within
RTS games mean that we need real-time planning on several
levels - strategic, tactical, and reactive. Second, a “fog of war”
hides enemy disposition and strategy, therefore players have
to scout to gain information to formulate effective strategies.
Third, players must learn and exploit their opponents’ playing
“style” quickly in order to gain the advantage in future games.
Fourth, players must employ spatial and temporal reasoning to
coordinate effective unit formations and time-sensitive actions
on a tactical and strategic level.

These challenges lead to two broad areas of RTS AI
research that encapsulate game play elements in RTS games,
macro and micro. Macro refers more to long term decision
making dealing with resource management and creating a
strong economy. A stronger economy enables more production
of military units that battle the opponent. Micro refers to
controlling small sets of such military units in combat. Good
micro minimizes damage received by friendly units while max-
imizing damage dealt to enemy units. Good macro combined
with good micro wins RTS games. Often, an RTS game may
have multiple skirmishes between opposing groups of units
and superior micro during a single skirmish may change the
entire course of the game.

Influence maps (IMs) and potential fields (PFs) techniques

have been used, in the past, for spatial reasoning and unit ma-
neuvering [4]. IMs map a number to each cell of a discretized
game map and the number can indicate areas of interests
within the level to the game AI [5], [6]. In this paper, we
extend influence maps to 3D as a volumetric grid over 3D
space. Each grid volume, or cell, contains a numerical value
indicating the influence of nearby entities. Figure 1 shows the
three-dimensional (3D) influence map of enemy units. Each
IM cell value, computed by an IM function, depends on two
parameters, a weight, corresponding to the influence of the
entity occupying the cell and a range for this influence. The
final value at a cell is the sum of the influences of all entities
that have that cell within their range. Assume we design the
IM function to provide low values for enemy influence and
high values for friendly influence, a very low value in certain
cells reveals that there is heavy enemy presence and therefore
the area corresponding to those cells is dangerous for our units.

Fig. 1: A 3D influence map showing color coded influence
over a map. Pink values are higher than blue which are higher
than white. The white areas with the lowest values are thus
areas to be avoided by opponents.

Potential field approaches from robotics have been exten-
sively used in guiding group movement in RTS and other
games [7], [8], [9]. They enable real-time, cohesive movement,
with collision avoidance and have been used to generate good
positioning for attack and defense. We extend prior work with
2D potential fields to three dimensions and evolve the (now)
3D parameters that define attractive and repulsive potential
fields for game units.

In our experiments, we use a 3D influence map generated
from enemy units to tell our units where to go and use two
3D potential fields to control unit navigation. Earlier work
has shown that influence maps and potential fields provide
representations that can be used by parameterized, but simple,
reactive control algorithms to generate high performance 2D
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micro [9]. In this work, good kiting, targeting, and fleeing
behaviors evolved from the tuning of 3D IM, 3D PF, and 3D
reactive algorithm parameters.

This paper extends Liu’s 2D work to 3D [9]. Specifically,
we use and compare genetic algorithms (GAs) and two hill
climbers (HCs) on the problem of finding good 3D influence
map, 3D potential field, and reactive control parameters that
lead to high performance 3D micro. We generate and compare
micro performance in our simulation environment with units
similar to Zealots, a close-in, melee unit, and Vultures, a fast,
ranged unit, in StarCraft. Our Zealots and Vultures have the
ability to move in three dimensions, that is, units can fly in
3D space. We also report on micro performance on scenar-
ios not used during search to investigate how our approach
generalizes. Finally, we use FastEcslent, an open source game
engine that supports full 3D unit movement in games [10].
We chose FastEcslent in place of the popular StarCraft: Brood
Wars API (BWAPI) [11] in order to change the physics and
enable full 3D movement. Not only do we want to move to
3D game-physics, but we would like to investigate the effect
of more realistic physics on evolved “micro” performance for
real-world unmanned aerial vehicles. Figure 2 shows a screen
shot of in-game combat between two teams of units within
FastEcslent.

Fig. 2: Units are able to fly and fight enemies in 3D within
FastEcslent. Note that although the influence map appears 2D,
only the bottom layer of influence map cells is being rendered
to provide an unobstructed view of the skirmish.

Preliminary results indicate that both GAs and HCs are able
to evolve competent 3D micro. Ranged units (Vultures) learn
to kite against melee units (Zealots) in three dimensions and
spread firepower by moving to split the enemy unit group into
smaller subgroups and thus avoid being surrounded. Ranged
units evolve conservative behaviors that preserve health and
do not engage in risky tactics. Melee units, when trained
against evolved ranged units, learn to concentrate firepower
on individual ranged units and diminish the damage dealt
by the enemy unit group. Results also show that GAs more
consistently produce higher quality solutions than HCs. That is,
although hill-climbers occasionally generate high performance
micro in shorter time, they do so unreliably. On the other hand,
GAs may take more time to produce near-optimal solutions but
do so more reliably.

The remainder of this paper is structured as follows.
Section II discusses related work in RTS AI research, as well
as common micro implementations and approaches. Section III

explains our simulation environment, the design of our AI
player, and detailed IM and PF representation for generated 3D
micro. Section IV shows preliminary results and compares the
solutions generated by the search algorithms and investigates
the applicability of solutions in new scenarios. The final section
draws conclusions and explores future work.

II. RELATED WORK

Numerous techniques have been used in the design of RTS
AI players[3]. However, we focus on work related to micro
management including spatial reasoning and unit movement.
In this context, influence maps have been a popular technique
for spatial reasoning in RTS and other games. Sweeter et al.
designed a game agent that used IMs and cellular automata to
model the game environment and assist the agent in decision-
making within their EmerGEnT game world [5]. Their game
agent was capable of pursuing a target while responding
to both user actions and natural phenomenon. Bergsma and
Spronck implemented IMs to produce adaptive AI for combat
in turn-based strategy games [6]. Their adaptive AI evolved
high level decision making using an evolutionary algorithm.
Avery et al. used IMs to co-evolve tactics for a group of
boats to move autonomously and attack enemy units in co-
ordination [12]. Their technique generated an IM for each
unit in order to produce different unit navigation; however,
their technique was computationally intensive when increasing
the number of units in-game. Preuss et al. generated group
movement by using flocking in combination with IM path
finding within the RTS game Glest [13], [14]. Their approach
found improvements in group performances across each of
their game scenarios. For our research we evolve and use an
enemy IM to collect spatial information on enemy disposition
and to direct friendly units to good locations from which
to launch attacks. Potential fields then guide unit movement
during attacks.

PFs were first introduced by Ossama Khatib as a compu-
tationally simple approach to real-time obstacle avoidance for
mobile robots [7]. This method was then extensively used for
collision avoidance among multiple entities [15], [16], [17].
In games, most work related to PFs involve spatial navigation
and collision avoidance [18]. Multi-agent potential fields were
used by Hagelbäck and Johansson for unit navigation and
obstacle avoidance in RTS games [8]. Their research involved
the development of an AI player that incorporated PFs at
the tactical and reactive control level [19]. Early work in our
lab applied spatial reasoning techniques with IMs to evolve a
complete RTS game player [20]. More recent work combined
IMs and PFs as a basis representation to generate micro
position and movement tactics [9], [21], [4]. In this paper,
we extend Liu’s reactive control algorithm for micro to use
3D IMs and PFs.

Previous work by Uriarte and Ontañón implemented kiting
using IMs for group positioning [22]. Their approach was
incorporated into the NOVA bot, which competed in the
annual StarCraft AI Competition. Gunnerud et al. developed
a hybrid system that combines case-base reasoning and rein-
forcement learning which improves itself while playing an RTS
game. The hybrid system learned effective targeting behaviors
specific for a given scenario [23]. Wender et al. examined
the suitability of reinforced learning algorithms for executing
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effective micro in the RTS game StarCraft: Brood Wars [24].
Their results indicate that reinforcement learning algorithms
are capable of developing strategies for winning small scale
battle while learning actions such as “Fight”, “Retreat”, and
“Idle” in combat. Limitations exist in their implementation
however, as the default StarCraftBW AI was the opponent
and performance was evaluated on a limited set of tasks. In
this work, we extend and use Liu’s parameterized stateless
distributed control algorithm which tries to maximize damage
to the enemy while minimizing the amount of damage received
by friendly units. With appropriate evolved parameters, the al-
gorithm generated 2D kiting, targeting, and fleeing. We extend
the algorithm to work in 3D to investigate the evolution of
similar behaviors. Although many RTS games do not support
full 3D movement, our work does, and as such may also be
applicable to user interaction with, and control of, real 3D
unmanned aerial vehicle swarms.

III. METHODOLOGY

We used FastEcslent, an open-source and research-oriented
game engine built on OGRE [25] that supports full 3D entity
movement. Since graphics and user interaction run within a
separate thread, FastEcslent can run without graphics or inter-
action, enabling easier integration with heuristic search algo-
rithms. On the other hand, even when copying unit parameters
from StarcraftBW, trying to replicate StarCraft movement and
combat exactly is non-trivial. However, exact duplication is not
necessary to evaluate our approach and to investigate whether
we can evolve kiting and other well know micro behaviors
during combat. With that caveat, our skirmish scenarios built
within FastEcslent reflect combat found in StarCraftBW by
replicating StarCraft units and their respective properties. In
addition, we implement 3D physics and extend our influence
map and potential field implementations to 3D. Figure 2 shows
an in-game screen shot of a FastEcslent skirmish scenario be-
tween two opposing sides. In our scenario, each player controls
a group of units initially positioned in opposite corners. In our
experimental scenarios, the map does not contain obstacles or
neutral entities. Second, FastEcslent entity properties reflect
those of default StarCraft units, more specifically, Vultures and
Zealots. A Vulture is a ranged unit with low hit-points but high
movement speed, proving to be effective when outmaneuvering
slower enemy units. A Zealot is a melee unit (low attack range)
that has more hit-points than a Vulture but is comparatively
slower. Table I details the parameters for both Vultures and
Zealots in FastEcslent. Lastly, there is no fog of war since we
are only looking at skirmishes, not a complete game. We also
implemented a baseline opponent AI that behaves similar to the
default StarCraft AI to control enemy Zealots. The maximum
running time for our scenario is 6000 frames, approximately
one minute at normal game speed. We created a skirmish
scenario with four 3D moving Vultures on side RED (our side)
and fifty 3D moving Zealots on side BLUE.

A. Influence Maps and Potential Fields

We represent group behavior as a combination of one
enemy influence map, attractor and repulsor potential fields,
and a set of reactive control parameters. The IM provides
possible move-to locations and the PFs control movement to
locations provided by the IM. Two parameters, the weight

TABLE I: Unit parameters defined in FastEcslent

Parameter Vulture Zealot

Hit-points 80 160

Size 45×10×12 18×3×6

MaxSpeed 64 40

MaxDamage 20 16

Weapon’s Range 256 224

Weapon’s Cooldown 1.1 1.24

and range specify the IM. Since computation time also
depends on the number of IM cells in the map, we use a
cell size of 64× 64× 64 pixels in the game map. If an enemy
unit occupies a cell, the value of that cell and all neighboring
cells in range get weight added to their current value.
We call this the SumIM and weight and range are the
evolvable parameters. Since we are evolving micro in a full
3D environment in this paper, influence maps and potential
fields extend to three dimensions as well. However, extending
IMs from 2D to 3D increases the computational complexity
of their implementation. The original 2D IM was of O(MN)
complexity where M is the number of IM cells on the x-axis
and N is the number of IM cells on the y-axis. Considering
the number of cells for the original 2D implementation of
FastEcslent (64 × 64), 4096 cells updates were needed to
update the IM. Since entities now move in three dimensions,
the introduction of the z-axis increases the computational
complexity to O(MNL), where L is the number of IM cells
on the z-axis. However, our IM implementation updates IM
cells over multiple frames within a total of three seconds and
does not noticeably slow down simulations or adversely affect
unit behavior.

Equation 1 shows a standard potential field function, where
F describes the potential force applied to the entity, with
D being the 3D distance from the enemy entity. The force
direction is in the direction of the vector difference from the
enemy entity and c and e are evolvable parameters.

F = cDe (1)

We use one attractor PF and one repulsor PF of the form
described by Equation 1 to control entity movement in-game.
The attractor force guides a unit towards its target. The repulsor
force repels units from other units or obstacles. Normally it is
stronger than the attractor force at short distances while being
weaker at long distances.

~PF = caD
ea + crD

er (2)

where ca and ea are attractor force parameters, and cr and er
parameters for the replusor force.

B. Reactive Controls

Along with group positioning and unit navigation, we
represented our reactive control behaviors in a way that our
search algorithms can tune. Our reactive control behaviors in-
cluded micro behaviors frequently used by professional human
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Algorithm 1 Reactive Control Algorithm
UpdatePosition();
nearbyUnits ← FindNearbyUnits(enemies, Rnt);
highFocusUnit ← GetHighFocusUnit(nearbyUnits);

// Targeting
if lowUnit.healthPercentage < HPef then

Target ← lowUnit
else if GetNumberOfAttackers(highFocusUnit) > 0 then

Target ← highFocusUnit
else

Target ← closestUnit
end if

// Kiting
if Weapon.cooldownTimer < (St * Weapon.cooldownRate) then

return
end if
if Weapon.cooldownTimer ≤ 0 then

MoveTowardsAndAttack(Target)
else

KitingPos ← IM.GetKitingPos(position, Target.position, Dkb)
if distanceFrom(Target) < (Target.Weapon.range + Dk) then

if Weapon.range > Target.Weapon.range then
MoveTowards(KitingPos)

else if BeingTargetedBy(enemies) and healthPercentage <
HPfb then

MoveTowards(Target);
end if

end if
end if

players: kiting, targeting, and fleeing. Algorithm 1 specifies the
algorithm with the targeting and kiting portions outlined.

Targeting selects and concentrates fire on a specific unit
depending on candidate enemy unit hit-points and distance.
Each of our units selects the nearest enemy unit tclosest as a
possible target. Within a distance Rnt from tclosest, our unit
will select a target based on prioritized criteria. The highest
priority is tlowhp, the enemy with the lowest hit-points below
the evolvable threshold: HPef . Next in priority is tfocus, the
enemy unit being targeted by the most friendly units within
Rnt relative to tclosest. The third prioritized criteria is tclosest,
the nearest enemy unit. Kiting serves as a useful hit-run-
repeat tactic for units with higher speed and attack range.
Units strike quickly and retreat back to avoid being attacked
by the slower units. During kiting, our unit moves towards
and attacks its target as soon as the unit’s weapon is ready,
which is dependent on St. A unit will begin kiting if the
unit’s weapon is not ready and if the distance between the
unit and its target is less than Dk. The unit moves back
(away from the target) to a kitingPosition which is computed
by the function getKitingPositionFromIM(Dkb) from the
SumIM. Dkb represents the number of cells away from the
target’s cell. If Cellt is the IM cell containing our target,
getKitingPositionFromIM(Dkb) finds a neighboring IM
cell with the lowest value. We set this new IM cell to Cellt
and then repeat this process of finding a new Cellt, Dkb

times. The algorithm then uses Cellt as the kitingPosition
to move towards. Finally, fleeing to avoid further damage
gets triggered when the unit’s hit-points fall below below a
threshold, represented by HPfb. HPfb controls this “fleeing”

behavior.

We encode 12 micro parameters, consisting of 6 reactive
control parameters as well as 6 IM and PF parameters, into
a 51-bit binary string that represent a chromosome for our
search algorithms. Our search algorithms then decode these
encoded binary strings into a set of parameters as shown
in [21]. FastEcslent receives this decoded set of parameters
and uses them to run the skirmish. When finished, FastEcslent
returns the resulting score and fitness to the calling search
algorithm.

C. Fitness Evaluation

The goal of our scenario is to maximize enemy unit dam-
age while minimizing friendly unit damage. The evaluation
function to compute fitness F reflects this:

F = TDeu + (HPfu × 400) (3)

where fitness is calculated at the end of the scenario. TDeu

represents the total damage given to enemy units, while
HPfu is the sum of remaining hit-points of all friendly
units. According to our prior experiments, we use the scalar
value 400 for multiplying HPfu to give unit hit-points more
weight than enemy unit damage as a means to encourage
health conservation and more evasive kiting behaviors. This is
somewhat arbitrary and an alternative approach in our current
research, is to use a multi-objective evolutionary algorithms
and treat damage done and damage received as two criteria in
a pareto-optimization setting. Note also that the same fitness
can be found in multiple ways. For example, a fitness of 7200
can describe an outcome of 45 enemy units destroyed with
no friendly units remaining or an outcome of 40 enemy units
destroyed and two friendly units alive with full hit-points. The
fitness is used by our search algorithms to bias search.

D. Hill-climbers

The Bit-Setting Optimization (BSO) hill climber searches
a locally optimal solution in the search space by sequentially
flipping each bit and saving the better fitness solution when
it is found [26]. BSO searches a subset of the search space
based on the initial point set by the random seed. In order
to make results obtained from GAs and HCs comparable, the
maximum number of evaluations made by all algorithms are
set to the same number, 600. The BSO starts from the left
again when it reaches the end of the chromosome. The Random
Flip Optimization (RFO), an alternative hill-climber, randomly
chooses a bit in the randomly generated initial chromosome
and flips it. This is repeated 600 times.

E. Genetic Algorithm

We use an elitist GA in our experiments. Assuming the
population size is N , during selection our elitist GA selects
the N best individuals from the combined parent and offspring
populations (2N ) to create the next generation after recombi-
nation. We implemented a parallel version of this elitist GA
where evaluations are done in parallel to significantly speed up
our runs. For our scenarios, the population size was 20, run
for 30 generations for a total of 600 evaluations. In order to
relate our experiment to that of the original 2D implementation,
we use the same crossover and mutation rate for our GA.
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The probability of our two-point crossover is 88% and bit-flip
mutation probability is 0.01. Standard roulette wheel selection
is used to select chromosomes for crossover. These operator
choices and GA parameter values were empirically determined
to work well.

IV. RESULTS AND DISCUSSION

Unit AI behavior within FastEcslent is deterministic, mean-
ing that a given set of parameters guarantees the same fitness
every time a scenario runs. The FastEcslent game engine does
not add any noise to picking a targeting, probability of hitting
the target, or in the amount of damage done. We ran our
scenarios with 30 random seeds for each search algorithm.

A. Search Algorithm Results

In the skirmish scenario with 4 friendly Vultures vs. 50
enemy Zealots, all three search algorithms were able to evolve
high fitness 3D micro within 600 evaluations. Ranged units
evolved kiting behaviors that were successful in destroying
numerous enemy units while avoiding damage. According to
the fitness function, the theoretical maximum score for our
scenario is 9600. This is obtained when eliminating all of the
enemy units (8000) with no friendly units receiving damage
(1600). Figure 3 illustrates the average fitness from 30 runs.

Fig. 3: Average performance of GA, BSO, and RFO for our
scenario with 30 different random seeds. X-axis represents
number of evaluations and Y-axis shows the average fitness
over 30 runs.

The average fitness of the BSO shown in Figure 3 climbed
quickly in the first 100 evaluations which seemed to indicate
that the BSO quickly finds (local) optima. The final average
score for BSO, 7904 was the second highest average score
among the three tested algorithms. The best fitness over 30 runs
was 9200, indicating that the BSO sometimes did very well
and this solution destroyed 48 of the 50 enemy Zealots but did
receive some damage. The average fitness of the RFO shown in
Figure 3 did not climb as quickly as the other search algorithms
and RFO usually did worse than the others. This was reflected
in the final average score of 7556 attained over the 30 RFO
runs, the worst among the three tested algorithms. On our
scenario, RFO seemed less reliable than BSO. However, the
highest fitness obtained by RFO was 9020 which indicated
that RFO also has the potential to find relatively high quality

solutions. The solution with a score of 9020 destroyed 43 units
but received more damage than the best solution found by the
BSO.

The average fitness curves of the GA shown in Figure 3
rise smoothly and end higher than the averages of both HCs.
The average over 30 runs of the maximum fitness in the GA
population (GA Max) was also consistently higher than the
quick climbing BSO. This indicated that the GA was more
reliably and more quickly find high fitness solutions. The final
average fitness for the GA was 8745.3 which was the highest
average among the three tested algorithms. The highest fitness
obtained by the GA was 9260 which was also the highest
fitness found by any algorithm. This solution inflicted 7660
damage, destroying 42 of the 50 Zealots while not receiving
any damage. The solution produced by the GA destroyed
the least amount of Zealots out of all search algorithms, but
displayed near-optimal kiting abilities by avoiding any damage
whatsoever.

Fig. 4: For our scenario, the standard deviation showed by the
error bars tells that GA on average produced more reliable
solutions after 600 evaluations.

If we define a fitness of 8000 as our threshold for good
performance, we can see that the GA performed better than
either HC. The GA found solutions above 8000 every run. The
BSO could only find solutions above a score of 8000 on 16 out
of the 30 runs while the RFO found solutions above a score
of 8000 on 13 of the 30 runs. The differences in final average
fitness between the BSO and GA were statistically significant
with a one-tailed P < 0.0001. Additionally, Figure 4 shows
that the standard deviation of the GA’s set of final fitnesses
was 245.17, whereas the standard deviation of the BSO’s final
fitnesses was 1105.43. The differences in final average fitnesses
between the GA and RFO were statistically significant with a
one-tailed P < 0.0001. The standard deviation for RFO final
solutions was 1298.26. These statistically significant results
provide evidence that the GA more reliably produces higher
quality 3D micro.

B. Evolved 3D Micro Behavior

We are also interested in the highest fitness 3D micro
behavior generated by the search algorithms. The parameters
for evolved Vultures in Table II produced by the GA results in
a score of 9260, the highest score found. The behavior created
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by these parameters enabled friendly Vultures to spread across
the map and split enemy units into smaller subgroups, thus
decreasing the concentrated firepower of the more numerous
enemy group so our units do not become overwhelmed. Figure
5 shows a screen shot of the skirmish that illustrates our
Vulture’s 3D micro behavior. The parameters specifying PF
values show that our units were strongly attracted towards
enemy units with small repulsion, allowing friendly units to
strike closely but remain out of the enemy unit’s weapon range.
A low freeze time (St) also allows for units to kite more
frequently and avoid becoming overwhelmed when at stand
still. A maximum value of the HPef parameter demonstrates
that the evolved Vultures did not prefer targeting previously
damaged enemies and instead targeted units closest to them,
preventing potentially dangerous chases through enemy groups
and kiting in quick, successive intervals. Videos of evolved
micro compared with initially generated micro can be found
online at http://www.cse.unr.edu/∼tdewitt/.

TABLE II: Best found solutions for both units.

Unit IMs PFs Reactive control
W R ca cr ea er St Dk Rnt Dkb HPef HPfb

Vultures 14 10 60 13 10 3 2 22 14 4 7 1
Zealots 12 9 55 27 9 2 6 21 10 6 5 7

Fig. 5: Vultures with evolved micro fight smaller fragments of
the enemy group for a higher chance of survival.

C. Generalizability of Evolved 3D Micro Behaviors

We tested the generalizability of our evolved set of pa-
rameters for Vultures found in Table II by applying them to
control vultures in new scenarios. For each side, at its corner,
we randomly generated the unit positions of each side and
averaged the fitnesses over 500 runs. Figure 6 (red bars) shows
the fitness distribution of all 500 runs for this generalizability
test. The average score out of 500 runs is 6391 which is
69.02% of the highest fitness evolved in the original scenario
(9260).

We then further tested the generalizability of the evolved
Vulture micro by randomly generating initial unit positions
anywhere within the map and averaged the scores from each
run. Figure 6 (blue bars) also shows the distribution of fitnesses
over all 500 runs on this scenario. The average fitness is
6588 which is 71.14% of the highest fitness evolved in the
original scenario. Although parameters were evolved on one
specific scenario with fixed initial positions for all units, our

representation leads to behavior that is somewhat generalizable
over other initial positions.

Fig. 6: The evolved 3D micro from our scenario of fitness
9260 generalizes well to new scenarios.

We also apply our solution to new scenarios with fixed
initial positions. Table III details the design and results of the
new scenarios used to test the kiting efficiency of our evolved
Vultures. Scenario 1 starts our 4 evolved Vultures separated
into two subgroups in opposite corners to surround 50 enemy
Zealots placed in the center of the map. Vultures immediately
split the Zealots into two groups with each group moving
towards the closest Vulture subgroup. We lost 1 Vulture early
in the scenario which decreased the overall fire power of
our units for the remaining time duration, resulting in only
19 enemy units destroyed for a fitness of 6160. Scenario 2
places each of the 4 Vultures in each corner with 50 Zealots
placed in the map’s center. Zealots immediately split into four
groups and began to move towards the Vulture closest to them.
Vultures were already separated across the map and quickly
engaged in kiting behaviors, eliminating 35 of the Zealots
with no casualties. This scenario results in a fitness of 8060.
Scenario 3 inverts the previous scenario by placing the Zealots
in the corners and Vultures in the map’s center. Our evolved
Vultures split to individually fight Zealot subgroups at the
beginning of the scenario. We lose 1 Vulture halfway through
the scenario but it was alive long enough to eliminate multiple
enemy units, therefore the loss in overall fire power was not
as severe as if it had been eliminated early on. Our evolved
Vultures still managed to eliminate 31 enemy units, resulting
in a fitness of 7220. Scenario 4 doubles unit numbers and has
8 Vultures versus 100 Zealots. Vultures were able to handle
Zealots well and although we lost 1 Vulture towards the end
of the scenario, the Vultures destroyed 65 Zealots.

The evolved Vultures still engage in some risky behavior
and casualties from this, result in a decrease in overall fire
power for the entire Vulture group and lowers the group’s
tactical effectiveness by a considerable amount. However,
Vultures still perform well by spreading across the map and
kiting Zealot subgroups effectively.

D. Evolving 3D Zealot Micro Behavior

Once we had good Vulture micro, we investigated evolving
3D Zealot micro against these previously evolved Vultures.
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TABLE III: Screen shot of initial 3D unit positioning for four
new scenarios.

Scenario Description Results

4 Vultures in
opposite corners
versus
50 Zealots in
center.

Fitness of 6160.
1 friendly
destroyed,
19 enemies
destroyed.

4 Vultures in
each corner
versus 50 Zealots
in center.

Fitness of 8060.
0 friendlies de-
stroyed, 35 ene-
mies destroyed.

4 Vultures in
center versus 50
Zealots divided
into each corner.

Fitness of 7220.
1 friendly
destroyed,
31 enemies
destroyed.

8 Vultures versus
100 Zealots.

Fitness of 14080
1 friendly
destroyed,
65 enemies
destroyed.

To do so we replicated the same set of experiments with the
same map rules while swapping unit sides, therefore our new
scenario now consists of 50 friendly Zealots fighting 4 enemy
Vultures controlled by the highest performing micro in Table II
found in our original scenario. We also modify our fitness
function to better suite the objective of melee attack units in
our new scenario. The new evaluation function is:

F =

{
(Deu × 100) + (Nfu × 100), if Neu = 0

(Deu × 100) + (Nfu × 10), otherwise

where Deu represents damage, the sum of enemy unit casual-
ties. Nfu and Neu are the number of friendly units and number
of enemy units remaining at the end of the scenario. With this
fitness function there is only one way to achieve a particular
fitness. For example, a fitness of 4300 indicates that all enemy
units were destroyed with 39 friendly units remaining. This
conditional fitness function is to guide search algorithms in
evolving micro that eliminates all enemy units first in order
to avoid evolving passive micro. Again, in future work, we
plan to use multi-objective evolutionary algorithms that try to
maximize damage done and minimize damage received as the
two criteria to be pareto-optimized.

For this scenario, the theoretical maximum score for the
scenario is 5400. This is obtained by eliminating all of the
enemy units (400) and retaining all friendly units (5000).
Figure 7 shows that we are able to evolve Zealots to fight and
win against evolved Vultures in this specific scenario. The GA
found solutions that were able to eliminate all enemy units in
22 of 30 runs for an average max fitness of 3451. The highest
fitness obtained is 5000, which destroyed all 4 enemy Vulture
units while losing 4 of 50 friendly Zealot units.

Fig. 7: Average performance of GA for our scenario with 30
different random seeds. X-axis represents number of evalua-
tions and Y-axis shows the average fitness at that evaluation.

The GA was able to generate high quality solutions for
melee versus ranged units by having Zealots concentrate
firepower as a group on one enemy Vulture at a time, reducing
the overall effectiveness of the enemy group with each unit
eliminated. Instead of kiting, Zealots learn to rush one Vulture
at a time as a means to overwhelm and quickly eliminate
this Vulture. Zealots do not evolve kiting behaviors due to
their inability to outrun enemy Vultures and instead develop
more aggressive, risky behavior to destroy ranged enemy units.
Rather than spacing out to fight smaller subgroups of enemy
units, Zealots collectively form a condensed group and focus
firepower on one enemy unit at a time. The fewer number
of Vultures alive, the higher the number of Zealots that stay
alive as the skirmish continues. This provides an incentive
for Zealots to eliminate Vultures quickly to avoid prolonged
skirmishes that lead to more Zealot casualties later in the
scenario. A low repulsive PF evolves and allows Zealots to
move into a more compact group which permits rushing with
the concentrated firepower needed to eliminate ranged enemy
units. Table II lists the evolved parameter values for the best
evolved Zealot.

Further experiments in testing the generalizability of
evolved 3D Zealot micro concludes that there exists limitations
in our representation for evolving micro of this specific unit
type. Kiting behaviors do not apply well to these melee units
when fighting ranged units and our representation of micro
does not incorporate effective melee micro parameters (i.e.
flanking).

V. CONCLUSION AND FUTURE WORK

This paper extends prior work in generating two dimen-
sional micro for Real-Time Strategy games to three dimen-
sions. We use influence maps and potential fields to coordinate
group positioning and unit movement during skirmishes. Unit
group behavior is represented as a set of parameters that
define an influence map, an attractive and a repulsive potential
field, and reactive controls while limiting the search space for
our search algorithms to 251. Results show that the genetic
algorithm and two hillclimbers can find parameter values that
lead to high fitness correlated with good micro. However,
the genetic algorithm more reliably and more quickly finds
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higher fitness parameter values. Both hill climbers find good
solutions between 40% and 60% of the time, while the genetic
algorithm finds high quality solution a 100% of the time. These
results are statistically significant. For ranged versus melee unit
combat, ranged units see higher effectiveness when the group
becomes more spread and splits enemy firepower. Moreover,
ranged units kite efficiently by attacking enemy units while
avoiding being within enemy weapon’s range. Conversely,
evolved melee units can successfully eliminate ranged units
by concentrating fire on one unit at a time, quickly reducing
the overall effectiveness of the enemy group with each unit
destroyed. Our evolved Vultures exploit opposing melee units
(Zealots) in every scenario by slicing enemy units into smaller
groups to avoid becoming overwhelmed and then kiting till
skirmish-time runs out. Results also show that although our
evolved 3D ranged unit (Vulture) micro generalize well to new
scenarios, our evolved 3D Zealot micro does not generalize as
well to other scenarios.

We are interested in evolving effective 3D micro for melee
units against ranged units with appropriate representations of
melee micro behaviors. We plan to investigate simplifying the
fitness functions by turning to a multi-objective formulation of
the problem and using multi-objective evolutionary algorithms.
Techniques such as case-injection or other knowledge-based
systems may be added to our system in future research
to further investigate speed, quality, and generalizability of
our representation and evolved solutions. We are also inter-
ested in co-evolving micro for rather than evolving micro
against a fixed opponent. Essentially, we manually did one
co-evolutionary cycle when evolving Zealot micro against our
prior evolved Vultures. Finally, we plan to investigate evolving
multi-unit micro with more complex unit interactions.
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Abstract—We provide a proof of principle that novel and en-
gaging mobile casual games with new aesthetics, game mechanics
and player interactions can be designed and tested directly on
the device for which they are intended. We describe the Gamika
iOS application which includes generative art assets; a design
interface enabling the making of physics-based casual games
containing multiple levels with aspects ranging from Frogger-
like to Asteroids-like and beyond; a configurable automated
playtester which can give feedback on the playability of levels;
and an automated fine-tuning engine which searches for level
parameterisations that enable the game to pass a battery of tests,
as evaluated by the auto-playtester. Each aspect of the implemen-
tation represents a baseline with much room for improvement,
and we present some experimental results and describe how these
will guide the future directions for Gamika.

I. INTRODUCTION

Mobile gaming is an important part of game culture and
has become an everyday activity for a large fraction of our
society. Within mobile gaming, casual games, categorised
by relatively shallow learning curves, comparatively simple
game mechanics and relatively short time investment for an
engaging return, are extremely popular. Indeed, such games
have broadened the popularity of gaming, contributing towards
a recent shift in the demographic of game players, i.e., to
a more gender-balanced state with a higher average age
than a decade ago [1, pp.145]. Unlike music, photography,
writing, abstract art and many other areas where handheld
casual creator apps [2] have enabled consumers to become
creative producers, the creative act of game-making is not yet
fully supported on mobile devices. In section II, we partially
categorise handheld applications that empower game creation
and highlight limitations of existing tools.

A desire to reduce these limitations and further democratise
game design has led us to build the Gamika iOS application.
We believe it to be the first tool enabling entirely new casual
games (containing multiple levels with novel aesthetics, game
mechanics and player interactions) to be designed on a mobile
phone without requiring coding. One of our main contributions
here is a breakdown of a subset of physics-based casual games
into a set of components so that games can be built by
making choices for each part. In section III, we describe this
breakdown, and provide a description of the Gamika software,
focusing on how it enables the construction of game levels
through a copy-and-tweak methodology, involving generative
art assets, a mutation mechanism, drawing functionality, and
fine-grained tuning of the game components.

Gamika, along with some other mobile apps, enables the
production of clones of existing games, which are safe in
the sense that the gameplay has been pre-tested. However,

Gamika also empowers designers to produce entirely new
games with new game mechanics and untried gameplay. This
increases the need to extensively tune and playtest game levels,
a potentially tedious task that could reduce users’ enjoyment
of the app. Since we’d like the app to be fun to design as
well as play games in, we have endeavoured to make tuning
and testing of levels an entertaining experience. In section IV,
we introduce a puzzle/reaction game called Let it Snow, made
with Gamika, as a running example game for which playtesting
and tuning is required for each level. To aid designers in
rapidly producing levels, we have implemented an automated
playtester in Gamika, which can be watched while playing and
is configurable, as described in section V.

To further support designers in producing game levels,
we have implemented an automated tuning facility, which
can search for values of user-specified parameters which fix
various failing aspects of a level design. This functionality
is described via a case study in section VI. Here, a designer
first designs an original level and then plays it to find values
for the parameterisation of an imperfect playtester. Logs of
both human and computer gameplay, in addition to a parameter
sweep, highlight aspects of the game which aid the designer
in making new levels. The designer then specifies a test suite
that a game level must pass in order to be considered as part
of a game design. Finally, the ten produces five new levels of
Let it Snow by simply drawing one element of it in Gamika,
and letting the software fine-tune various parameters to find a
design which passes the tests.

The work here represents a proof of the principle that on-
device casual game creation, beyond producing clones and not
requiring coding, is possible. Our contribution is the whole
pipeline and the AI functionality embedded in Gamika, which
supports casual co-creation, rather than a focus on studying
and optimising one particular aspect. Each part of the Gamika
implementation is sub-optimal and can be improved via better
user interaction design, faster search techniques and more
sophisticated parameterisations, which will be informed by the
results of the case study, as described in section VII.

II. BACKGROUND

Compton and Mateas [2] introduce the term casual creator
to describe a piece of software with which users can quickly
and easily create artefacts such as musical compositions, artis-
tic imagery such as filtered digital photos, abstract artworks
and graphic designs, and texts such as stories and poems. We
are interested in casual creators that work directly on handheld
devices, rather than those which merely enable deployment
to such devices, and in particular those which allow for the
creation of digital games or game levels.
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While there are many environments in which novice game
designers can learn the craft, such as GameMaker: Studio
(yoyogames.com), Scratch (scratch.mit.edu) and Stencyl (sten-
cyl.com), these require PC-based development. Of the environ-
ments that enable on-device game/level creation, the following
is a partial characterisation:

• Apps which require learning programming skills. Some, such
as Scratch Jr (scratchjr.org) or HopScotch (gethopscotch.com),
are designed to introduce children to coding.

• Apps which enable only the skinning of existing game
templates, which allows for some level of creativity, but not the
entire game making experience. Examples here include Coda
Game (codarica.com) and Playr (playr.us).

• Apps which enable the authoring of fairly complex game
levels for an existing game. An example here is Createrria 2
(incuvo.com), where levels of a side-scrolling platform game
can be created on-device. These empower creative expression,
limited to the provided characters, rules and game worlds.

Of particular note here is Sketch Nation (sketchnation.com),
where the final two categories above are combined, i.e., users
can create complex levels within a number of templates.

We defined a space of casual games by factoring Gamika
games into a set of numerical parameters (elaborated in the
next section). The idea of defining a space of games has
similarities to systems such as VGDL [3] and PuzzleScript
(puzzlescript.net). With these systems, games are mapped into
a space of hierarchical code structures, whereas Gamika uses
a space of numerical vectors. Gamika also differs in its use of
simulated physics. That is, while those systems define explicit
movement rules for in-game objects, Gamika specifies only the
physical properties of the objects and the environment, from
which movement emerges. This reliance on emergence changes
how the space is navigated: on one hand, it reduces the ease
of finding specific designs that users may have in mind, but on
the other, it increases the chances of the parameters combining
in unanticipated and serendipitous ways.

One of our ultimate aims is for Gamika to generate
entire casual games automatically, and the work presented on
automatically fine-tuning game levels is the first step towards
this. Automatic generation of game levels has been looked at
for both VGDL [4] and PuzzleScript [5] [6], in addition to a
variety of systems generating Super Mario Bros. levels [10].
Nelson and Mateas [8] formally modularise recombinable
game mechanics, so that users can define novel game variants
and get automated feedback on properties such as playability,
via automated theorem proving. Cook et al.’s ANGELINA
system is very influential in automated game generation [11].
There has also been work on defining generative spaces of
games in terms of the games’ semantic and narrative content,
mapping sprites to a relatively fixed set of mechanics [7], [9];
here we focus on the space of mechanics rather than theme
or meaning, but in future work Gamika may branch out from
abstractly themed games to include such elements.

As described in section V, Gamika provides a configurable
automated playtester to aid designers in making game levels.
For such playtesting, it would initially seem natural to choose
a method that is capable of playing any general game (or at
least any game expressible in the system). The results of the

General Video Game AI (GVGAI) Competition [12] suggest
that game tree search approaches, particularly Monte Carlo
Tree Search (MCTS), are strong in this area. As well as the
grid-based games that have been the focus of the GVGAI
competitions thus far, MCTS has been demonstrated to work
well for physics-based games [13]. In the domain of game
generation, the Mechanic Miner system by Cook et al. [14]
uses breadth-first search as a playtester to evaluate generated
game mechanics. Reinforcement learning methods such as
deep Q learning have also been demonstrated to work well
for general videogame playing [16].

One of our design goals is for the playtester’s decision-
making process to be transparent to the user so that they can
design AI-bots to play their game level, and enjoy watching
the bot play. Game tree search is conceptually simple, but
rarely yields a satisfying explanation as to why the AI player
chose a particular action. Reinforcement learning is even less
comprehensible to the non-expert. For our purposes, easily
explained tactics and strategies are preferable to a trained
“black box”. Another design goal is the ability to generate or
tweak a game with respect to a fixed strategy. The success of
search and learning based approaches in general game playing
is precisely because they adapt to the game at hand, which puts
them at odds with this aim. Thus, as described below, we opted
for a simple rule-based player, whose rules are parameterised
and exposed through the user interface. Whilst the playtester
is not particularly sophisticated in computational intelligence
terms, it is well-suited to our aims with the Gamika project.

III. A BREAKDOWN OF PHYSICS-BASED CASUAL GAMES

The Gamika tool is an iOS application developed in the
Swift programming language using the SpriteKit game devel-
opment library’s built-in 2D physics engine, a modified version
of the well-known Box2D engine (box2D.org). Each Gamika
game is an ordered list of game levels, where a level is a triplet
of an optional text explaining the rules for players; an optional
drawing represented as a vector graphic; and a list of numerical
values for a set of 284 parameters which define how a set of
game objects look, move and interact with each other and with
the player’s touches. Starting by analysing a number of classic
arcade games like Frogger and Asteroids, and supplementing
these with analyses of novel games, we have organically grown
the set of parameters. Parameters were added until we were
satisfied that the game levels they can define are sufficiently
diverse, interesting and engaging.

There are three classes of physics object in a level: multiple
friend objects, multiple foe objects, and the single controller.
The naming of objects as friends/foes allows designers to at-
tach meaning to game objects, to more easily manage the large
number of game parameters, but the user is at liberty to ignore
this. All objects have a rigid physics body and a collision
shape. One option for the controller is for it to be a decorative
abstract art image generated by the ELVIRA evolutionary art
system [17] and the genomes and a set of thumbnails of 1,000
supplied images. The images cover different styles, giving a
wide range of choices, and each genome can be mutated or
more carefully varied, so designers have a good chance of
expressing an aesthetic of interest to them. The first set of
numerical game parameters define the mathematical functions,
blurring regime and post hoc transformations which dictate
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how the art asset is generated, as per [17]. Alternatively, the
controller can be a hand-drawn shape created within the design
interface, which can optionally be combined with an art image,
which opens up many more aesthetic possibilities. The contour
of the controller image is traced to determine its physical
shape, hence the choice of the controller is not purely aesthetic,
but can also be an important factor in gameplay. The numerical
parameters control the following aspects:

• The properties of the friends/foes. These control the object
size, shape, colour, sprite image, how the calculation of their
boundary is performed, and some physical properties such as
their restitution (bounciness), mass and damping.

• The lighting effects applied to the background and game
objects. These control effects such as spotlights, ambient light,
the calculation of a normal map for the background and
controller image, and the lit appearance of the friend/foes.

• The spawning regime for the friends/foes. These control
the spawning positions within time-varying ranges, spawn
frequencies, total number of each object allowed, and some
spatial constraints for the spawning, such as minimum/maxi-
mum distances from each other and being fixed on a grid.

• The movement of friend and foe objects both at the start of
the level and during the game. These control the force fields
acting on the objects via directions and strengths, with pa-
rameters for noise, friction and angular/linear drag on objects,
speed limits, whether objects can rotate or not, and how joints
such as pins, springs and sliders act on the objects.

• The collisions between friends, foes and the controller.
These control whether objects stick, bounce, explode and/or
change types on collisions, and timings for these, which screen
walls are active and how bouncy they and the controller are,
as well as how clusters form and when they explode.

• The user interactions which move the controller and affect
the friends/foes. Tapping, dragging and swiping actions are
caught, and the controller can be attached by springs, pins
and horizontal/vertical sliders, and can be subject to movement
and/or rotation by player touches. Player taps can also explode,
halt, reverse or change the type of the friends/foes, and taps
on the background can spawn more objects.

• The progress calculations which alter three counters: score,
health and lives (naming suggestions the designer can choose
to ignore). Each calculation adds up to five measures pre-
scribed by events on friends/foes. Events include collisions,
explosions, spawning, staying on screen, clusters being formed,
and objects entering scoring regions.

• The end-game criteria which dictate how the progress
calculations and/or game duration terminate the game. These
control what constitutes a win or loss, how the overall score
is calculated and whether high-scores are recorded.

Many games can be described in terms of an object with
physical properties and spawning rules. Thus, they can be
expressed in Gamika. As an illustration, a facsimile of the
classic arcade game Frogger can be described as follows.
Friends are spawned at the left and foes at the right of
the screen and are attracted towards the opposite side by a
force-field. The controller is drawn (possibly as a frog) at
the bottom of the screen, and can be moved in the four

Fig. 1. (a) basecamp, mutation, art asset, drawing and parameters screens
from the Gamika design interface (b) Five levels in the Pendulands game.

cardinal directions by the player swiping the screen. If the
controller collides with a friend or a foe, the game is lost. If
the controller reaches the top of the screen, the game is won.
Likewise, a simple Asteroids version has the controller (ship)
moving towards where the player taps. Friends (bullets) are
spawned continuously at the controller’s position and move in
the direction in which the controller points. At the start, foes
(asteroids) are spawned randomly on screen and move subject
to a noise field. Friends and foes are destroyed upon collision.
If the controller collides with a foe, the game is over.

The design interface includes a basecamp screen, from
which the user can load one of several preset games, including
new original games and homages to classic ones. The main
mode of use for the app is that the user loads a basecamp
game and modifies it, from a simple re-skinning to a complete
change of game mechanics. We decided not to provide the
option of creating a new game from scratch, to avoid the dis-
couraging effect of the blank canvas. However, it is important
to note that no part of the game design is concealed from the
user, so any game that can be expressed in Gamika can be
created by modifying any existing game.

The basecamp screen is the first showing in figure 1. The
design interface also includes a mutation screen, shown second
in figure 1. One advantage to having games decomposed into
numerical parameters is that they can easily be mutated. The
mutation screen has nine buttons arranged in a dial, with
each button representing a different aspect of a game level,
such as movement, collisions, lighting, etc. The chosen button
and the degree by which the dial is rotated dictates which
design aspects are varied, and by how much, with bespoke
schemes used when the mutation is initiated. Figure 1 also
shows the art asset selection screen where the chosen image
is generated from an underlying genome as per [17], and
the drawing screen, which has a number of editing facilities.
Finally, figure 1 shows one of the screens where parameters
can be altered directly via a slider interface.

Figure 1 shows five levels from a game called Pendulands.
Here, the designer (second author) had the idea of having balls
spawning from the sides and being attracted to the centre, with
any pair of balls exploding if they collide. Players have to
move the controller (a circular abstract art image) in order to
be underneath the balls for long enough for them to stick to the
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controller. Once stuck, these collected balls are then under the
player’s control and need to be protected. The designer used
the mutation screen to explore player interaction and lighting
design. Two mutations led to important aspects of the game:
(i) the player interaction mutation added a spring to the game
controller, so that when the player lets go, it springs back to
the centre, usually causing collected balls to explode against
uncollected ones, and setting progress back (ii) the lighting
mutation reduced the ambient lighting significantly, and added
a spotlight to the position of the player’s finger.

Given that dragging the controller directly causes the
player’s finger to obscure it, the best way to play the game
is to drag the controller off-centre. Dragging off-centre means
that the controller is always in the shadows, as the only light
in the game is at the player’s finger, which is kept in contact
with the screen at all times to avoid the controller springing
back. The designer built on this aspect of gameplay with a
grungy aesthetic, achieved via the use of normal maps. Once
the first level of Pendulands was made, fifteen more levels
were produced relatively quickly, sometimes with only 10
minutes of effort. Each level has similar elements, including a
circular controller, dark/grungy aesthetic and the need to catch
five balls on the controller to complete the level. However,
each level includes a different game mechanic, achieved by
tweaking the nature of the balls, where they spawn, what
happens when they collide (bounce, stick or explode), how
fast they are and how they move. Pendulands is one of around
30 games that have been developed with Gamika so far.

IV. RUNNING EXAMPLE: LET IT SNOW

For the remainder of the paper, we will use a running
example of a particular game called Let it Snow to describe
how advanced functionality in Gamika provided automated
assistance to the designer (second author) when making the
game. In Let it Snow levels, see figure 2, the controller is a
drawn item, with the art asset being used purely as a backdrop.
The player can drag the controller (which we call ‘jiggling’ it).
Blue (rain/foe) and white (snow/friend) balls are spawned in
random positions at the top of the screen and fall towards the
bottom. Balls are spawned at a rate of three white and three
blue per second until 20 of each colour are on-screen. Balls
bounce off those of the opposite colour, the controller and the
screen walls. When two balls of the same colour collide, they
stick together. If a cluster of four or more balls of the same
colour forms, the cluster explodes. An exploding ball causes a
new ball of the same colour to spawn at the top of the screen.

Players gain one point for each white ball that explodes and
lose one point for each blue ball that explodes. Players can tap
blue balls, which causes the tapped ball to explode, tapping
white balls has no effect. While tapping a blue ball will lose
the player a point, it may cause a cluster of whites to form
and explode which will score more than the loss. Jiggling the
controller can unlock occasional stalemates. The aim of the
game is to reach a score of 100 points in a time which beats
the player’s current personal best. If the level is completed
within 60 seconds, the player can move on to the next level.

Let it Snow is a difficult, fast moving, reaction game, and it
takes some practice to become proficient at it. Novice players
tend to fail to get control of the game and scores can plummet.

Fig. 2. Screenshots from Let It Snow level 1 showing the auto-playtester
playing the level, and from un-fixed levels 2 to 6.

An interesting aspect of the gameplay is that, from time to
time, an arrangement of balls arises where no more clusters
are formed; hence the game comes to a halt as no new balls
are spawned. In these quiescent moments, the game takes on
a puzzle character, as the player can take their time to decide
which blue ball to destroy in order to gain the most points
through whites forming clusters. The designer discovered that
a good strategy for players is to concentrate on getting to
these quiescent moments, then carefully keeping control of the
situation through selectively destroying blue balls. A strategy
to make the game reach quiescent moments is to react to any
potential cluster of four blues and stop it forming by destroying
one of them. If the player is successful in this, eventually the
blues and whites become distributed over the five columns of
the controller, locked out of clusters by balls of the opposite
colour.

A winning strategy is to get all the blue balls locked in
singletons, pairs and triplets at the bottom of the screen. Then
only white balls spawn and land on those exposed above the
locked blues in such a way that they continuously form groups
of four and thus allow more whites to spawn. At this stage,
as only whites are being spawned, the game has the look of
snowing (hence the game’s name), and players can sit back
and watch the score increase rapidly as it snows, although
expert players may use a more proactive tactic. An expert
player can usually reach 100 points within 60 to 90 seconds,
with novices often taking more than three minutes to complete
level 1. Let it Snow is quite an addictive and engaging casual
game, but presented a number of difficulties for the designing
of new levels. We explore how automation has helped address
some of these difficulties in section VI, after we describe how
automated playtesters can be configured to play the game.
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V. AUTOMATIC PLAYTESTING

To support designers in making casual games, we have
implemented a configurable automated playtester which can be
parameterised on the device to describe an AI-bot to play game
levels. Currently, the exposed playtester design parameters are
not as extensive as those for level design and are rather focused
on playing Let it Snow; we intend to grow the parameter set in
future work. The automated playtester “ticks” at a frequency of
once per game frame (normally 60 per second), and analyses
the state of the game. The designer chooses a number of tactics
for the bot to employ, each formed of a condition or a pattern
to check for, and an in-game action to execute if the pattern
is found. The tactics are arranged in priority order, i.e., the
(i + 1)th tactic takes effect only if the ith tactic does not.
The following are the tactics used in a Let it Snow playtester,
which through design and experimentation we have found to
be a human-competitive player for the game.

• Stop blue clusters from forming. If two blue balls are close
to one another, and they are not already in a cluster, and if the
balls colliding would form a cluster of four or more, then tap
the faster moving ball. “Close to one another” means that either
the two balls are currently within a threshold distance of each
other, or they are predicted to be before the next AI tick.

• Pop blues blocking whites. If a blue ball is touching two
or more white balls which are in distinct clusters, and those
clusters contain four or more balls in total, and the blue ball
has met this criterion continuously for 1 second (a value which
is changeable), then tap the blue ball.

• Tap if quiescent. If 2 seconds (a value which is changeable)
have passed with all balls having zero velocity, then tap a blue
ball that is touching a large number of white balls and is itself
either unclustered or in one of the smallest clusters.

• Jiggle if whites are stuck. If 5 seconds have passed without
a white ball being able to spawn, shake the board in a small
random direction.

• Do nothing. If no above conditions are met, do nothing.

The “perfect” version of the playtester exhibits super-
human accuracy and reaction speeds. We also consider an
“imperfect” playtester, with a limit imposed on the number
of actions per second and random noise added to its tap
positions. We analysed logs from three games played by the
first author, and identified his maximum number of taps per
1-second window was 3 and the average distance from the
centre of a tapped ball was 10 pixels. Thus, we restrict the
imperfect player to 3 taps per second and add random noise
with magnitude 2×10 = 20 to its taps. Additional experiments
using a small random time delay in bot actions proved to be
far too detrimental to the bot’s performance: as implemented
currently, the “stop blue clusters from forming” tactic results
in the bot waiting until the last possible moment to tap the
incoming blue, so even a small delay results in a high miss rate.
A tactic that tried to anticipate blue clusters further in advance
would likely solve this problem. We acknowledge that the
above is a basic attempt at mimicking the limitations of human
players, but it does serve to dull the automated player’s super-
human qualities. Creating playtesters that more convincingly
try to model human players such as [15], and possibly the user
in particular, is a subject for future work.

As per our desire to make interacting with all aspects of
Gamika enjoyable, we have visualised the playtester so the
designer can see exactly how the bot is playing the game, and
enjoy the experience. The first screenshot in figure 2 shows the
auto-playtester’s simulated hand interacting with the game. We
have also added a slider to the design interface which forces
the auto-playtester to play at 1, 2, 4 or 8 times normal speed.
The speed up is achieved by increasing the physics world speed
in SpriteKit which unfortunately means that the playtester is
exposed to proportionally fewer ticks, and the bot design had
to be altered to cope with this. At higher speeds, therefore,
the playtester’s ability to play the game is reduced, but we
have found that at four times normal speed, it still plays at
human-comparable levels. The speed up allows designers to
more quickly understand game levels through playtesting, and
speeds up the automated fine tuning, as described below.

VI. CASE STUDY

While the designer of both Pendulands, described above,
and of Let it Snow is the same (the second author), the design
process has been quite different. For Pendulands, the initial
level took around 2 hours to perfect, and subsequent levels
took much less time – for some, it involved making some
changes to the game mechanic and aesthetics, then playing the
game around 10 times to test whether it was difficult enough,
but not too difficult. Let it Snow is perhaps a more interesting
game, with simple rules yet high difficulty, and both a puzzle
and reaction element, and potentially addictive qualities, which
may drive players to want to improve their high score.

However, the designer found making levels for Let it Snow
much more difficult than for Pendulands. In particular, the
random nature of the spawning of the balls introduced quite a
difficult design problem. That is, the designer found that the
game is heavily, but not entirely, luck-based, and observed
situations where an extremely lucky run of balls allows a
novice player to achieve an expert-level score with hardly any
interaction at all. Hence, it was difficult to tell whether it was
possible to get better through practice, which is rather a pre-
requisite for an enjoyable game of this type. It was for this
reason that the designer configured the auto-playtester as per
section V, and used it to analyse level 1, as described in the
following subsection. Making new levels was also a challenge,
and the designer relied on automated fine-tuning of 8 game
parameters, guided by the auto-playtester, as described in the
second subsection below.

A. Automated Playtesting Analyses

Let it Snow level 1 is on the verge of being too affected by
randomness to provide viable gameplay. Indeed, the designer
struggled to understand whether the use of tactics helped get
better scores, as it is possible to play quite skillfully using
various tactics, yet on occasion still perform poorly due to
bad luck. Hence, the designer first used Gamika to produce
game logs of both a human player (author 1) and the “perfect”
auto-playtester. These logs are presented in figures 3(a) and
(b) respectively. We see that in the human log, the score (top
blue graph) dips during the early stage of the game, as the
player struggles to get control of the level. Control is initially
achieved through a quiescent moment, and these are achieved
throughout the game. This was a trend seen in multiple logs
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Fig. 3. (a) Log of human playing Let it Snow level 1 (b) Log of “perfect” auto-playtester playing Let it Snow level 1. (c)/(d) Analysis of the change in three
normalised game qualities (quiescence, time and score) as four parameters for friend/foes are varied (e) Discretised game play time for the tuning sessions (f)
Occurrences of each test failure in the tuning sessions

and confirmed the designer’s hunch that aiming for quiescence
early on is a good tactic.

The auto-playtester logs show that the bot was able to
complete the level with perfect application of the tactics de-
scribed in section V above, i.e., without requiring the quiescent
moments to reflect on the state of the game. Hence, the bot can
play successfully in a different way to the human player, and
it was encouraging that it played to a high standard (indeed,
it completed level 1 in around 60 seconds on the second
playing). The designer gained the biggest insight into the game
when they compared on-screen the “imperfect” bot against the
“perfect” one: double checking the logs confirmed that more
skilful play does indeed lead to better completion times.

The designer decided that new levels would be created
with just a change of drawn game controller and backdrop
image, as in figure 2. The designer found with level 2, the
way in which the balls bounced off the new controller (i.e.,

circles in level 2 rather than vertical lines in level 1), and
the way the balls are collected in the gaps differently made
the level feel sufficiently novel compared to the previous one.
However, after designing level 2, he found that the game was
even more difficult than level 1 because quiescent moments
never happened. After some experimentation, the designer
realised that to achieve quiescent moments, the number of balls
allowed on-screen at any one time needed to be reduced. To the
designer’s taste, this reduced the fun of the game, as it was less
dynamic. On experimenting with other ball properties, namely
the size, speed and spawning rate, the designer found that these
properties could also be used to improve the game design.

The designer suspected that the relationship between the
ball properties and aspects of the level such as completion time
was non-linear. To investigate this, they returned to level 1 and
used Gamika to perform a parameter sweep of the level. This
was achieved by systematically altering the eight parameters
(size, speed, spawning rate and maximum allowed on-screen
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for both ball types) within the range −30% to +30% around
their original value, using a 10% step-size and employing
ten independent trials for each variation of a parameter. This
resulted in a total of ((8 × 6) + 1) × 10 = 490 runs of each
altered level, which took around 6 hours of processing on the
device. For each of the parameters, Gamika calculated the
mean value for the number of quiescent moments µ (with
a quiescent moment defined as a continuous stretch of time
where no ball has a non-zero velocity), the score the player
achieved s and the time until the level finished, δ. The raw
values were normalised as follows: s within the range of
[−30, 50] points, δ within the range of [0, 90] and µ within
the range of [0, µmax], and mapped to the interval [−1, 1].

Figures 3(c) and (d) show the results of the parameter
sweep. As suspected, the non-linear nature in which the game
design affects scoring, completion time and the number of
quiescent moments is highlighted. The designer found that the
parameter sweep was very informative and will no doubt help
with future level design. In particular, the analysis highlighted
certain sweet spots which can be exploited to fix faulty
levels, e.g., if levels are too easy, increasing the foe speed
by 10% would increase the average game completion time.
One exception to non-linearity is the approximate positive
correlation of ball size with the number of quiescent moments.
This was surprising to the designer, as they had expected
the opposite, as larger balls tend to have more collisions,
hence more explosions and spawning and a more dynamic,
less quiescent level. However, on investigation, it appears that
smaller blue balls are less likely to get stuck in non-exploding
clusters, as they have more room to move around in, which
leads to clusters forming more often and less quiescence.

B. Automated Fine Tuning of New Levels

We want to enable people to make experimental games
with Gamika, without having to spend an inhibitively long time
designing and playing them. To do so, we intend for the app to
have intelligent search methods that can take a nearly-finished
level and fine-tune various parameters so that the altered level
passes a series of user-defined tests. In a baseline experiment
to investigate the potential for this, the designer created levels
2 to 6 of Let it Snow as per figure 2. The levels were altered
to end after 50 points, rather than the original 100 points,
to improve testing speed, and a timeout of 90 seconds was
applied. Using Gamika, the designer defined a test suite for
new levels as follows: a level fails if (a) at any time, the score
reaches -30 or below, or (b) the bot completes a level in less
than 20 seconds or more than 80 seconds, or (c) the game
contained fewer than two quiescent moments, or (d) the tap
rate was more than 3.5 per second, or (e) the average distance
between consecutive taps was more than 200 pixels.

The designer specified that the size, speed, spawning rate
and number-allowed parameters for both friends and foes
should be the subject of random variation. These were chosen
as the parameters that have the largest effect on gameplay,
without having such a large effect as to make the game no
longer recognisable as Let it Snow. For a given newly-designed
level, Gamika randomly varies each of the eight parameters
within −30% to +30% of its value for level 1. A trial involves
a tweaked level being played three times at four times the
normal speed by the “perfect” auto-playtester. If any of the

TABLE I. CURATION ANALYSIS FOR Let it Snow LEVELS 2 TO 6

Level Trial Mod. Time Prop. Tot.
2 478 2 1h 19m 3/5 16
3 408 1 1h 04m 2/5 12
4 400 2 1h 00m 3/5 14
5 7531 3 17h 52m 2/5 6
6 402 1 0h 50m 3/5 11

av. 1843 1.6 4h 25m 2.4/5 11.8
av2 422 1.5 1h 3m 2.75/5 13.25

three playthroughs fails any of the above tests, the whole trial
is discarded. If, however, all three playthroughs pass the tests,
then the altered level is saved to the app, and a new alteration
is sought, which continues until the user stops the process. We
have found that these tests discard levels for being too easy
or difficult, and also levels that cater somewhat to the super-
human abilities of the playtester, which can be relentlessly
accurate, where a person probably cannot. This testing set up is
quite efficient, as the “perfect” bot is the fastest at completing
a level, and the order of the tests means that many broken
levels fail very fast, often within a few seconds.

We undertook the random approach to see whether suc-
cessful tweaks are possible automatically and to set a baseline
against which more intelligent search methods will be assessed
in future. Not surprisingly, we found that the random approach
was not particularly efficient, rejecting tens of thousands of
tweaked games on average before finding one that passed
the tests for three plays. Note that we ran these experiments
overnight in parallel on a simulated desktop version of Gamika.
Figure 3(e) portrays the proportion of games which finished
in certain time bands. Note that those finishing between 80
and 90 seconds were those which timed out. We see that a
large proportion of the games ended quickly, in 20 seconds or
less (or 5 seconds at 4× physics speed). This is explained
in figure 3(f), where the breakdown of the reasons why
levels failed is given: the test to see whether a game is so
difficult that the very able auto-playtester gets to a -30 score
is very effective, and this quickly rules out bad levels. The
high proportion of games that fail due to lack of quiescence
confirmed the designer’s view that producing a level to achieve
such quiescent states was difficult. While the tap distance test
was used to discard some trials, the tap rate was not.

To assess whether the random variation and auto-testing
scheme works, the designer undertook a curation analysis
(as introduced in [18]) of the tweaked Let it Snow levels.
In particular, for each level, he played the first five output
variations in the order in which they were produced. Each
variation was played 10 times, and the designer decided
whether the level was good enough to be added to the game, or
should be discarded, recording the reasons for either decision.
The curation analysis results are presented in table I. For level
2, the second (Mod)ified level shown to the designer, after
478 (Trial)s and a (Time) of 1 hour 19 minutes, was deemed
the first one that was good enough. The (Prop)ortion of the
first five modified levels shown to the designer which were
deemed good was 3

5 , and these came from a (Tot)al crop of
16 generated over a 48 hour period. We see that the other
levels have similar results, with level 5 being an exception.
Here, only six levels passed the battery of tests in 48 hours
and the first good one came after 17 hours 52 minutes. This
level is clearly an outlier and suggests the controller drawn
in this case admits a much smaller space of playable levels.
Ignoring this outlier, the average waiting time for a good level
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was around 1 hour, which, while clearly still too long to wait,
is encouraging for a random search. The line marked av2 in
table I provides averages for the four levels excluding level 5.

Of the levels that the designer saw but rejected, the main
failure was that the level was too easy, encouraging too passive
a playing style because the snowing moments happened too
easily and the player was not actively able to improve their
completion time. Some of the games were rated as very good
by the designer. Sometimes this was because they had the feel
of level 1, but for others, it was because they were quite novel,
e.g., the second modified version of level 6 was relatively slow
moving and had a greater emphasis on the puzzle element of
the game, with very interesting quiescent moments.

VII. CONCLUSIONS AND FUTURE WORK

With the work presented here, we believe that we have
demonstrated in principle that novel, interesting and engaging
casual games which are truly more than levels of an existing
game world, or skinnings of templates can be produced on a
hand-held device without the requirement for coding. With the
minor case study of the Pendulands game and the major case
study of Let it Snow, we have shown that the Gamika app
has much potential to help democratise game design so that
broader sections of society can make digital games. Let it Snow
is the kind of difficult to design game that requires automated
assistance in producing levels. We showed that an automated
playtester could be designed in Gamika that could play Let
it Snow levels to a (super) human standard and that getting
the AI-bot to play the levels on the device was (anecdotally)
entertaining, and could elucidate valuable insights into game
levels. We further showed that a random search for tweaks of
game parameters, with levels tested by the playtester, could
be used in semi-automated game design, where Gamika fine-
tunes game mechanics to find suitable modifications of levels.
The results from this approach for four of five new levels of
Let it Snow were encouraging.

While we have shown in principle that the approach is
viable, there is much work on all aspects which will need to
be carried out before Gamika can be released commercially,
which is our intention. In particular, we are currently under-
taking the following improvements to Gamika:

• Further expanding the space of games available through
the app, by implementing more intelligent behaviours in the
friends and foes, possibly via the on-device specification of
fitness functions and behaviour trees.

• Improving the user interface to the game design parameters,
employing more drag-and-drop functionality and expanding
what can be defined through the drawing interface.

• Making the automated playtester much more generic so that
it can be configured to play a wide range of games. We also
plan to experiment with an approach to training the playtester
through play coupled with structured answering of questions,
which will hopefully be entertaining, in a pedagogic way.

• Implementing more intelligent fine-tuning search techniques.
The random approach has provided a baseline, but it takes
far too long to find viable solutions. Hence, we have started
work on a hill-climbing method and we will also investigate
evolutionary and constraint solving approaches.

We agree with Liapis et al. [19] that videogame design
is a killer application for Computational Creativity research
[18], and we are very interested in Gamika becoming a cre-
ative game designer, much like the ANGELINA system [11].
Moreover, we believe that Computational Creativity is ready
to have an impact on gaming culture, and we hope to help
bring this about through the Gamika app, which will co-create
games with designers from all backgrounds, complimenting in
many people the joy of game playing with the joy of game
design.
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Abstract—Real-time strategy (RTS) games, such as Blizzard’s
StarCraft, are fast paced war simulation games in which players
have to manage economies, control many dozens of units, and deal
with uncertainty about opposing unit locations in real-time. Even
in perfect information settings, constructing strong AI systems
has been difficult due to enormous state and action spaces and
the lack of good state evaluation functions and high-level action
abstractions. To this day, good human players are still handily
defeating the best RTS game AI systems, but this may change
in the near future given the recent success of deep convolutional
neural networks (CNNs) in computer Go, which demonstrated
how networks can be used for evaluating complex game states
accurately and to focus look-ahead search.

In this paper we present a CNN for RTS game state evaluation
that goes beyond commonly used material based evaluations
by also taking spatial relations between units into account. We
evaluate the CNN’s performance by comparing it with various
other evaluation functions by means of tournaments played by
several state-of-the-art search algorithms. We find that, despite
its much slower evaluation speed, on average the CNN based
search performs significantly better compared to simpler but
faster evaluations. These promising initial results together with
recent advances in hierarchical search suggest that dominating
human players in RTS games may not be far off.

I. INTRODUCTION

The recent success of AlphaGo [1], culminating in the
4-1 win against one of the strongest human Go players,
illustrated the effectiveness of combining Monte Carlo Tree
Search (MCTS) and deep learning techniques. For AlphaGo,
convolutional neural networks (CNNs) [2], [3] were trained to
mitigate the prohibitively large search space of the game of Go
in two ways: First, a policy network was trained, using both
supervised and reinforcement learning techniques, to return
a probability distribution over all possible moves, thereby
focusing the search on the most promising branches. Second,
MCTS state evaluation accuracy was improved by using both
value network evaluations and playout results.

In two-player, zero-sum games, such as Chess and Go,
optimal moves can be computed by using the minimax rule
that minimizes worst case loss. In theory, these games can be
solved by recursively applying this rule until reaching terminal
states. However, in practice completely searching the game
tree is infeasible, the procedure must be cut short, and an
approximate evaluation function must be used to estimate the
value of the game state. Because states closer to the end
of the game are typically evaluated more accurately, deeper
search produces better moves. But as game playing agents

often have to make their move decision under demanding
time constraints, great performance gains can be achieved by
improving the evaluation function’s accuracy.

The size of the state space of the game of Go, although
much larger than that of Chess, is tiny in comparison to real-
time strategy (RTS) games such as Blizzard’s StarCraft. In
the game of Go, at every turn, a single stone can be placed
at any valid location on the 19×19 board and the average
game length is around 150 moves. In RTS games, each player
can simultaneously command many units to perform a large
number of possible actions. Also, a single game can last for
tens of thousands of simulation frames, with possibly multiple
moves being issued in each one. Moreover, RTS game maps
are generally much larger than Go boards and feature terrain
that often affects movement, combat, and resource gathering.
Therefore, for RTS games, good state evaluations and search
control, such as using policy networks, plays an even greater
role.

CNNs are adept at learning complex relationships within
structured data due to their ability to learn hierarchies of
abstract, localized representations in an end-to-end manner [3].
In this paper we investigate the effectiveness of training a
CNN to learn the value of game states for a simple RTS game
and show significant improvement in accuracy over simpler
state-of-the-art evaluations. We also show that incorporating
the resulting learned evaluation function into state-of-the-
art RTS search algorithms increases agent playing strength
considerably.

II. RELATED WORK

Search based planning approaches have had a long tradition
in the construction of strong AI agents for abstract games like
Chess and Go, and in recent years they have progressively
been applied to modern video games, especially the RTS game
StarCraft. This is a difficult endeavor due to the enormous state
and action spaces, and finding optimal moves under tight real-
time constraints is infeasible for all but the smallest scenarios.
Consequently, the research focus in this area has been on
reducing the search space via different abstraction mechanisms
and on producing good state evaluation functions to guide this
search effort.

In this section we briefly discuss some of these attempts,
starting with various methods used for state evaluation in
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RTS games. We then present recent research on deep neural
networks and their use in game playing agents.

A. State Evaluation in RTS Games

Playing RTS games well requires strategic as well as
tactical skills, ranging from building effective economies, over
deciding what to build next based on scouting results, to
maneuvering units in combat encounters. In RTS game combat
each player controls an army consisting of different types of
units and tries to defeat the opponent’s army while minimizing
its own losses. Because battles have a big impact on the result
of RTS games, predicting their outcome accurately is very
important, especially for look-ahead search algorithms.

A common metric for estimating combat outcomes is
LTD2 [4], which is based on the lifetime damage each unit
can inflict. LTD2 was used, in conjunction with short deter-
ministic playouts, for node evaluation in alpha-beta search to
select combat orders for individual units [5]. A similar metric
was later used as state evaluation, this time combined with
randomized playouts [6], [7].

Likewise, Hierarchical Adversarial Search [8] requires es-
timates of combat outcomes for state evaluation and uses
a simulator for this purpose. However, because simulations
become more expensive as the number of units grows, faster
prediction methods are needed. For instance, a probabilistic
graphical model trained on simulated battles can accurately
predict the winner [9]. This model, however, has several
limitations such as not modeling damaged units and not
distinguishing between melee and ranged combat. Another
model, based on Lanchester’s attrition laws [10], does not have
such shortcomings. It takes into account the relative strength
of different unit types, their health and the fact that ranged
weapons enable units to engage several targets without having
to move, which causes a non-linear relationship between army
size differences and winning potential. After learning unit
strength values offline using maximum likelihood estimation
from past recorded battles, this improved model has been
successfully used for state evaluation in a state-of-the-art RTS
search algorithm [11].

All mentioned approaches focus on a single strategic com-
ponent of RTS games, i.e. combat, and lack spatial reasoning
abilities, ignoring information such as unit positions and
terrain. Global state evaluation in complex RTS games such
as StarCraft has been less successful [12], likely due to the
limited expressiveness of the linear model used.

B. Neural Networks

In recent years deep convolutional neural networks (CNNs)
have sparked a revolution in AI. The spectacular results
achieved in image classification [3] have led to deep CNNs
being effectively applied to a wide range of domains. For
vision tasks, CNNs have been applied to object localiza-
tion [13], segmentation [14], facial recognition [15], super-
resolution [16] and camera-localization [17] to name just
a few examples, all the while continuing to make further
progress in image classification [18]. Deep CNNs have also

been successfully applied to tasks as diverse as natural lan-
guage categorization [19], [20], translation [21] and algorithm
learning [22].

Deep CNNs owe their success to their ability to learn mul-
tiple levels of abstraction, each one building upon abstractions
learned in previous layers. More specifically, deep CNNs learn
a hierarchy of spatially invariant, localized representations,
each layer aggregating and building upon representations in
previous layers toward the combined goal of minimizing
loss [13].

There is a long history of using simple linear regression and
shallow neural networks to construct strong AI systems for
classic board games such as Backgammon and Othello [23].
However, scaling up state evaluations to more complex games
such as Go only became possible when it was discovered how
to effectively train weights in deep neural networks, which can
be considerably more expressive than shallow networks with
the same number of weights [24].

Since then CNNs have been successfully used to play Atari
video games with a policy network trained by supervised
learning, using training data generated by a slow but strong
UCT player [25]. Similar networks have been trained with
reinforcement learning [26], [27]. Most remarkable, however,
is the recent 4-1 win of AlphaGo [1], a deep CNN based
Go playing program, over one of today’s best Go players Lee
Sedol. AlphaGo combines MCTS with deep CNNs for state
evaluation and move selection that were trained by supervised
and reinforcement learning.

This historic accomplishment sparks hope that CNNs can
also be used for even more complex tasks, such as playing
real-time games with imperfect information — a domain still
dominated by human players.

III. A NEURAL NETWORK FOR RTS GAME STATE
EVALUATION

In this section we describe the dataset, the neural network
structure and the procedure used for training a state evaluation
network for µRTS1, a simple RTS game designed for testing
AI techniques. µRTS provides the essential features of an RTS
game: it supports four unit and two building types, all of them
occupying one tile, and there is only one resource type. The
game state is fully observable. µRTS supports configurable
map sizes, commonly ranging from 8×8 to 16×16 in published
papers. The game user interface and details about the unit types
are shown in Figure 1. µRTS comes with a few basic scripted
players, as well as search based players implementing several
state-of-the-art RTS search techniques [6], [28], [7], making
it an useful tool for benchmarking new AI algorithms.

The purpose of the neural network we describe here is
to approximate the value function v∗(s), which represents
the win-draw-loss outcome of the game starting in state s
assuming perfect play on both sides.

1https://github.com/santiontanon/microrts
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Barracks: train attack units
Heavy: powerful slow melee unit
Light: low power fast melee unit

Ranged: long ranged attack unit

Bases: accumulate resources and
train workers
Workers: can harvest minerals and
construct buildings
Minerals: harvested by workers

Fig. 1. Screenshot of µRTS, with explanations of the different in-game
symbols.

In practice we have to approximate this value function
with vθ, for instance by using a neural network with weights
θ. These weights are trained by regression on state-outcome
pairs (s, w), using stochastic gradient descent to minimize the
mean squared error between the predicted value vθ(s) and the
corresponding outcome w. The output of our network will be
the players’ probabilities of winning the game when starting
from the input position.

A. Data

The dataset used for training the neural network was created
by playing round-robin tournaments between 15 different
µRTS bots, 11 of which are included in the default µRTS
implementation. The other 4 are versions of the Puppet Search
algorithm [11]. Each tournament consists of (15×14)/2 = 105
matches. One 8×8 map was used, with 24 different initial
starting conditions. All scenarios start with one base and one
worker for each player, but with different, symmetric, initial
positions. These tournaments were played under four different
time limits: maximums of 100ms, 200ms, 100 playouts and
200 playouts per search episode. In total 105×24×4 = 10 080
different games were played from which draws were discarded
(≈ 8%).

Predicting game outcomes from data consisting of complete
games leads to overfitting because while successive states
are strongly correlated, the regression target is shared for
the entire game. To mitigate the problem, the authors of
AlphaGo [1] add only a single training example (s, w) to
the dataset from each game. Because we have significantly
less data (10 thousand vs. 30 million episodes), we chose to
sample 3 random positions from each game. As a result, for
game i we add {(si1, wi), (si2, wi), (si3, wi)} to the dataset,
and slightly over 25 000 positions are generated.

The dataset was split into a test set (5 000 positions) and
a training set (the remaining 20 000 positions). Finally, the
training set was augmented by including all reflections and
rotations of each position for a total of 160 000 positions.

B. Features

Each position s is preprocessed into a set of 8×8 feature
planes. These features correspond to the raw board represen-
tation and contain information about each tile of the µRTS

TABLE I
INPUT FEATURE PLANES FOR THE NEURAL NETWORK.

Feature # of
planes Description

Unit type 6 Base, Barracks, worker, light, ranged, heavy
Unit health 5 1, 2, 3, 4, or ≥ 5
Unit owner 2 Masks to indicate all units belonging to one player
Frames to
completion 5 0−25, 26−50, 51−80, 81−120, or ≥ 121

Resources 7 1, 2, 3, 4, 5, 6−9, or ≥ 10

map: unit ownership and type, current health points, game
frames until actions are completed and resources.

All integers, such as unit health points, are split into
K different 8×8 planes of binary values using the one-hot
encoding. For example, five separate binary feature planes are
used to represent whether an unit has 1, 2, 3, 4 or ≥ 5 health
points. The full set of feature planes is listed in Table I.

C. Network Architecture & Training Details

The input to the neural network is an 8×8×25 image stack
consisting of 25 feature planes. There are two convolutional
layers that pad the input with zeros to obtain a 10×10 image.
Each then is convolved with 64 and respectively 32 filters of
size 3×3 with stride 1. Both are followed by leaky rectified
linear units (LReLUs) [29], [30]. A third hidden layer con-
volves 1 filter of size 1×1 with stride 1, again followed by
an LReLU. Then follow two fully connected (dense) linear
layers, with 128 and 64 LReLU units, respectively. A dropout
ratio of 0.5 is applied to both fully connected layers. The
output layer is a fully connected layer with two units, and a
softmax function is applied to obtain the winning probabilities
for player 0 and player 1 (P (p0) and P (p1)). All LReLUs have
negative slope of α = −1/5.5. The resulting architecture is
shown in Figure 2.

Our architecture was motivated by current trends toward
the use of small filter sizes (≤ 3×3), few (or no) pooling
layers, and same-padded convolution (multiple layers of the
same width and height, each layer padded with zeros following
convolution) [31], [1]. We were also guided by the principle of
gradually decreasing the dimension of internal representations
as one moves from input toward task; one example being the
reduction from 64 to 32 filters, another being the use of 1×1
convolutions for dimensionality reduction [18]. This principle
can also be seen in the fully connected layers. LReLUs were
used following suggestions from [29] and [30].

Before training, we used Xavier random weight initializa-
tion [32] which equalizes signal variance. During training, the
stepsize alpha was initialized to 0.00001 and was multiplied
by 0.2 every 100K training steps. We used adaptive moment
estimation (ADAM) with default values of β1 = 0.9, β2 =
0.999, ε = 10−8 as suggested in [33]. The network was trained
for 400K mini-batches of 64 positions, a process which took
approximately 20 minutes on a single GPU to converge.
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Fig. 2. Neural network architecture.

For training, we used the Python (2.7.6) interface to Caffe
[34], utilizing CUDA2 version 7.5 and cuDNN3 version 4. The
machine used for training the neural network had an Intel(R)
Pentium(R) CPU G2120 3.10GHz processor, 8 GB RAM and
one GeForce GTX 760 GPU (1152 cores and 4 GB memory)
running Linux Mint 17.3.

IV. EXPERIMENTS AND RESULTS

All experiments that are reported below were performed on
Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz with 8 GB RAM
machines running Ubuntu 14.04. The test machines do not
have CUDA capability 3 and the neural network computations
were run solely on the CPU. µRTS software is implemented
in Java and compiled and run with JDK 8u74.

A. Winner Prediction Accuracy

In the first set of experiments we compare the speed and
accuracy of our neural network for evaluating game states
with a Lanchester model [10] and a simple evaluation function
that takes into account the cost and health points of units and
the resources each player has. This is the default evaluation
function that the µRTS search algorithms use. In equation 1
player indices are either 0 or 1: player ∈ {0, 1}.

eval(player) = Eplayer − E1−player (1)

In equation 2, Rp is the amount of resources a player currently
has, Wp is a player’s set of workers, Ru is the amount of
resources each worker unit is carrying, Cu is the cost of
unit u, HPu the current health points of unit u, and MaxHPu
its maximum health points. Wres,Wwork,Wunit are constant
weights.

Ep =WresRp +Wwork

∑
u∈Wp

Ru +Wunit

∑
u∈p

CuHPu
MaxHPu

(2)

Two versions of this simple evaluation functions were used:
one with µRTS’s default weights, and one optimized via

2https://developer.nvidia.com/cuda-toolkit
3https://developer.nvidia.com/cudnn

logistic regression on the same training set used for the neural
network. The Lanchester model keeps the two resource terms
of the simple evaluation function but revises the army’s impact.
While the contribution of the buildings is similar to equation 2,
a new term is added for combat units:

E′p =WresRp + Wwork

∑
u∈Wp

Ru + Wbase
HPbase

MaxHPbase
+

Wbarracks
HPbarracks

MaxHPbarracks
+ N (o−1)

p

∑
u∈p

αu
HPu

MaxHPu
(3)

In equation 3, αu is a strength value unique to each unit
type, Np is the total number of units of player p and o is the
Lanchester attrition order. For µRTS, our experiments suggest
that an attrition order of o = 1.7 works best on average if
we had to choose a fixed order for all possible encounters.
The four W and four α constants (one for each unit type) are
optimized with logistic regression.

Figure 3 shows the position evaluation accuracy of the
neural network, compared to the default µRTS evaluation
function, the optimized version and the Lanchester model, on
the previously described test set of 5 000 positions sampled
from bot games. A scripted playout evaluation was also
tested, in which the position is played until the end using
the WorkerRush script, described in section IV-B, to generate
moves for both players. Values of 1, 0 or -1 are returned,
corresponding to a player 0 win, draw or loss, respectively.
The WorkerRush script is the strongest of the four scripts
described in the next section, and produces the most accurate
winner prediction function, though slightly worse than the
simple evaluation function. A random playout was also tried,
but it performed even worse.

The neural network is consistently more accurate during the
first half of the game. At the beginning of the game before
any unit has been built, the simple evaluation function and the
Lanchester model mostly predict draws, because they do not
take positional information into account. During the second
half of the game army balance is more relevant, and both the
neural network and the Lanchester model perform better than
the simple evaluation functions.



The average time needed for a single simple evaluation is
0.012µs, the Lanchester model takes 0.087µs, while a full
network evaluation on the CPU takes 147µs. This time in-
cludes processing the games state into feature planes, sending
the data to a Python thread (on the same CPU core as the
search algorithm), running a forward pass on the network and
returning the outcome. The network evaluation takes close to
two thirds of the time, around 102µs. We tested the speed of
the network evaluation on a GPU as well. On a mid-range
NVIDIA GTX 760, the time is slightly shorter than the CPU-
only version (118µs).

However, processing only one position at a time does not
take advantage of the pipelined GPU architecture. To measure
potential gains of evaluating positions in parallel, we ran
batches of 256 positions whose evaluation took 10 707µs, of
which 9 985µs was spent on the CPU (feature planes) and
722µs on the GPU, for an average of 2.8µs of GPU time per
evaluation. A search algorithm — like AlphaGo’s — that can
perform leaf evaluations asynchronously would benefit greatly
from doing state evaluations on the GPU.

B. State Evaluation in Search Algorithms

A second set of experiments compares the performance of
four game tree search algorithms — ε-Greedy MCTS, Naı̈ve
MCTS, AHTN-F and AHTN-P, described below — when
using the simple evaluation function, the optimized evaluation
function, the Lanchester model or the neural network for state
evaluation.

The sixteen resulting algorithms played against the follow-
ing eleven opponents provided by the µRTS implementation,
all using default parameters and the simple µRTS evaluation
function:
WorkerRush: a hardcoded rush strategy that constantly pro-

duces workers and sends them to attack.
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Fig. 3. Comparison of evaluation accuracy between the neural network,
µRTS’s built-in evaluation function, its optimized version and the Lanchester
model. The accuracy at predicting the winner of the game is plotted against
the stage of the game, expressed as a percentage of the game length. Results
are aggregated in 5% buckets. Shaded area represents one standard error.

LightRush: builds a barracks, and then constantly produces
light military units to attack the nearest target (it uses one
worker to mine resources).

RangedRush: is identical to LightRush, except for produc-
ing ranged units.

HeavyRush: is identical to LightRush, except for producing
slower but stronger heavy units.

MonteCarlo(MC): a standard Monte Carlo search algorithm:
for each legal player action, it runs as many simulations
as possible to estimate their expected reward.

ε-Greedy MC: Monte Carlo search, but using an ε-greedy
sampling strategy.

Naı̈ve MCTS: Monte Carlo Tree Search algorithm with a
sampling strategy specifically designed for games with
combinatorial branching factors, such as RTS games. This
strategy, called Naı̈ve Sampling, exploits the particular
tree structure of games that can be modeled as a Combi-
natorial Multi-Armed Bandit [6].

ε-Greedy MCTS: like Naı̈veMCTS, but using an ε-greedy
sampling strategy.

MinMax Strategy: for a set of strategies (WorkerRush,
LightRush, RangedRush and Random), playouts are run
for all possible pairings. It approximates the Nash equi-
librium strategy using the minimax rule, whereby one
player (Max) maximizes its payoff value while the other
player tries to minimize Max’s payoff [35].

AHTN-P: an Adversarial Hierarchical Task Network, that
combines minimax game tree search with HTN planning
[7]. In this AHTN definition the main task of the game
can be achieved only by three non-primitive tasks (ab-
stract actions that decompose into actions that agents can
directly execute in the game). The tasks are three rushes
with three different unit types.

AHTN-F: a more elaborate AHTN with a larger number
of non-primitive tasks for harvesting resources, training
units of different types, or attacking the enemy.

All search based algorithms (bottom seven in the list above)
evaluate states by running a short playout of 100 frames. The
playouts are performed using a random policy in which non-
move actions (harvest, attack, build) have a higher probability
than moves. The only exception is MinMax, whose playouts
are 400 frames long, because it only does 16 playouts —
one for each pair of strategies — and uses its fixed set of
strategies instead of the random policy. The resulting states are
evaluated with the simple evaluation function in equation 1,
the optimized function, the Lanchester model or the neural
network.

Every player has a computational budget of either a given
time duration or a maximum number of state evaluations per
game frame. Moreover, players can split the search process
over multiple frames; for example, if the game state does not
change during 10 game frames before a player needs to issue
an action, then players have ten times the budget to issue
actions. We call this consolidated budget a search episode.

In the tournament each of the 176 matchups consists of 24
games played on an 8×8 map, with different but symmetric
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Fig. 4. Average win rate against all opponents when using the simple
evaluation function described in equations 1 and 2, the same function with
optimized weights, the Lanchester model or the neural network described in
section III. Each algorithm has 200 milliseconds of search time per frame.
Error bars show one standard error.

starting positions. To compute the score, every win is worth 1
point, and if the game reaches 3 000 frames, it is considered
a draw, and awarded 0.5 points.

Figure 4 summarizes the average win rate against all
opponents when using the different evaluation methods. On
average, the neural network shows over 10% higher win rates
than the other methods. Moreover, the performance of the
neural network is consistent across all four algorithms, while
the results of the optimized evaluation and the Lanchester
model fluctuate depending on the underlying search algorithm
type.

Table II shows the average number of nodes expanded per
search episode. The average length of a search episode in
the tournament games was around seven frames. Slow search
algorithms such as AHTNs are less affected by a slow state
evaluation, as most of their computational effort is expended
in the tree phase. As a result, the AHTNs perform better
when using the most accurate functions, regardless of their
speed. The balance on the faster MCTS algorithms is more
delicate, with both the fast optimized evaluation function
and the neural network outperforming the relatively accurate
and fast Lanchester model. The ∼1% accuracy increase in
the first quarter of the game between the optimized simple

TABLE II
NODES EXPANDED PER SEARCH EPISODE, WHEN RUNNING WITH A

MAXIMUM TIME LIMIT OF 200MS PER FRAME.

Average # nodes expanded per search episode

AI Algorithm Simple Evaluation Lanchester Neural Network

ε-Greedy MCTS 16834 14682 1069
Naı̈ve MCTS 16654 13876 1122

AHTN-F 937 969 507
AHTN-P 134 125 123
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Fig. 5. Average win rate against all opponents when using the simple
evaluation function described in equations 1 and 2, the same function with
optimized weights, the Lanchester model or the neural network described in
section III. Each algorithm is allowed to expand 200 nodes per frame. Error
bars show one standard error.

evaluation and Lanchester is not enough to offset the ∼15%
less nodes per second. However, the ∼7% accuracy gain of
the neural network more than makes up for its ∼93% speed
loss. Improving the accuracy of the evaluation function at the
beginning of the game is important, as early game decisions
likely have a large impact on the game outcome.

Figure 5 shows a summary of a similar tournament using
a limit of 200 state evaluations per frame, rather than 200
milliseconds. The fastest simple evaluation function shows
significantly worse performance on the MCTS algorithms,
because in this experiment only the evaluation accuracy is
relevant, not the speed.

To scale the neural network to larger map sizes and more
complex games, the size of the network will likely have to
increase, both in the size of each layer and in the number of
layers. This expansion will lead to slower evaluation times.
However, we have shown that a small increase in evaluation
accuracy is able to compensate for several orders of magni-
tude in speed reduction. Furthermore, running the network in
batches on a GPU rather than the CPU should counteract most
of the lost speed. MCTS algorithms can readily be modified to
perform state evaluations in batches, as done for AlphaGo [1],
which would result in several orders of magnitude speed
improvements.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have used deep CNNs to evaluate RTS
game states. We have shown that the evaluation accuracy is
higher than current alternatives in µRTS. This new method
performed better evaluating early game positions which led
to stronger gameplay when used within state-of-the-art RTS
search algorithms.

While CNNs might not perform significantly better in all
cases (for instance compared to Lanchester when used in
ATHN-P and AHTN-F, see Figures 4 and 5), the game playing
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agents based on them were stronger on average. Evaluating
our CNN is several orders of magnitude slower than the other
evaluation functions, but the accuracy gain far outweighs the
speed disadvantage.

With these promising results, coupled with the fact that
modern CNNs have shown excellent results on large problem
sets [3], we are confident that the presented methods will scale
up to more complex RTS games. StarCraft maps are similar
in size to the images these networks are usually applied to.
Using an MCTS implementation based on game abstractions
similar to µRTS, that allows for asynchronous state evaluations
on multiple GPUs can aid in tackling these larger problems
while meeting real time constraints. Moreover, policy networks
may also be trained to return probability distributions over the
possible moves which can be used as prior probabilities to
focus MCTS on the most promising branches.

Unlike Go, however, even RTS games with professional
leagues such as StarCraft do not make replays of competition
games publicly available. Without a large number of high
quality records, reinforcement learning techniques will likely
need to be considered in future work.
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Abstract—UCT is a standard method of Monte Carlo tree
search (MCTS) algorithms, which have been applied to various
domains and have achieved remarkable success. This study
proposes a family of Leaf-LinUCT, which are improved LinUCT
algorithms incorporating LinUCB into MCTS. LinUCB outper-
forms UCB1 in contextual multi-armed bandit problems, owing
to a kind of online learning with ridge regression. However, due to
the minimax structure of game trees, ridge regression in LinUCB
does not always work well in the context of tree search. In this
paper, we remedy the problem and extend our previous work
on LinUCT in two ways: (1) by restricting teacher data for
regression to the frontier nodes in a current search tree, and
(2) by adjusting the feature vector of each internal node to the
weighted mean of the feature vector of the descendant nodes. We
also present a new synthetic model, incremental-random-feature
tree, by extending the standard incremental random tree model.
In our model, each node has a feature vector that represents the
characteristics of the corresponding position. The elements of a
feature vector in a node are randomly changed from those in
its parent node by each move, as the heuristic score of a node
is randomly changed by each move in the standard incremental
random tree model. The experimental results show that our Leaf-
LinUCT outperformed UCT and existing LinUCT algorithms, in
the incremental-random-feature treeand a synthetic game studied
in [1].

I. INTRODUCTION

Monte Carlo Tree Search (MCTS) [2] is a search algorithm
that tries to identify the best move by performing a number of
simulations. It has achieved remarkable success in the game
of Go [3], general game players [1], real-time games [4], and
several others. For games, MCTS constructs a search tree and
performs a playout involving Monte Carlo simulation at each
time step to improve the empirical estimation of the reward at
each node in its search tree. In a limited computational budget,
MCTS needs to estimate the rewards as precisely as possible.

UCT [5] is the most successful and widely used MCTS
variant. For each playout of UCT, a leaf node is selected in
a best-first manner by descending the most promising node
with respect to the upper confidence bound of the reward,
UCB1 [6]. When UCT reaches the leaf node, it performs
Monte Carlo simulation and observes the reward of a sim-
ulation that consists of random moves. One of the advantages
of UCT is that it works effectively without domain knowledge

A part of this work was supported by JSPS KAKENHI Grant Number
25330432 and 16H02927.

in contrast to alpha-beta search [7], which requires a decent
evaluation function.

Although UCT does not explicitly require heuristics, many
studies have incorporated domain knowledge such as pro-
gressive widening, prior knowledge, and PUCB [8]–[10] into
UCT to improve the convergence speed or playing strength.
Moreover, in recent years, many studies have tried to ex-
ploit the domain knowledge by using convolutional neural
networks [11], [12] to incorporate it into MCTS, especially
in the game of Go.

In this paper, we propose a new MCTS algorithms, Leaf-
LinUCT. Instead of UCB1, it employs the LinUCB algo-
rithm [13], [14] which has been studied in contextual ban-
dit problems. While UCB1 maintains past rewards of each
arm separately, LinUCB generalizes past episodes by ridge
regression of rewards on feature vectors. Thus, LinUCB is
an alternative means to incorporate domain knowledge in an
online manner. However, as shown in our previous work [15],
ridge regression in LinUCB does not always work well in
the context of tree search, due to the minimax structure of
game trees. In this paper, we describe how we remedied
the problem, and extend our previous work on LinUCT in
two ways: (1) by limiting teacher data for regression in the
frontier nodes in a current search tree, and (2) by adjusting
the feature vector of each internal node to the weighted mean
of the feature vector of the descendant nodes. We also present
a new synthetic model, incremental-random-feature tree, by
extending the standard incremental random tree model. In
our model, each node has a feature vector that represents the
characteristics of the corresponding position. The elements of
a feature vector in a node are randomly changed from those
in its parent node by each move, just as the heuristic score
of a node is randomly changed by each move in the standard
incremental random tree model.

The experimental results in incremental-random-feature
treeindicated that our Leaf-LinUCT outperformed UCT and
existing LinUCT algorithms, especially when the branching
factor was relatively large.

In addition, we conducted experiments in a synthetic game
that Finnsson and Björnsson proposed in the literature [1].
Throughout the game we observed the properties of our
proposed Leaf-LinUCT algorithms.
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The rest of this paper is organized as follows. The next
section briefly reviews methods of MCTS and LinUCB. The
third section introduces our new algorithm Leaf-LinUCT and
the fourth section presents the synthetic model of a game tree.
The fifth and sixth sections present our experimental results,
and the last section concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we briefly review the background of our
study, particularly the Monte Carlo Tree Search method and
work related to it, as well as contextual bandit problems by
comparison with multi-armed bandit problems.

A. Multi-armed Bandit Problem

The Multi-armed Bandit Problem is a well-studied rein-
forcement learning problem. In the problem, an agent is
supposed to choose an action from a set of actions. The action
in this problem is typically called an arm. When the agent pulls
an arm number i, he receives a reward that depends on a fixed
but unknown distribution with an expected value µi. In the
conventional setting of the multi-armed bandit problem, the
aim of the agent is to accumulate as much reward as possible
in T trials. The aim can be considered as to minimize the
cumulative regret, defined as

RT =

T∑
t=1

(µ∗ − µIt),

where µ∗ is the mean reward of the optimal (i.e., maximum)
arm, and µIt is the mean reward that the agent pulled at the t-
th trial. A strategy of the bandit problem, or bandit algorithm,
is optimal if the cumulative regret of the algorithm can be
restricted to O(log T ) [16]. Some use the average regret per
turn as the quality of bandit algorithms, defined as RT /T =
µ∗ −

∑T
t=1 µIt/T .

UCB1 [6] is one of the most well-known bandit algorithms.
Through the trials, the UCB1 algorithm calculates the upper
confidence bound of rewards of each arm, which is defined
as:

Xi,Ti(t) +

√
2 ln t

Ti(t)
,

where Ti(t) is the number of times the algorithm pulled arm
i up to time t, and Xi,Ti(t) is the empirical mean reward of
arm i over Ti(t) trials.

B. Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) [2] is a tree search
algorithm that employs Monte Carlo simulation to evaluate
states in a tree. MCTS is an iterative search algorithm, and its
iteration consists of four steps: (1) selection, (2) expansion,
(3) simulation, and (4) back-propagation. Given a root state,
MCTS selects recursively the most urgent child node until it
reaches a leaf state in its search tree. Several implementations
of MCTS use a strategy for multi-armed bandit problems as
a selection-criterion to evaluate the urgency of each child
state. In UCT [5], the selection-criterion is UCB1. A leaf is

expanded (i.e., the subsequent states from the leaf are added to
the search tree) if the number of visit-counts reaches a certain
threshold. The threshold is varied by the implementation:
however, we assume the threshold is two, which is the least
reasonable threshold. From the leaf state, the remaining states
are simulated until it reaches a terminal state. Typically the
simulation is performed uniformly randomly. In a terminal
state, a reward (e.g., win, loss or draw in games) of the
state is observed and back-propagated from the leaf to the
root in its search tree to update the urgency of each node in
the path. MCTS terminates the iteration steps when a certain
computational budget (e.g., time) runs out. Then it returns the
most promising child of the root, typically the most visited
child [17].

C. Contextual Bandit Problem

One of the interesting applications of the multi-armed bandit
problem is the contextual bandit problem, in which an agent
has to choose one arm in a set of arms in each iteration. The
difference from the plain multi-armed bandit problem is that
the agent can observe d-dimensional feature vectors (context
vectors) associated with each arm and the current iteration.
The agent can exploit these contexts along with the rewards
of past trials to make better predictions.

Many contextual bandit algorithms exist, and these can
be split into two categories: linear-classifier algorithms and
nonlinear-classifier algorithms. We introduce here the most
popular linear-classifier algorithm called LinUCB.

LinUCB [13], [14] assumes a linear dependency between
the expected reward of an arm and its feature vector. In other
words, the expected reward of arm a is the following formula:

E [rt,a|xt,a] = x>t,aθ
∗
a (1)

The LinUCB algorithm estimates θ∗a as θ̂a through the trials.
With the θ̂a, the prediction error can be evaluated with a
probability of at least δ as follows [13], [18]:∣∣∣x>t,aθ̂a −E [rt,a|xt,a]

∣∣∣ ≤ α√x>t,aA
−1
a xt,a, (2)

where α = 1 +
√

ln(2/δ)/2 and Aa represents a variance-
covariance matrix of arm a. Equation (2) gives a reasonably
tight UCB for the expected payoff of arm a. From (2), the
LinUCB algorithm chooses

at = argmax
a∈At

x>t,aθ̂a + α
√

x>t,aA
−1
a xt,a (3)

at each trial from the available arm set At. Algorithm 1
describes the LinUCB algorithm.

D. LinUCT

LinUCT is an MCTS algorithm incorporating LinUCB,
which we proposed in our earlier work [15], rather than UCB1.
As in LinUCB, LinUCT observes the feature vector for each
node and predicts the reward of the node. Considering its
application to two-player games, we address the case where the
feature vectors of nodes are stationary (i.e., ∀t xt,a = xa). In
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1: Inputs: α ∈ R+

2: for t = 1, 2, 3, ... do
3: Observe features of all arms a ∈ At: xt,a ∈ Rd

4: for all a ∈ At do . At is a set of available arms at t
5: if a is new then
6: Aa ← Id×d . d dimensional identity matrix
7: ba ← 0d×1 . d dimensional zero vector
8: θ̂a ← A−1a ba

9: pt,a ← x>t,aθ̂a + α
√
x>t,aA

−1
a xt,a

10: at ← argmax
a∈At

pt,a with ties broken arbitrarily

11: Observe a real-valued payoff rt
12: Aat

← Aat
+ xt,at

x>t,at

13: bat
← bat

+ rtxt,at

Algorithm 1: LinUCB [13]

addition, we assume that the expected reward of each terminal
node s in a game tree is x>s θ

∗ and under the control of a
common θ∗, while LinUCB assumes there are different θ∗a
for each arm. The assumption seems to be reasonable in de-
terministic games since algorithms employing static evaluation
functions are dominant in various real games [12], [19], [20].
Hereafter, the algorithms use a common θ∗, A and b (without
subscription).

Even when the reward at a leaf can be predicted by x>s θ
∗

similarly to the LinUCB setting, such an assumption is not
valid for internal nodes in a game tree. Therefore, the main
challenge in LinUCT is the prediction of the reward in internal
nodes. In this paper, we present two techniques to achieve this.
In our previous work, LinUCT algorithms regress the rewards
on the feature vectors of all nodes in the path from the root to
the leaf in each iteration. However, regressions of rewards at an
internal node tend to make the estimation of θ∗ less accurate.
Therefore, we limit the teacher data to feature vectors of leaf
nodes. Moreover, we present weighted propagation to stabilize
the feature vector of an internal node. We show that these
differences achieved a significant improvement in empirical
convergence in the experiments.

III. LEAF-LINUCT

Leaf-LinUCT is a family of MCTS algorithms incorporating
LinUCB instead of UCB1, which is an enhanced version of
our previous work of LinUCT. In the following subsection,
we first present Leaf-LinUCTPLAIN, which is a straightforward
application, for reference. Then, Leaf-LinUCTWP, which is the
main contribution, is presented. Also, Leaf-LinUCTFP, which
is presented in our earlier work, is introduced for comparison.

A. Leaf-LinUCTPLAIN

Leaf-LinUCTPLAIN is a straightforward application of Lin-
UCB to MCTS. Leaf-LinUCTPLAIN employs LinUCB in the

1: procedure INITIALIZEREGRESSION(λ)
2: A← λId×d
3: b← 0d×0

4: procedure UPDATEREGRESSION(s, r)
5: A← A + xsx

>
s

6: b← b + rxs

7: procedure BACKPROPAGATION(path,∆)
8: sl ← leaf node
9: UPDATEREGRESSION(sl,∆s)

Algorithm 2: Supplementary Procedures in Leaf-LinUCT

selection step of MCTS. The urgency of child state si is
defined as

x>si θ̂ + α

√
x>si

(
Tsi(t)

Nupdate
A

)−1
xsi .

where xsi is a feature vector of state si, θ̂ represents the
current estimate of θ∗, which can be calculated by θ̂ = A−1b,
A means the variance-covariance matrix, b is the correspond-
ing response vector (i.e., it has the corresponding simulation
rewards, see algorithm 2) and α is a constant. Nupdate is the
number of times that LinUCTPLAIN updates its guess of θ∗,
and Tsi(t) is the visit-count of state si so far.

In the same way as UCT, LinUCTPLAIN descends its search
tree to a leaf state. After the selection step, it performs a
simulation of the rest of the game and observes the outcome
of the simulation. In this paper, we assume this simulation
consists of uniform random moves. In the back-propagation
step, θ̂ is updated by the following formulae:

A = A + xsjx
>
sj , b = b + rxsj θ̂ = A−1b,

where xsj is the feature vector of sj , which is the leaf state in
the search tree reached in the selection step, or equivalently,
the start state of a random simulation in the iteration.

B. Leaf-LinUCTWP

In MCTS, the estimation of the reward of a node is expected
to converge to the minimax score of its sub-tree as the iteration
grows. However, a serious problem of Leaf-LinUCTPLAIN is
that it cannot estimate the reward of an internal node, because
the assumption in (1) does not hold for an internal node in the
tree.

To remedy this problem, we proposed the Leaf-LinUCTFP
algorithm, in which the feature vector of each node s is
modified so that xsθ

∗ converges to the minimax score of its
sub-tree in a certain assumption.

At each iteration, the feature vector of LinUCTWP is updated
to the weighted average of feature vectors of its child nodes by
its number of visit-counts so far. At time t, the feature vector
of each internal node is

xs =

∑
si∈children(Tsi(t) + 1) · xsi∑

si∈children(Tsi(t) + 1)
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1: procedure UPDATEFEATURE-LINUCTWP(s)
2: if s is leaf node then return
3: S ← children of s
4: xs ←

∑
si∈S(Tsi(t) + 1) · xsi/

∑
si∈S(Tsi(t) + 1)

5: procedure BACKPROPAGATION(path,∆)
6: sl ← leaf node
7: UPDATEREGRESSION(sl,∆s)
8: # supplementary procedure of LinUCT-WP
9: for s ∈ path do . From bottom to root

10: UPDATEFEATURE-LINUCBWP(s)

Algorithm 3: Back-propagation process of LinUCTWP

The number of visit-counts is increased by one to avoid
division by zero. Note that the feature vector of each leaf
in a search tree is not modified. Algorithm 3 describes the
back-propagation procedures of LinUCTWP.

The evaluation using the averaged feature vector is close
to the empirical average of rewards as long as the expected
reward at each leaf follows x>s θ

∗ as assumed in Eq. (1):

x>s θ
∗ =

(∑
si∈children(Tsi(t) + 1) · xsi∑

si∈children(Tsi(t) + 1)

)>
θ∗

≈
∑

si∈children

Tsi(t)

Ts(t)
· (x>siθ

∗)

=
∑

li∈leaves in sub-tree under s

Tli(t)

Ts(t)
· (x>liθ

∗)

Hence, it is reasonable to modify the feature vectors based
on the feature vectors of the children according to their visit-
counts.

C. Leaf-LinUCTFP

Leaf-LinUCTFP is an alternative of Leaf-LinUCTWP and
adaptation of LinUCTFP [15] so that the regression is only per-
formed in the leaf node at each iteration. In Leaf-LinUCTFP,
the feature vector of each node in the path in the search tree in
each iteration are slightly modified to incorporate the vector
of the next node as

xs ← (1− γ)xs + γxsc ,

where sc is the child node of s in the path and γ ∈
(0, 1) represents the learning rate of feature vectors. Note
that LinUCTFP propagates the feature vector no matter what
simulation rewards are so as to take both positive/negative
rewards in the simulations into account. The purpose of this
modification is to make a feature vector similar to that of
the principal variation leaf as the number of iteration grows
large. Algorithm 4 describes the procedures of LinUCTFP in
the back-propagation phase. However, the experiments show
that our new Leaf-LinUCTWP is stable.

IV. TREE MODEL

Incremental random trees (or P-game) [21] have served as
domain-independent test sets for evaluation of various search

1: procedure UPDATEFEATURE-LINUCTFP(s, γ)
2: if s is root node then return
3: sp ← parent of s
4: xsp ← (1− γ)xsp + γxs

5: procedure BACKPROPAGATION(path,∆)
6: sl ← leaf node
7: UPDATEREGRESSION(sl,∆s)
8: # supplementary procedure of LinUCT-FP
9: for s ∈ path do . From bottom to root

10: UPDATEFEATURE-LINUCBFP(s, γ)

Algorithm 4: Back-propagation process of LinUCTFP

algorithms [5], [22]–[25]. The advantages of using this model
are that 1) the search space can be controlled easily via the
width and height of the tree and 2) a correlation between
the heuristic score of a node and that of its descendants is
produced, which is expected in real games.

We extend the existing incremental random tree model and
present incremental-random-feature tree so that the feature
vector is assigned for each node. Our previous work presented
a similar extension [15]: however, there are two significant
differences: (1) the previous model can only handle binary
features, while the new model can handle arbitrary values,
and (2) the previous model has an unpleasant property in that
each element of the feature vector of a node in a generated tree
converges to zero when the depth of the tree gets larger [26].
The expected value and variance of each element of a feature
vector is well designed in the new model.

A. Incremental Random Feature Tree

We introduce the extended model of the incremental random
tree model with feature vectors, called incremental-random-
feature tree (IRF-tree). In IRF-tree, each node s has a feature
vector (state vector) xs ∈ Rd. A state vector is computed by
adding a parent state vector and a feature vector associated
with the move (move vector) as depicted in fig. 1. Move
vectors are d-dimensional vectors whose elements are drawn
from uniform random distribution U(−w,w). To model two-
player zero-sum games, a state vector for a min player is −xs

if the corresponding state vector for a max player is xs.
Heuristic scores of nodes are defined as:

x>s θ
∗, (4)

where θ∗ is a hidden vector generated for each tree and cannot
be observed by algorithms. The elements of θ∗ are also drawn
from uniform random distribution U(−σ, σ).

B. Properties of Incremental Random Feature Tree

1) Expected Vector: Given a state vector xs, we can com-
pute the expected state vector of its descendant through a path
S = {s1, s2, ..., sn} as follows:

E

[
xs +

n∑
i=1

xsi

]
= xs +

n∑
i=1

E [xsi ] = xs,
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s

xs

s1

xs + xs1

s2

xs + xs2

xs1 xs2

Fig. 1: Example of Incremental Random Feature tree: the move
vector associated with the move for state s1 (s2) is xs1 (xs2 )
and the state vector of s1 (s2) is xs + xs1 (xs + xs2 )

since the elements of move vectors are drawn from a uniform
random distribution centered at 0. Consequently, the score of
the descendant, computed by the inner product between its
state vector and a tree coefficient vector θ∗, is:

E

[
(xs +

n∑
i=1

xsi)>θ∗

]
= x>s θ

∗

2) Distribution of Rewards: We show some properties of
the distribution of the rewards for the leaves under node s in a
tree. Obviously the expected mean of the distribution is xθ∗.
The variance of the distribution can be calculated as

Var

[
(xs +

n∑
i=1

xsi)>θ∗

]
=
w2σ2

9
nd. (5)

An approximation of the summation of uniform random vari-
ables by the normal distribution shows that the distribution of
rewards follows the normal distribution centered at 0 with the
variance shown in (5). In the later experiments, we set the
parameters w and σ to 1, 1/

√
6d respectively, so that each

element is in a suitable range. We confirmed that distributions
of heuristic scores (i.e., rewards for MCTS algorithms) are
almost identical to the normal distribution, whose mean is 0
and variance is (5), with various configurations of tree-depths
and branching factors and approximately 99% of the rewards
is in range [−1, 1].

V. EXPERIMENTS IN IRF-TREE

We conducted experiments to compare the performance of
our Leaf-LinUCT algorithms, LinUCT, and standard UCT.
Throughout the experiments, we used incremental-random-
feature tree as a test-bed, and each tree had a uniform
branching factor and depth. The dimensions of feature vectors
and coefficient vectors were fixed to 16 because we observed
similar results in the experiments with varying dimensions.

Each MCTS algorithm iteratively constructs its search tree
until it covers all nodes of the tree instance by incorporating
the children of a leaf at the second visit. Simulations of MCTS
from the leaf of the search tree consisted of 1) choosing the
next node randomly until it reached a terminal of the tree
instance and 2) calculating the reward of the terminal node
according to (4) without error or noise.

For UCT, the rewards should be in a limited range, typically
[0, 1]. We applied two types of transformation functions: linear

TABLE I: Parameters of algorithms

algorithm parameter value

LinUCT λ 1.0
LinUCT α 1.0
LinUCT-FP γ 0.01

4 6 8 10 12 14 16
branching factor

10-2

10-1

100

fa
ilu
re
 r
a
te

leaf-LinUCT-PLAIN

leaf-LinUCT-FP

leaf-LinUCT-WP

LinUCT-PLAIN

LinUCT-FP

LinUCT-WP

sigmoid-UCT (gain-0.01)

sigmoid-UCT (gain-0.1)

sigmoid-UCT (gain-1.0)

sigmoid-UCT (gain-10.0)

sigmoid-UCT (gain-100)

sigmoid-UCT (step)

clipping-UCT

Fig. 2: Failure rate (vertical axis) versus branching factor of
trees (horizontal axis) at t = 10 000

transformation with clipping max(0,min(1, x/2 + 0.5)) and
sigmoid function 1/(e−ax+1). Because almost all rewards are
in range [0, 1] as described in Sect. IV-B2, clipping is rarely
needed in the former function. Several values for the slope of
the sigmoid function, a = 0.01, 0.1, 1.0, 10, 100 , and a =∞
(step function), were evaluated in the experiments. Throughout
the experiments, we set the parameters of LinUCT as described
in table I in accordance with our previous work [15].

A. Performance of Algorithms

First, we observed the failure rates and average regrets of
these algorithms following the experiments in the literature [5].
The failure rate represents the frequency of choosing a move
other than the optimal one. The optimal move of each tree
instance was identified by the minimax tree search in advance.
We generated 100 tree instances of IRF-tree, and each algo-
rithm ran on each tree 100 times. Note that tree instances that
contained multiple optimal moves were removed.

Fig. 2 and Fig. 3 plot the failure rates and average regrets of
each algorithm with the branching factor of trees varying from
4 to 16. We can see that Leaf-LinUCTWP and Leaf-LinUCTFP
are the two best algorithms, with few exceptions, in the failure
rate for trees with a small branching factor. With regard to
failure rate, UCT with sigmoid transformation occasionally
performed better than the LinUCT algorithms. However, the
best value of the slope is not stable with the branching
factor of trees. Leaf-LinUCT algorithms are generally better
than LinUCT algorithms. Additionally, Leaf-LinUCTPLAIN did
not as well as Leaf-LinUCTWP or Leaf-LinUCTFP. These
observations suggest the presented algorithms are effective.

B. Accuracy of Evaluation

In order to analyze the difference in performance of the
algorithms, we evaluated the correlation between the (game-
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theoretical) minimax score identified by a thorough minimax
search and the score evaluated by (Leaf) LinUCT algorithms
for each node. The scatter plots of these scores after the 10 000
playouts are shown in Fig. 4. Nodes visited more than 100
times are plotted. We can see that LinUCT (upper left) cannot
evaluate nodes correctly even for terminal nodes at depth-4.

This result suggests the difficulty of estimation by plain
LinUCB in tree search, because the minimax score does not
suit the assumption in (1) for an internal node.

In contrast, Leaf-LinUCTPLAIN (upper right) successfully
estimated the minimax scores of terminal nodes at depth
4. This can be explained by the fact that the problem was
mitigated by applying regression only at frontier nodes.

The evaluations by LinUCT-FP and LinUCT-WP (middle
and bottom left) are significantly more accurate than those by
(Leaf) LinUCTPLAIN. Therefore, modifying the feature vectors
of internal nodes according to the search progress contributes
to the accuracy of the evaluation.

Also, the evaluations by Leaf-LinUCTFP and Leaf-
LinUCTFP (middle and bottom right) are also significantly
better than those by LinUCTPLAIN, especially for non-terminal
nodes (depth ≤ 3).

We discuss the accuracy of the estimation of θ∗, by showing
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the L2 norm of the difference between θ∗ and θ̂ n Fig. 5
Also, Fig. 6 plots the average difference between the minimax
value of PV leaf xl determined by minimax search in advance
and its score x>l θ̂ evaluated by each algorithm, as a function
of playouts t in the trees with branching factor 4 and depth
4. It is clear that Leaf-LinUCT algorithms estimate θ∗ more
accurately and rapidly than LinUCT algorithms.

C. Run-time Efficiency of Algorithms

Finally, we compared the run-time efficiency of each algo-
rithms. The failure rates as the CPU time increases in trees
with depth 4 and branching factor 8 is shown in Fig. 7.

We can see from the figure that Leaf-LinUCT still worked
better than UCT even with their time complexity of O(d2),
where d is the dimension of feature vectors. We should note
that dimension 16 in this experiment is smaller than the
dimension of typical evaluation functions in real games. To
handle higher dimensions in Leaf-LinUCT algorithms, it might
be effective to incorporate acceleration techniques such as
fLinUCB-GD [27].

VI. EXPERIMENTS IN PROGRESSION GAME

We also compared the performance of our Leaf-LinUCT
algorithms and UCT algorithm in the progression games,
which Finnsson and Björnsson proposed in [1].

A. Finnsson and Björnsson’s Progression Game

Finnsson and Björnsson introduced a set of synthetic two-
player games to discuss what properties of games affect
performances of UCT. One of them is Progression game [1].
Fig. 8 depicts the initial state of the game. Each player chooses
one of his pieces (active or inactive runners) in his turn. If the
chosen runner is active, the runner moves forward (White) or
downward (Black) by one square. The objective is to locate
one of the runners in the goal square. Obviously the optimal
strategy is continually choosing one of the active runners.

They introduced the depth factor that limits the maximum
number of moves the players can. In a board with 20 lanes
× 10 rows, the minimum number of moves the game ended
is 18, if the Black (second) player’s strategy is optimal. They
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Fig. 8: Initial state of Progression game by Finnsson and
Björnsson [1] (Pawn: active, Circular arrows: inactive, Flag:
goal)

TABLE II: Result of Progression game

Algorithm Feature Vector #Wins Win%

leaf-LinUCT-PLAIN ratio-feature 2 000 100
leaf-LinUCT-FP 2 000 100
leaf-LinUCT-WP 1 342 67

leaf-LinUCT-PLAIN raw-feature 55 3
leaf-LinUCT-FP 30 2
leaf-LinUCT-WP 1 677 84

UCT 801 40

modified the upper limit of moves in fixed step size of 18
(e.g,. total number of moves for both players is 36 for depth
factor 2). In our experiments, however, the depth factor was set
to 100 to avoid the effect that simulations produce unreliable
results. Throughout the following experiments, the board size
and the number of active runners were set to 20 × 10 and
1 respectively and the algorithms matched against the Black
optimal player, following the experiments in [1]. The number
of simulations per turn was set to 1 000.

B. Feature vector for Leaf-LinUCT

We designed feature vector for Leaf-LinUCT two patterns:
(1) ratio feature and (2) raw feature.

In ratio feature vector, the vector has 20 elements and each
of them is proportional to the row of the piece in each lane.
This feature vector contains sufficient information that enables
Leaf-LinUCTs to predict the outcome of games perfectly. The
other one, raw feature vector represents a board as it is. The
dimension of the feature vectors is 200 and each element of
a feature vector has positive constant if corresponding square
of a board has a runner (regardless of the type). Note that
these feature vectors are regularized to satisfy the condition
‖x‖ ≤ 1.

C. Experiments

TABLE II shows results of the progression game exper-
iments. For ratio-feature algorithms, the performances are
superior than UCT algorithm, especially leaf-LinUCT-PLAIN
and leaf-LinUCT-FP. While these two algorithms won all
matches, leaf-LinUCT-WP sometimes failed to choose the
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correct runner. In contrast, for raw-feature algorithms, leaf-
LinUCT-PLAIN and leaf-LinUCT-FP performed poorly and
leaf-LinUCT-WP worked better. Because every children tend
to be favorable for a root player in ratio-feature, leaf-LinUCT-
WP evaluates states by average of child nodes. Consequently it
performed worse. For leaf-LinUCT-FP, it needs feature vectors
of the terminal states in this game to predict reward correctly.
Hence, it requires deeper and narrower search: however, it
could not search that manner without any support such as
progressive widening.

VII. CONCLUSION

We described in this paper our application of LinUCB to
MCTS and presented our Leaf-LinUCT algorithms. The new
algorithms are improved compared to the existing LinUCT
algorithms: (1) by restricting teacher data for regression to the
frontier nodes in a current search tree, and (2) by adjusting the
feature vector of each internal node to the weighted mean of
the feature vector of the descendant nodes. We also proposed a
new synthetic tree model, called Incremental Random Feature
tree, in which one can evaluate algorithms that use feature
vectors for heuristic evaluation. The empirical experiments in
incremental-random-feature treeshowed that Leaf-LinUCT al-
gorithms perform significantly better than existing algorithms
including UCT, especially in trees with large branching factor.
Empirical analyses on failure rate, average regret, prediction
accuracy, and run-time efficiency were also presented. In
addition, experiments in the game Finnsson and Björnsson
proposed implied properties of our proposed algorithms.

Theoretical analysis on the convergence of Leaf-LinUCT
algorithms would be an interesting topic in future work.
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and O. Teytaud, “The grand challenge of computer go: Monte carlo tree
search and extensions,” Commun. ACM, vol. 55, no. 3, pp. 106–113,
Mar. 2012.

[4] P. Perick, D. L. St-Pierre, F. Maes, and D. Ernst, “Comparison of
different selection strategies in monte-carlo tree search for the game
of tron,” in 2012 IEEE Conference on Computational Intelligence and
Games (CIG), Sept 2012, pp. 242–249.
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Abstract—The level of computer programs has now
reached professional strength for many games, even for the
game of Go recently. A more difficult task for computer
intelligence now is to create a program able to coach
human players, so that they can improve their play. In this
paper, we propose a method to detect and label the bad
moves of human players for the game of Go. This task is
challenging because even strong human players only agree
at a rate of around 50% about which moves should be
considered as bad. We use supervised learning with features
largely available in many Go programs, and we obtain an
identification level close to the one observed between strong
human players. Also, an evaluation by a professional player
shows that our method is already useful for intermediate-
level players.

I. INTRODUCTION

Computer programs to play games have improved a
lot this last decade, with the use of machine-learning and
Monte-Carlo Tree Search (MCTS). The last success was
the defeat of a professional Go player by AlphaGo in
2016[6], by using a combination of deep convolutional
neural networks and MCTS. The strength of other pro-
grams for the game of Go is now expected to increase
quickly, so we can consider that creating a strong Go
program is not as challenging as before.

However, there are still other difficult and interesting
problems for computer intelligence in the area of games,
especially the game of Go. A first one is the creation of
entertaining programs. Computer programs are still too
frequently boring for human players, because they tend
to use similar strategies repeatedly. Another interesting
problem is the ability to coach human players, by show-
ing them their mistakes, and explaining them how to
improve.

For entertainment or coaching purposes, programs
need some new abilities usually not considered when
strength is the only target. For example, for entertaining
humans, a control of the position is needed, so that
both players keep a reasonable chance of winning. It

can be achieved with intentionally gentle - but natural
- moves. The thinking time used for each move or the
resign timing are also important. For coaching humans,
bad moves need to be detected, and some explanation is
also needed, either with figures, text or speech.

In this research, we consider the problem of coaching
Go players. In the case of the game of Go, it is frequent
for human players to review their own games with a
stronger player and seek advice about which moves were
bad. So, an ideal coaching computer program should
be able to detect the bad moves, to label them with
the type of mistake, and finally to give a more detailed
explanation. Also, a figure showing a better move with
its consequences would be useful. In this research, we
consider only the problem of detecting and labeling the
bad moves.

Deciding which moves should be considered as bad
is a challenging task. In a preliminary experiment, we
asked strong players to show the bad moves in game
records of intermediate-level players. The strong players
only agreed at a rate of around 50%. Also, we will
show that a naive approach like using only the drop
of winning ratio from the point of view of a strong
computer program does not work well. Many bad moves
from the point of view of humans are locally non-optimal
moves (for example a bad shape), but the loss in terms
of winning chances is in fact small. In this paper, we
propose to use machine-learning to address this problem.

In Section II, we give some more details about coach-
ing Go, and how it is usually done between humans.
In Section III, we discuss some related work. Then,
in Section IV, we describe our approach based on
supervised machine learning. Section V describes our
main experiments, with a machine learning for detecting
bad moves, and a separate machine learning for labeling
them. The result is evaluated with a professional Go
player.
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Fig. 1. Complete process for helping players to correct their bad moves.

II. COACHING GO

Go is an ancient game, especially popular in Asia,
with a rich variety of sub-problems and strategies. For
this reason, many Go players find their satisfaction not
just in playing the game, but in trying to improve their
play and becoming stronger.

There are many ways to improve at the game of Go,
such as replaying professional games, solving local life
and death problems (tsumego), or reading books about
common tactics and patterns. But it is often considered
that one of the best way to improve is to play a game
with a stronger player, and to review the game with him.

Coaching Go (Shido-Go in Japanese) is a special type
of game, where amateur players pay some professional
or semi-professional player to play and review a game.
There is a strong demand from amateur players for such
games, but it can be expensive. Also, intermediate-level
players are often reluctant to invest the money or the
time in such coaching games, because they feel that their
level is still too low for that. If a computer player could
perform the same kind of coaching, it would be of great
help for many amateur players, especially from beginner
to intermediate level.

We surveyed in Go clubs in Japan how strong players
teach intermediate-level players about their bad moves.
It usually follows the process shown in Figure 1. First,
a bad move is detected (1). Some reason (2) is given
on why it is a bad move. We call this step “labeling” in
this paper. Then, a more detailed explanation is given on
what happened as a result (3) of the bad move. Finally,
a better move is shown, with the expected best variation
(4).

In this paper, we address only the first two steps, i.e.
the detection of bad moves, and the labeling with some
“reason”. Our goal in the future is to create a computer
program able to perform all 4 steps.

III. RELATED WORK

Entertaining and coaching players is a developing
area of research on board games. In 2013, Ikeda et al.
(authors of this paper) proposed a computer Go program
able to entertain players by using various strategies and
controlling the board position [3]. In 2015, Kameko et al.
used machine-learning to generate comments in natural
language about Shogi positions [4]. Also in 2015, Ikeda
et al. (authors of this paper) used machine-learning to
learn the natural language names usually used by humans
to refer to moves in the game of Go [5]. This is an
important part for a coaching Go program, since moves
are usually refered by shape names and not by coordinate
positions in the game of Go. For example, in Figure 1,
A7 is called “Hane”.

IV. APPROACH

The ultimate goal of our research is to make a
coaching computer player who plays gently against
human players, corrects bad moves and explains how
to think/play. It would encourage human players to
continue playing while their skills are improving. As a
first step towards this goal, we try (1) to detect bad moves
from a game record and (2) to associate an explanation
label to each bad move. Then, the computer player could
ouput something like “The 17th move at D4 was not
good, because the local shape is bad. D5 is better.”

2
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The definition of “bad move” is not trivial. If the set
of best moves can be defined and calculated, though
theoretically it is possible, it may be possible to say
that the other moves are all bad moves. However, for
coaching intermediate players, usually only fairly bad
moves are pointed out because such players will be
confused or depressed if too many moves are corrected.

For selecting fairly bad moves, it will be effective
to refer to the “winning ratio” computed by computer
players. Now, we assume that White is played by an
MCTS player, and Black is played by an intermediate
human player. An MCTS program calculates not only
the next best move but also many statistics such as the
expected winning probability (winning ratio). When the
ratio for White is increased, for example from 30% to
50%, it means that Black played a fairly bad move which
loses a big advantage, 20%. Usually, a Black move which
loses 20% winning ratio should be pointed out, before
any other move that loses only 2%.

But it should be noted that winning ratio will be not
sufficient to select bad moves for effective coaching.
Human teachers often point out and correct some kind of
bad moves even when the loss of winning ratio is not so
serious. One example is shown in Fig. 2. The shape of
Black move A is bad, and B should be played. We think
almost all Go teachers will point out this move, even
if the difference of winning ratio of A and B is only
about 1−2%. To detect such a move, “shape goodness”
should be computed and referred. Another example can
be considered in end games. Assume that Black is almost
surely winning, and the territory advantage is 12 points.
When Black played a bad move which loses 4 points,
it will be pointed out, even if the winning ratio is only
slightly changed from 99% to 98%. To detect such a
move, “territory advantage” should be computed and
referred. So, we calculate and use several values as
input features, for accurate detection of bad moves. The
employed features are explained in V-A.

The detection and labeling of bad moves are done
seperately. The whole procedure is as follows:

1) Many handicap games are done. Game records are
collected.

2) Bad moves are selected by strong human players,
with only 5 to 10 moves selected per game.

3) Also, one type (why the move is bad) is labeled on
each bad move, from some candidates.

4) Many features are calculated by a computer pro-
gram, for each move. We obtain a set of items
(feature1, feature2, ..., bad/good, type).

5) A supervised learning is executed by using all items

Fig. 2. An example of bad shape, A is bad, B is good. This A will
be pointed though the loss of winning ratio is not so big.

where “bad/good” is the output. The result is the
“detection system”.

6) Another supervised learning is executed by using
“bad” items where type is the output. The result is
the “labeling system”.

V. EXPERIMENTS

In this section, we show four series of experiments.
The brief content is as follows:

1) Preliminary experiment to show that the winning
ratio is not a sufficient feature for detecting bad
moves

2) Learning of bad move detection system, and com-
parison with human’s decision

3) Learning of bad move labeling system, and com-
parison with human’s decision

4) Evaluation of the detection and labeling systems by
a professional player

A. Preparation

As described at the end of Section IV, we need
to gather many handicap games, to let strong human
players select bad moves and label them, and to calculate
many feature values for each move. We employed our
computer Go program “Nomitan”. It is ranked 3d on
the KGS server, which is not so strong, but not so weak.
First, we asked 8 intermediate-level human players (from
about 7k to 1d) to play against Nomitan, using a 13×13
board and with 2 to 4 handicap stones, as they want.
Totally, 108 games were collected.

Next, we asked three strong human players (about 4d
to 7d on KGS) to select bad Black moves and select a
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type label for each bad move. It was requested to ignore
bad White moves, and to select about 5 to 10 bad moves
per game. A type label for each bad move is a brief
reason explaining why the move is bad. It was selected
from the following 10 candidates. Since some types were
rarely labeled, they are integrated into 5 groups.

• Group-1
– Local shape is bad.

• Group-2
– Gain is small.
– The move is too defensive or fearing a risk, then

the gain is small.
• Group-3

– The move is far from the hot area.
– The move is far from the hot area, White stones

should be attacked.
– The move is far from the hot area, Black stones

should be defended.
• Group-4

– The player seems to do a reading mistake (i.e. a
tactical error when considering what happens a
few moves ahead).

• Group-5
– The move is too passive. It seems to be only

responsive to the last White move.
– The move helped White stones to be stronger.
– Other reasons.

For 102 in 108 games (set denoted by G102), only one
of the three human players did this selection and type
labeling of the bad moves. For 6 games (set denoted by
Gcommon6), 244 Black moves, all of the three human
players did this work. This allows us to compare the
selection result between humans. For example, Table I
shows the difference in bad move selection between two
strong players A and B.

TABLE I
BAD MOVE SELECTION BY STRONG PLAYERS A AND B

B good B bad
A good 180 27
A bad 24 13

Out of 244 moves, player A selected 37 moves as bad
moves, but only 13 of these 37 moves are also selected
by player B. This result shows that bad move detection
is not a simple work even for strong human players.

Totally, 4836 Black moves were collected from 108
games. For each of these moves, we calculated 29 feature
values to be referred in supervised learning. Here, some

important features are explained, and the other ones are
explained in Appendix A. Please note that such features
are not specific to our program. They can be easily
calculated by most MCTS programs.

• handi, the number of handicap stones.
• move, the number of moves played.
• wrbefore, wrafter, wrdiff, expected winning ratio

before the move, after the move, and its difference.
• trbefore, trafter, trdiff, expected territory advan-

tage before the move, after the move, and its
difference.

• shaperate, shapelog, shape goodness calculated by
Bradley-Terry model [2], relative value and absolute
log value.

• dist1b, Euclidean distance between the actual Black
move and the estimated best move.

• ownbefore, ownafter, owndiff, ownership of the
position before the move, after the move, and its
difference. High ownership means that the area is
occupied by Black, i.e. the Black stones in the area
are strong, or the White stones in the area are weak.

B. Preliminary Experiments: feature selection for
good/bad detection

In this section, binary supervised learning experiments
about “detection system” are shown, to prove that many
features should be used for detecting bad moves accu-
rately.

We have 3963 good move instances and 873 bad move
instances. Since such unbalance among the numbers of
instances is not preferable in classification, 2000 good
move instances are randomly removed in this experi-
ment. Since there are a lot of candidate methods for
binary classification, we employ Multilayer Perceptron
in a free machine learning platform, Weka version 3.6.11
[1].

For evaluating the performance, the F-measure, the
mixed value of precision and recall, is used. For example,
in the case of Table I, if we assume that the decision of
B is always true, the precision of A about bad moves
is 13

24+13 = 0.351, the recall of A about bad moves is
13

27+13 = 0.325, and the F-measure about bad moves is
2·0.351·0.325
0.351+0.325 = 0.338.

When only wrdiff (how the winning ratio is changed
by a Black move) is used as the input, the F-measures
are 0.812/0.299/0.654 (F-measure about good moves / F-
measure about bad moves / weighted average for good
and bad moves). These values are the averages of 10-
folding validation. It is not strange that the F-measure
about good moves is better than that about bad moves,
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because the number of good move instances (1963) is
still bigger than the number of bad move instances (873).

We tried to improve the performance by adding other
features. Table II shows the result. By adding one
or two features, the total F-measure is increased by
0.008 to 0.031. It is clear that shape goodness and
territory advantage should be considered for accurate
detection. Maybe it is interesting to see that move or
wrbefore/wrafter fairly improve the performance. This
is because usually bad moves in early stage frequently
affect the game consequence, and bad moves after losing
game (for example winning ratio is under 30%) are not
pointed by human coaches.

Finally, when using 9 features wrdiff, wrbefore,
wrafter, shapelog, trdiff, trbefore, trafter, move, own-
diff, the F-measure about bad moves is significantly
improved from 0.299 to 0.444. We can conclude that,
not only the winning ratio, but also many other features
are needed for an accurate detection of bad moves.

TABLE II
GOOD/BAD DETECTION RESULTS. USED FEATURES AND

F-MEASURES

features F-measures gain
wrdiff only 0.812/0.299/0.654 -
+wrbefore, wrafter 0.815/0.361/0.675 0.021
+shaperate 0.814/0.326/0.664 0.010
+shapelog 0.812/0.357/0.672 0.018
+trdiff 0.809/0.381/0.677 0.023
+trbefore, trafter 0.817/0.389/0.685 0.031
+handi 0.810/0.333/0.663 0.009
+move 0.812/0.378/0.678 0.024
+dist1b 0.813/0.322/0.662 0.008
+owndiff 0.812/0.330/0.664 0.010
+8 features 0.826/0.444/0.709 0.055

C. Machine-Learning for Detection

In Section V-B, we observed that 8 additional features
are effective to improve the detection accuracy, and there
10-folding self validation is used. In this section, the
learning set and the test set are manually separated,
and the performance for test data is compared to the
performance between human strong players.

As shown in Table I, decisions are fairly different from
each other, even among strong players. Table III shows
F-measures of each player for another player, we can see
A for B is relatively far, B for C is relatively similar. The
simple averages are 0.892/0.435/0.820. We try to achieve
these values by machine learning.
Gcommon6 is used as the test set, including 609 good

moves and 117 bad moves. G102 is used as the training
set, including 3354 good moves and 756 bad moves.
In order to balance the numbers of good moves and

TABLE III
F-MEASURES OF GOOD/BAD DETECTION

F-measures
player A for B 0.876/0.338/0.794
player B for C 0.907/0.525/0.844
player C for A 0.895/0.442/0.821
average 0.892/0.435/0.820
MP for player A,B,C 0.875/0.409/0.800

bad moves, we clone each bad moves of the training
set from one to three, then 3354 good moves and 2268
bad move instances are used for training. We think this
cloning method is better for obtaining a good detection
system than deleting 2000 good moves, but it should
be noted that 10-folding self validation becomes unfair
when using this cloning method, then another way was
used in Section V-B.

Multilayer Perceptron (MP) in Weka is used, and the
same 9 features shown in Section V-B are referred. The
achieved F-measures were 0.875/0.409/0.800. They are
slightly worse than the average among strong human
players, but better than those of player A for B. We can
guess that the decisions (detected bad moves) are not so
strange compared to those from strong human players.

D. Machine-Learning for Labeling

The second step is to label a type on each detected bad
move. We have totally 873 labelled (bad move) instances,
the numbers of instances of 5 groups are 228, 228, 212,
98 and 107.

Like the experiments shown in Section V-B, we did
some preliminary experiments to select a classification
method and select the referred features. After compar-
ing several methods available in Weka, such as J4.8,
LADTree, SMO or Multilayer Perceptron, we selected
“Logistic” as the classification method.

The total F-measure (averaged by 10-folding self
validation) is 0.406 when using the full set of 29 features.
We tried to improve the F-measure by removing some
features to avoid overfitting. In almost all cases the F-
measure is decreased by removing features, this suggests
that more complex features are effective in the labeling
system compared to the detection system. The F-measure
is slightly increased when removing some of 7 features,
and finally the F-measure is 0.434 when removing all
the 7 fearures.

Next, as in the experiments shown in Section V-C,
we separated 873 instances in a learning set and a
test set, and compared the F-measure to that among
human players. The learning set contains 756 instances
from G102, which are selected as bad moves. The test
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set contains 69 instances from Gcommon6, which are
selected as bad moves, by two or three of strong
human players A,B,C. 48 instances of Gcommon6 are
selected as bad moves by only one of the three players,
then it is impossible to compare whether the labeled
types are the same or different.

The total F-measure among human players is shown in
Table IV. The averaged F-measure is 0.483, which means
that two players frequently gave different labels to a bad
move. The achieved F-measure by Logistic is 0.499, this
is better than the average. Since the number of test set is
only 69, we think this is just a lucky case. In fact, when
using other sophisticated classifiers, the F-measure is
only in the range from 0.35 to 0.42. The labeling system
(the second step classification) will be more difficult
than the detection system (the first step classification),
because the number of output classes is bigger, 5 instead
of 2, and because the size of the learning set is smaller,
756 instead of 4110. We guess the performance will be
fairly improved when increasing the size of the learning
set.

TABLE IV
F-MEASURES OF BAD MOVE TYPE LABELING

F-measure
player A for B 0.482
player B for C 0.436
player C for A 0.531
average 0.483
Logistic for player A,B,C 0.499

E. Evaluation by a Professional Player

In Sections V-C and V-D, mainly F-measure values are
used for evaluation, and they are compared to the average
F-measure between strong human players. However, F-
measures cannot evaluate whether terrible decisions exist
or not, for example “a really bad move is not detected”
or “the definitely-best move is detected as a bad move”.
Then, an absolute evaluation by a professional player is
done.
Gcommon6 are the games for which all three strong hu-

man players selected bad moves and labeled their types.
At first, the detection system (Multilayer Perceptron)
employed in Section V-C was used for Gcommon6, then
46 bad moves were selected. Next, the labeling system
(Logistic) employed in Section V-D was used for these
bad moves, then we obtained 6 game records where bad
moves are selected and labeled. A game labeled by our
method is shown in Appendix B.

Totally 24 game records were sent to a 6d professional
player in a blind manner, and we asked him to give a

score for each game record, about (1) How well the bad
move detection is done, and (2) How reasonable the type
labeling is done. The scoring criterion we asked was as
follows:

• 100 points: at the same quality of human profes-
sional coaches

• 90 points: at the same quality of human 6d amateur
coaches

• 70 points: there are some problems, but still suffi-
ciently valuable for intermediate players.

• 50 points: there are many or serious problems, then
not so valuable even for intermediate players.

Table V shows the points given for (1) bad move
detection, and Table VI shows the points given for (2)
type labeling. The average scores of players A, B and C
are similar, about 80 points, but individual scores are not
so stable, from 60 points to 100 points. Please note that
90 points are not achieved even though they are about
6d amateur players. The average scores of our systems
are worse than that of strong human players, by about
6 points, but better in some games. Total average 74.2
and 76.7 are not bad, clearly better than 70 points level,
“sufficiently valuable for intermediate players”.

We consider that our method is promising or even
already useful, and we can expect the performance to
improve if we collect more games as training data.

TABLE V
EVALUATION SCORES BY A PROFESSIONAL, FOR BAD MOVE

DETECTION

handicap 4 stones 3 2 stones
game ID 1 2 3 4 5 6 average
player A 75 60 90 85 90 90 81.7
player B 90 75 80 75 75 90 80.8
player C 80 85 90 65 85 80 80.8
our method 70 70 80 75 70 80 74.2

TABLE VI
EVALUATION SCORES BY A PROFESSIONAL, FOR TYPE LABELING

handicap 4 stones 3 2 stones
game ID 1 2 3 4 5 6 average
player A 70 70 80 90 80 90 80.0
player B 90 75 80 70 75 100 81.7
player C 95 95 70 70 90 85 84.2
our method 70 70 90 80 70 80 76.7

VI. CONCLUSION AND FUTURE WORK

Since strong computer players can be implemented
for many games, entertaining and/or coaching computer
players have become a new target of computer intelli-
gence. In this paper, we design a system for detecting
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and labeling bad moves played by human players, in the
game of Go. It was shown that such a system is not easy
to obtain, since there is around a 50% mismatch even
among strong human players, and many input features
are needed for making adequate decisions. We collected
4110 moves labeled by strong players, calculated 22
features, and employed a two-step supervised learning.
The qualities of detection and labeling were evaluated
by a professional Go player. It was shown that both of
them were clearly at a useful level, though slightly worse
than the level of strong human players.

As future work, the number of learning data should
be increased because these supervised learning problems
are a difficult task. Many features are needed and then
much learning data is needed to avoid overfitting. Also,
we would like to tackle some other aspects of game
coaching. Especially in the case of correcting bad moves
in the game of Go, after the detection and labeling of
the bad moves, it would be useful to explain the result
of each bad move, and also to show the best move
with its consequences. Playing various games with an
understanding of abstract concepts is now not such a
difficult task for computer intelligence, but coaching
human players with an explanation of such abstract
concepts is still a challenging task.
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APPENDIX A.

In Section V-A, 14 of 29 features are explained. Here
the other 15 features are briefly explained. Please note
that the additional cost for calculating these 29 features
for each Black move is not so expensive in fact, because
almost all feature values can be calculated within the
procedure that the program decides the White move.

• trstdbefore, trstdafter, trstddiff, standard devia-
tion of territory advantages, before/after the move

and its difference. They are calculated with trbe-
fore, trafter, trdiff, and representing how unclear
the game result is.

• dist01, dist02, dist21, dist0b, dist2b, Euclidean
distances between two of { the last White move (0),
the next White move (2), the actual Black move (1),
and the estimated best move (b) }.

• own2before, own2after, own2diff, averaged own-
ership of Black stones on 3 × 3 area neighboring
the Black move. Values before/after the move, and
its difference.

• bdecav, wdecav, average ownership decreasements
of all Black/White stones, by the next White move.
When bdecav is high, it means Black stones are
weaken by the next White move, because of losing
chance to defend.

• bdec30, wdec30, the number of Black/White stones
which their ownerships are decreased by 0.3, by the
next White move.

In this paper, 7 of them, own2before, own2after,
own2diff, dist0b, dist2b, bdecav, bdecav were removed
after a test described in Section V-D and not used in
the last evaluation. However, if more learning set and/or
stronger program can be used, it may be better to use
these 7 and more features.

Fig. 3. Game-3 labeled by our method, up to the 54th move.

APPENDIX B.
Figure 3 shows the 1st to 54th moves of game-

3, evaluated in Section V-E. In fact, the Black player
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resigned after White 77, but only 54 moves are shown
for readability. The bad moves detected by our method,
and comments by the professional are as follows.

• 8th, group-1 (bad shape). OK.
• 14th, group-1. OK.
• 18th, group-1. OK.
• 24th. This move is not good, but not detected.

• 30th, group-3 (far from hot area). This move is not
so bad and another type would be better.

• 32nd, group-3. OK.
• 38th, group-1. This move is not so bad.
• 46th, group-1. Another type will be better.
• 54th. This move is fairly bad, but not detected.
• anyway, detection and labeling are at a useful level.
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Abstract—The General Video Game AI Competition (GVG-
AI) invites submissions of controllers to play games speciied in
the Video Game Description Language (VGDL), testing them
against each other and several baselines. One of the baselines
that has done surprisingly well in some of the competitions
is sampleMCTS, a straightforward implementation of Monte
Carlo tree search (MCTS). Although it has done worse in other
iterations of the competition, this has produced a nagging worry
to us that perhaps the GVG-AI competition might be too easy,
especially since performance proiling suggests that signiicant
increases in number of MCTS iterations that can be completed
in a given time limit will be possible through optimizations to
the GVG-AI competition framework. To better understand the
potential performance of the baseline vanilla MCTS controller, I
perform scaling experiments, running it against the 62 games in
the public GVG-AI corpus as the time budget is varied from about
1/30 of that in the current competition, through around 30x the
current competition’s budget. I ind that it does not in fact master
the games even given 30x the current time budget, so the challenge
of the GVG-AI competition is safe (at least against this baseline).
However, I do ind that given enough computational budget, it
manages to avoid explicitly losing on most games, despite failing
to win them and ultimately losing as time expires, suggesting an
asymmetry in the current GVG-AI competition’s challenge: not
losing is signiicantly easier than winning.

I. Introduction
The General Video Game AI Competition (GVG-AI) [1],

[2] is a recurring videogame-playing competition intended to
stimulate progress in general videogame AI (as distinguished
from AI written for a speciic game) by testing submitted AI
agents against previously unseen videogames. Games used in
the competition are written in the Video Game Description
Language (VGDL) [3], a domain-speciic language designed
to capture the variety of arcade-style games in which the rules
take the form of sprite movement and interaction on a 2d grid.
In the current competition, games are all single-player, and
may be deterministic or stochastic. The set of unpublished
test games on which agents are scored is periodically replaced
with a fresh set of games, to keep agents from having the
opportunity to even inadvertently become specialized to a
speciic reused test set. When a new test set is added, the old
one is released publicly. Therefore a corpus of VGDL games
has slowly grown, currently at 62 public games (as of April
2016).

The 62 VGDL games distributed with the GVG-AI com-
petition framework do represent a speciic subset of games—

there is nothing here like chess, Starcraft, or even Tetris. But
within the style of arcade games that VGDL targets, they cover
a fairly wide range of challenges and characteristics, from
twitch-type action games to puzzle games, games with NPCs
and without, games with counter-based, spatial, or time-based
win conditions, and so on.1 This makes the corpus useful as
a testbed for investigating diferences between algorithms and
games.

The purpose of this paper is to take an extended look at
the performance scaling of one speciic algorithm across this
GVG-AI corpus: how the play of vanilla Monte Carlo tree
search (MCTS) improves, or doesn’t, on these 62 games as its
computation budget is increased. The goal of doing so is to
better understand both sides of the pairing: to use the GVG-AI
corpus to look at how MCTS scales with performance across a
range of videogames, and also to use the MCTS performance
curves as a way of characterizing the nature of the challenges
found in the current public set of GVG-AI competition games.

One speciic question motivating this scaling experiment
was whether the GVG-AI competition might be too easy. In
the irst GVG-AI competition at CIG 2014, the sampleMCTS
controller implementing a vanilla MCTS search, included with
the SDK and intended as baseline, somewhat surprisingly
came in 3rd place, achieving a win rate of about 32%. In
the competitions since then it has not done as well, as both its
competitors and the test games have gotten more challenging;
at CEEC 2015 it did particularly badly, placing 31st with a
win rate of only 12%.2

The poorer recent results do not entirely dispel the worry
about diiculty. The competition tests agents with only one
speciic time limit, 40 milliseconds per move. That leaves open
the possibility that the challenge might be mostly posed by
the short time budget. But as hardware gets faster, and the
GVG-AI framework becomes more optimized,3 many more
MCTS iterations will be possible to complete within the
same 40 milliseconds. Would the competition then become
too easy, with the sampleMCTS agent making quick work of

1A feature matrix comparing the irst 30 games is given in Table 1 of [1].
2Past competition results are taken from the online rankings at http://www.

gvgai.net/.
3Proiling suggests that a large portion of the computation time in the GVG-

AI framework’s forward model is taken up by Java collections bookkeeping;
signiicant speedups are likely possible by reworking the code here.
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Fig. 1. Number of MCTS iterations versus overall win rate across all trials of the 62 games, shown with both (a) linear and (b) logarithmic x axes. Error
bars, here and in subsequent igures, represent 95% conidence intervals, estimated via a nonparametric bootstrap.

the games?
The experiments here ind that the answer is no. Perfor-

mance on the current corpus of 62 games for the sampleM-
CTS agent does improve as computation time is increased from
the current limit. But it plateaus at a win rate of 26% when
given about 10x the current competition’s computation budget,
and doesn’t further improve beyond that (tested out to around
30x). Therefore we can conclude that even after an order of
magnitude increase in speed of the forward model (whether
through hardware improvements or optimizations), the GVG-
AI competition will still pose challenges requiring something
more than vanilla MCTS to tackle them.

I do however ind that as MCTS’s computation budget is
increased, the way it plays in the games it loses changes
considerably. In many of the GVG-AI games, failing to achieve
a win within the maximum number of timesteps is a loss. This
is in addition to more explicit ways of losing, such as dying
due to collision with an enemy. As its computation budget
increases, vanilla MCTS manages to avoid most of its explicit
losses—only to end up losing via timeout instead. This makes
sense if we think of many classic arcade games as consisting
of two layers of challenge: avoid dying, and while doing so,
achieve a goal. Vanilla MCTS becomes much better at the irst
challenge as it is given time to perform more iterations, but
only slightly better at the second one. This suggests that much
of the future challenge in the GVG-AI competition lies in the
goal-achievement part; vanilla MCTS can mostly avoid dying,
but it often nonetheless can’t win.

II. Background and Related Work

MCTS [4] is an anytime search algorithm: it has a core iter-
ation loop that can be stopped when it runs out of computation
budget, returning the best estimate it has come up with so far.

Given more time, it will generally perform better, but existing
research has found mixed results regarding what that scaling
curve looks like.

Since search trees grow exponentially with depth, there
is some heuristic reason to believe that performance will
scale with the logarithm of computation time, meaning each
doubling of computation time will produce a linear increase
in playing strength. This is indeed what some researchers have
reported, for example on the game Hex [5]. But other experi-
ments, on Go, have reported diminishing returns with repeated
doubling of the computational budget, as performance plateaus
rather than continuing to increase linearly [6]. This paper
supplements the existing knowledge on MCTS performance
scaling by adding results on a fairly large set of single-player
games to the existing studies that have focused on speciic
two-player games.

Besides explicit tests of scaling, which are clearly the most
relevant related work, investigating algorithm performance
curves has been used for several other purposes in games.
Togelius and Schmidhuber [7] propose using the performance
curve of a genetic algorithm repeatedly playing a game as a
itness function to measure game quality: good games, they
hypothesize, are learnable at a moderate pace, leading to mas-
tery neither too quickly nor too slowly. This is a reinforcement
learning formulation rather than a planning formulation, so the
x-axis of their performance curve represents numbers of games
played, rather than time budget within a single game as here,
but nonetheless the ideas are closely related.

Several other researchers have recently used ratios between
diferent algorithms’ performance on a game, called a relative
algorithm performance proile (RAPP), as part of a game-
quality itness function [8], [9], [10]. This is based on a
hypothesis that the strength diference between good and bad
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Fig. 2. Average game duration by number of MCTS iterations and win–loss
outcome.

agents playing a game can be used as a proxy for game quality,
or at least as a ilter of bad-quality games: a game on which
a random agent performs as well as an agent employing a
smarter strategy likely lacks interesting depth. The single-
algorithm performance curves I investigate here can be seen as
a generalization of RAPPs to look at not only ratios between
algorithms with speciic settings (such as random play vs. a
speciic MCTS coniguration), but also curves with parameter
variation of a single algorithm. Although generating games
is not the purpose of the present paper, properties of an
MCTS performance curve may be interesting to use as part
of a game-generation itness function. For example, games
where MCTS performance plateaus early, versus late, versus
increases linearly, may pose diferent types of challenges (at
least, as such challenge is viewed by the MCTS agent).

III. Methodology
Since I’m investigating the scaling curve of MCTS as its

computation budget is increased, the basic methodology is
simple: have the agent repeatedly play each game in the GVG-
AI corpus starting from a small computation budget, then
double the computational budget and re-run the same trials
on all the games.

Tests were run using a minor variant of the GVG-AI
framework, starting from the April 4, 2016 revision in its
GitHub repository.4 I modiied the framework to use a limit
on MCTS iterations, rather than a time limit, as the method
of time budgeting. This change was made in order to make
the tests more reproducible. A time limit of, for example, 40

4https://github.com/EssexUniversityMCTS/gvgai

milliseconds or 80 milliseconds per move only produces com-
parable data if run on exactly the same hardware, with system
load and other factors held constant. Since I’m running a large
number of trials, it was convenient to use cloud-computing
resources to carry out the experiments, an environment where
it’s not possible to assume that every trial will be run on
identical hardware with identical system load. A time budget
of, for example, 32 or 256 MCTS iterations, on the other hand,
is completely reproducible on any hardware.

As a point of reference to anchor the MCTS iteration counts
in this paper with the wall-clock time limit of 40 milliseconds
in the GVG-AI competition, in my tests I found that 40 ms
is enough time to run around 30 MCTS iterations on average,
although this varies signiicantly depending on the speciic
game and hardware. Therefore, since the tests in this paper run
from 1 through 1024 iterations, they represent a time budget
starting at about 1/30 of the current competition’s time budget,
and going up to about 30x.

The speciic implementation of vanilla MCTS I test here is
the one included with the GVG-AI SDK as the sampleM-
CTS controller, and described in [1]. It uses an exploration-
exploitation constant of

√
2 and a play-out depth of 10 moves,

with cutof states evaluated by giving them a large positive
score if a win, large negative score if a loss, and otherwise
the current point value. I chose this controller because it is
already used as a baseline in the GVG-AI competition, widely
available to every GVG-AI competition participant, and has re-
ported competition results going back several years; therefore
what happens to its performance if the current competition’s
time budget were signiicantly increased serves as a useful
baseline. There are of course many other things about this
baseline that could be varied; here I vary only the number of
iterations, not any other parameter choices, though doing so
would be interesting future work.

The GVG-AI game corpus includes 62 games, each of which
comes with 5 levels. I run 10 trials of each level, i.e. 50 of each
game, for the tests with MCTS iteration limits of 1 through
64, and (to reduce computational resources needed) 5 trials of
each level, or 25 per game, for the 128-iteration through 1024-
iteration experiments. The diference is visible in the slightly
larger error bars on the higher-iteration-count data points in
Figures 1–3; the data is otherwise completely comparable. For
each of these trials, I record whether the outcome was a win or
loss, and the number of timesteps to end of game. Games are
allowed to run for a maximum of 1000 timesteps. The GVG-AI
framework also deines a point score, but we don’t use it here,
since the MCTS controller is mainly trying to maximize its
wins vs. losses rather than playing for points, and comparing
points across games is often not very illuminating in any case.

IV. Results

The top-level result is shown in Figure 1, plotting win rate
(across all trials of all games) versus MCTS iteration limit.
This shows a rapid increase in win rate initially, as the iteration
limit is increased from its very low starting point of 1, followed
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Fig. 3. Same data as shown in Figure 1, but reinterpreted as either 3- or 4-valued outcome rather than the 2-valued win/loss outcome. In (a), the three
outcomes are win, loss, or timeout. In (b), whether a game is a win or loss is crossed with whether it was a timeout or not, producing 4 possible outcomes.

by diminishing returns up towards a plateau of about 26% past
the 256-iteration trials.
A. Overall scaling

The version of the win-rate curve with a logarithmic x axis
(b) gives a more detailed look at the scaling properties. The
general expectation that MCTS should scale logarithmically
with increased iterations is partly conirmed: the scaling does
look logarithmic, i.e., linear on the log-axis graph, up until
the plateau past 256, although with some anomalies. There is
a higher slope from 1-4, followed by a lower slope from 16 to
256, interrupted by a strange but signiicant dip in performance
at 8. The reason for this dip is not entirely clear, but is visible
across a number of speciic games as well, when looking at
the results broken down per-game in Figure 4.

The main takeaway from the top-level results is therefore
that overall performance of the sampleMCTS agent would
improve only modestly if the GVG-AI competition’s time
budget allowed for more than the current 30 or so MCTS
iterations, either through increasing time budget or (more
likely) optimizing the code for rollouts: from around 22% to
26% overall win rate. Therefore, my initial hypothesis that the
GVG-AI competition’s challenge might be somewhat illusory,
due mainly to the small time budget and unoptimized code,
is not conirmed: the baseline sampleMCTS agent would
not start dominating the competition even if its time budget
were increased by 10x+. And based on the clear plateau in
performance, it is unlikely to do so even if it were given still
more time than that.
B. Types of wins and losses

While running these experiments, I noticed that experiments
with higher iteration limits were taking much longer to com-
plete, by more than would be expected just from the increased

number of MCTS iterations. Investigating further, the reason
appears to be that when given more computation time, the
MCTS agent plays much longer games. And speciically, its
losses drag out for longer, while its wins stay at about the
same length, as shown in Figure 2.

In fact not only is the MCTS agent playing longer games
in its losses as its time budget increases, but an increasing
proportion of losses come right at the maximum length limit
of 1000 timesteps. This suggests that signiicant qualitative
changes of play are taking place that are somewhat masked
what looking only at the win-rate results (since long losses
and short losses are still losses). One way of making these
changes more visible in the overall results is to change from
scoring games on a 2-outcome scale of win–loss, to a 3- or
4-outcome scale that treats timeouts when the maximum game
length is reached diferently.

Figure 3 reinterprets the overall win-rate data using two
alternate ways of treating timeouts. On the left (a), a 3-
outcome scoring is used, with games resulting in either a win
(within time), a loss (within time), or a timeout, treated as
diferent from either a win or loss. From this it can be seen
that while wins slowly increase, the biggest swing in overall
performance is that, given more computation time, the MCTS
agent manages to convert losses into timeouts. On the right
(b), the timeouts are further broken down into wins at timeout
and losses at timeout, which shows that the biggest swing is
speciically from losses within time, to losses at timeout.

From this view of the data, the MCTS agent can actually
be said to come close to mastering the GVG-AI games if the
goal were not to lose, with timeouts treated as non-losses:
while its win rate plateaus at a not-that-impressive 26%, it
brings its overall loss-within-time rate down to a mere 22%,
i.e. it manages to avoid explicitly losing (except by timeout)
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in 78% of games. This quite large gap in two ways of looking
at what constitutes good performance leads to a hypothesis
that the current GVG-AI competition has two distinct types
of challenges, and a vanilla MCTS agent can master one but
not the other: irst, avoid losing, and then, igure out how
to win. As one of this paper’s anonymous reviewers aptly
pointed out, however, what a timeout means varies by type of
game, sometimes indicating partial mastery and other times,
especially in puzzle games, not indicating much success at
all: “It’s an accomplishment to stay alive in Pac-Man even if
you don’t eat all the dots, but it’s not an accomplishment in
Sokoban if you put the blocks in an unwinnable state and then
run out the clock”.

Further study would be needed to clarify the nature of
the challenges posed by the diferent games. The fact that
controllers do get better at avoiding explicit losses suggests that
there is challenge involved in doing so, but it may be that in
most of the GVG-AI games, winning requires a more complex
policy than avoiding explicit losses does, which the controller
is unable to ind. For example, avoiding explicit losses in some
of the games requires only short-term reactive behavior such
as avoiding an enemy, while winning requires putting together
a sequence of steps to achieve a goal. The sampleMCTS
controller’s 10-depth search cutof would further make it
entirely unable to ind winning plans in games requiring longer
sequences of action. This inding also suggests that the choice
of whether a GVG-AI game should result in a win or loss
at timeout has a signiicant efect on the challenge posed, if
judged by the headline win–loss rate; most of the current GVG-
AI games result in a loss at timeout, but a few result in a win.

The diferent insight into performance given by looking at
only wins and losses, as in Figure 1, and by treating timeouts
separately, as in Figure 3, suggests that future analyses of
algorithm performance on the GVG-AI corpus may want to
report both measures, in order to provide a fuller view of the
algorithm’s playing strengths and weaknesses.

C. Per-game results
Figure 4 breaks the results down for each of the 62 games,

showing win rate, represented by brightness of the table entry,
as MCTS iterations increase. The table is ordered from top to
bottom by the sum of win rates across all trials for that game,
i.e. games at the top are overall won by the MCTS agent more
often than those at the bottom.

A few noticeable aspects are worth pointing out. First, a
relatively small number of games, about a dozen, are the
only ones that really diferentiate performance of the lower-
iteration and higher-iteration MCTS agents. Most games are
insensitive to iterations: in more than half, the MCTS agent
rarely wins, regardless of time budget, and in a few, it mostly
wins even with small time budgets. Only a few games, such as
seaquest and racebet2, seem to present the MCTS agent
with a diiculty curve, where it performs better as it computes
more. And a few games are completely mastered with increas-
ing iterations: the most stark clif is for intersection,
which reaches an 100% win rate at mere 4 iterations, but is

not so easy that it can be mastered with only 1 or 2 iterations.
The odd decrease in performance at 8 iterations observed in
the overall results can also be seen in a number of individual
games here, such as plaqueattack and sheriff.

The rather few number of games that show performance
diferentiation has implications for uses of algorithm per-
formance proiles as a itness function in game generation.
Algorithm performance proiles are only a meaningful stand-
in for diiculty curves or challenge depth if we can blame a
lack of performance diferentiation in a speciic game on the
game rather than the algorithm. The many GVG-AI games on
which vanilla MCTS fails to achieve any win rate at all implies
it may not be a great candidate for use in such itness functions,
since it will reject many games which do have challenge depth
but which it is simply not able to play.

V. Conclusions and Future Work
The experiments in this paper investigate scaling the base-

line vanilla MCTS controller used in the GVG-AI competition
from about 1/30 of the current competition’s time budget
through about 30x of the current competition’s time budget.
The two purposes of doing so were to better understand MCTS
scaling properties, using the 62 games in the GVG-AI corpus
as the testbed, and to better understand the challenge posed by
the GVG-AI competition.

Regarding scaling, I found performance increased roughly
with the logarithm of increased computation time, although
with some anomalies in the slope, up to a plateau at around
256 MCTS iterations, after which performance did not increase
further. The plateau implies that even massive amounts of
computational power would be insuicient to solve the chal-
lenges in the current competition using the baseline MCTS
agent. This may be due to the 10-depth cutof in the Monte
Carlo rollouts, or it may be due, as Perez et al. [1] hypothesize,
to suboptimal estimates produced by closed-loop MCTS on
stochastic games.

The initial skeptical hypothesis regarding the GVG-AI com-
petition’s medium-term challenge is refuted by these results.
I had worried that the competition might really be too easy;
that if rollouts were optimized so that agents were given, say,
10x the efective time budget they have now, the competition
might become trivial, with the baseline controller mastering
the games. However, I ind that is not the case. Instead, per-
formance plateaus past 256 MCTS iterations, which is roughly
10x the time budget of the current GVG-AI competition,
and furthermore plateaus at only a 26% win rate. Therefore
the GVG-AI competition would remain interesting, at least
relative to the current baseline, even if orders of magnitude
more computation time were given to the agents entering
the competition, through either an increase in time budget or
optimizations to the framework.

I do however ind that quite a lot of change in gameplay is
happening beneath the headline win-rate data. As time budget
is increased, MCTS takes longer to lose the games that it’s
going to lose. And, it often loses them in a qualitatively
diferent way, by hitting the maximum game length (which
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in many GVG-AI games is a loss through timeout), rather
than succumbing to one of the explicit loss conditions, such
as colliding with an enemy. When the overall results are rein-
terpreted using a 3-valued outcome of win, loss, or timeout,
the vanilla MCTS agent does manage to avoid losses in the
majority of games, at the larger time budgets, bringing its
“non-loss” rate up to 78%—much more impressive than its
26% win rate—with the majority of games ending in a timeout.

This suggests to us two conclusions. First, it may be
helpful to look beyond the headline win rate in the GVG-
AI competition when comparing agents, and treat games that
timeout diferently from those where a win or loss is recorded
within time. This provides a fuller view of what the agent
is doing, and which kinds of challenges it is succeeding or
failing at. Secondly, it suggests that in the current corpus of
GVG-AI games, the challenge is structured so that not-losing is
easier than winning. Further work might help clarify why this
is; for example, it may be that in the majority of the games a
relatively simple controller can avoid losing, perhaps with even
a very simple reactive policy like “move away from enemies”,
but more complex planning may be needed to achieve win
conditions. One approach to conirming whether this is the
case could be to solve for optimal policies for several of the
games and investigate their structure.

Future work should look at more algorithms beyond the one
baseline whose scaling properties I test here. In this paper, only
the time budget in the baseline MCTS controller is varied, but
there are many variations of MCTS and quite a few other
parameters that can be varied. MCTS can also be compared
on this corpus with the scaling of other algorithms, such as
traditional full-width search.
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Abstract—Player decision modeling can provide useful guid-
ance to understand player performance in serious games. How-
ever, current player modeling focuses on high-level abstraction of
player behavior rather than decision-level player modeling, and
is predominantly applied to entertainment games. In this paper,
we describe an approach from game design to data mining and
data analysis to determine detailed player decision patterns. We
illustrate this approach with VistaLights, a supply chain game
we developed based on a recent oil spill event in Houston. With
this game, we set up a within-subjects experiment to study
decision making under varying circumstances, specifically to
consider whether/how a recommendation system can improve
human decisions. Using a series of data analysis techniques we
built a coarse-grained decision model as well as a fine-grained
model to compare players’ actions on the game outcomes. The
results confirm the need for decision-level modeling and show
an ability of our approach to both identify the good and bad
decision patterns among players.

I. Introduction

Player modeling has become more popular and essential for
game design to appeal to a broad audience. Player modeling
techniques aim to abstract player behavior patterns and have
been successfully applied to game development [1], [2], self-
adaptive games [3], [4], and agent design [5]. These techniques
would be useful for serious games too; however, thus far
applications have been rather limited [6], [7].

Unfortunately, the existing work in player modeling typ-
ically classify players based on their high-level behavioral
statistics. No matter which machine learning or data mining
approaches are used, aggregate properties such as play time or
number of actions tend to be used to categorize players into a
limited number of classes. Although general clustering based
on player features can be useful, this likely does not provide
the depth and accuracy needed to understand the dynamics
of any game, whether a serious or entertainment game. For
example, with this high-level approach it is difficult to deter-
mine what the key decisions are that lead to a poor or good
performance. Exactly this kind of information is critical for
improving the effectiveness of serious games. Therefore, we
argue that the existing work needs to be complemented with
decision-level modeling and decision-by-decision evaluation.
The motivation for this paper is to demonstrate the usefulness
of this low-level approach for serious games.

In order to explore how to study human decision-making
behaviors in serious games, including how player decisions
can be improved by providing help in the form of decision
aids, we have developed a supply chain game from scratch

called VistaLights. In this simplified but realistic simulation
game, players manage a port by prioritizing ships and dealing
with disruptions, specifically oil spills. The game is inspired
by the recent oil spill event at the Port of Houston [8].
Although a simplification of reality, this game provides a
complex dynamic decision making environment where opti-
mization techniques cannot find the optimal solution strategy
and simple analytical techniques do not reveal why certain
players performed as they did. By developing it ourselves,
we have complete control over what happens in the game,
allowing us to systematically study player decisions. In this
paper we report the findings of our initial pilot study, where we
set up a within-subjects experiment with three levels that vary
in the use of a recommendation system (no recommendation,
recommendation, and recommendation with justification).

Our contributions are threefold. First, we illustrate through
a detailed description of designing and evaluating VistaLights
how to develop and study a serious game for decision making,
and demonstrate how to assess a well balanced design, which
is needed to analyze player performance. Second, we detail a
generalized approach not limited to VistaLights to understand
the impact of player decisions on game outcomes from a high-
level and decision-level perspective, and highlight the limita-
tions of clustering techniques. Third, we report our findings
from analyzing player behavior in VistaLights, including how
players engaged with the recommendation systems.

II. Background
A. Serious Games

Serious games, games with a non-entertainment purpose,
are increasingly used in various fields, from health to business,
to study and improve human behavior [9]. As all games are
essentially about making decisions, it is key to identify how
players make decisions to increase the effectiveness of serious
games. First, by identifying player behavior the design can
be adjusted accordingly to maximize the impact the game is
attempting to achieve. For example, when players make poor
decisions, the game can recognize this and provide personal-
ized feedback or adjustments. Second, players themselves can
then identify which types of players they are and how they
need to improve their decision making.

Typically, player decisions are evaluated according to a nor-
mative model, and then players receive feedback accordingly
to improve their behavior. Such evaluations would still benefit
from player modeling to be able to personalize the game,
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and the limited work where player modeling has been applied
to serious games has exactly done this, by modeling players
according to normative models [6], [7]. However, in complex
dynamic games such as VistaLights this typical approach will
not be sufficient because it is difficult to determine upfront
what the key decisions are. But even in simpler games un-
expected behavior may happen—actions not identified by the
normative models—and identifying how these actions impact
the game outcomes will be beneficial. We argue that this
type of identification requires a different approach to player
modeling, one that considers decision-level analysis.

B. Player Modeling

In terms of player modeling approaches, machine learning
and data mining techniques, especially clustering techniques,
have been widely accepted [10], [11]. For example, Drachen
et al. [1] use Emergent Self-Organizing Maps to cluster high-
level player behavior features, such as completion time and
number of deaths. The clustering result is used to improve the
game and determine whether the player is following the game
designer’s intention. However, even with advanced machine
learning algorithms, modeling human player decisions can be
difficult due to the large data dimensions and the uncertainty of
human behavior [12]. Other approaches have also been applied
to better understand player decisions. Holmgård et al. [2] use
generative agents as personas to characterize and discriminate
human players. They show that a high-level abstraction of
human decisions is possible. In our research, we use similar
approaches to cluster human decisions, as well as some novel
solutions to identify a more fine-grained analysis, and apply
these in the context of a serious game.

III. Design

In this section, we describe the design of VistaLights1, which
we use as a research environment to study player decisions
and the role of decisions aids. We discuss the context for the
development, how to play it, and how the scores are calculated.

A. Context

We modeled the game after the Port of Houston. Based
on discussions with stakeholders, we understood that when a
disruption occurs, representatives from different industries in
addition to several authorities discuss what actions to take. The
different industries concern: breakbulk, dry bulk, and liquid
bulk. The port authority takes care of container ships but
also of special ships such as cruise ships. Actions basically
involve prioritizing certain ships and implementing mitigation
strategies. The resiliency to bounce back from a disruption is
of interest to everyone involved because the port is a shared
infrastructure on which everyone’s productivity depends.

In building the first game version, we focused on disruptions
caused by oil spills. Specifically, we used the oil spill that
happened in March 22, 2014 as an example. At that date, a
collision occurred between an oil barge and a ship at a critical
node in the network (blocking the Houston Ship Channel

1For game and source code, see http://hdl.handle.net/2047/D20213074

Fig. 1: A screen shot of VistaLights. The main screen shows
the map of the port with the ships; on the right are the
messages; at the bottom is the priority queue and control panel.

where all ships must pass to enter and exit the port), causing
an almost complete standstill in the port. Interestingly, a cruise
ship was required to wait right outside of the port and could
not enter due to the spill. The decision was made to let the
cruise ship go through the oil spill before cleaning it up. We
were also inspired by a decision aid and monitoring system
that is used to schedule ships. This system is essentially a
combination of a visualization of the entire port as well as
priority queue of ships and their characteristics. It formed the
basis for the game’s interface and gameplay.

B. Gameplay

Like any simulation game, in representing the object of
interest we made simplifications. For example, the current
version is a single player game where the player single-
handedly decides what actions to take. The player’s goal is
to manage the port by prioritizing ships and dealing with
disruptions when they occur. In managing the port there are
two benchmarks to consider: earnings and welfare. Earnings is
a quantitative economic score based on the efficient use of the
port’s infrastructure; welfare is a qualitative composite score
that considers the environment and reputation.

In the game, players see a map of the Port of Houston
with a network of channels that ships use to navigate to the
docks to unload their cargo. Players cannot directly control the
ships; they can only change the priorities in the priority queue,
which lists all of the ships with their names, current status,
industry type, cargo amount and value, due time, and estimated
time of unloading (Fig. 1). Each ship is assigned a unique
priority value and ships with higher priority will be scheduled
first. Lower priorities will be scheduled when no conflicts
exist. In prioritizing ships, players will need to maximize
the occupancy rate of the shipping lanes and docks while
minimizing penalties that result from ships being overdue.

Players must further decide how to respond to the oil spill
when it occurs. Other than the null-option (leaving the oil spill
alone), players have three options to clean up the oil: burning,
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dispersants, and skimmers. Each option varies in cost, clean up
time, impact on traffic, and impact on welfare. Additionally,
with burning and skimmers the traffic can only resume after the
spill has been cleaned up; with the null-option and dispersants
the traffic can continue at a lower speed. Players can postpone
their decision to allow time-critical ships to go into port but
at the cost of a welfare penalty.

The game is divided into two phases: the decision and
simulation phase. During decision phases, players can take
actions. Although the simulation time is paused during these
phases, players need to submit their decisions within a certain
time. During the simulation phases players cannot take action;
however, they can retrieve information about the ships that
would be useful to make informed decisions during the next
decision phase. The game spans several days in the port and
decision phases occur every six hours of port operation (i.e.,
one simulation phase covers six hours of port operation). To
help players be aware of what is happening in the port, they
receive messages categorized on events throughout (Fig. 1).
Players can change the speed of the simulation time during
the simulation phases with a control panel.

C. Score Calculation
The player’s goal is to maximize the economic score without

reducing the overall welfare. The economic score is increased
by unloading cargo, and calculated by multiplying the amount
of cargo by the cargo value. It is decreased by due time
penalties if ships fail to unload on time in addition to cargo
maintenance costs: the longer the cargo stays on the ship, the
higher the cargo maintenance cost will be. The cost for oil
cleaning will also be subtracted from the earnings made. We
express the economic score as the total earnings generated
after a number of days and as the average earnings per hour.

Welfare is a qualitative score with a value between zero
and five (represented as stars). It is negatively affected by
overdue cruise ships and how the oil spill is handled. When a
cruise ship is overdue, it continues to decrease proportionate
to the number of passengers until all passengers have left the
ship. With the oil spill, it continues to decrease proportionate
to the amount of oil until it is cleaned up. An additional
penalty is applied for the chosen solution because solutions
such as burning and dispersants have further implications for
the environment. The welfare score recovers at a constant but
slow rate; however, if it becomes zero, players lose the game.

IV. Methods
Our goal for the pilot study with VistaLights was to explore

decision making in a serious game. For the study we imple-
mented a within-subjects experimental design; however, the
scope of this paper is specific to evaluating modeling player
behavior within this space, not to evaluate the manipulations
themselves, which were intentionally implemented to observe
decision making under varying circumstances.

A. Participants
Participants were recruited at Northeastern University and

University of Houston-Clear Lake. At the first University

primarily students in Computer Engineering volunteered to
participate (N = 26); at the second University it concerned
solely students in Psychology who participated for credit (N
= 11). No demographic information was collected.

B. Materials

The game VistaLights that is provided as the material for the
study has four levels. The first level is a tutorial that explains
step by step how to play the game with a pop-up screen. The
level itself is a short level that ends in two days of simulation
time. The other three levels have been designed according to
the experimental design described in detail in the following
section. These levels end in five days of simulation time. Based
on playtests we roughly estimated that it would take an hour
to play all levels if players would make use of increasing the
simulation speed at times. We set the maximum time during
the decision phases at two minutes. In the remainder of the
paper we refer to the first level as the tutorial and to the other
three levels as Challenge 1, 2, and 3, respectively.

We varied the four levels in terms of a number of level
characteristics and manipulations, both which we discuss in
detail below. These controlled variation allow us to maintain
some consistency over the types of decisions the players
must make and to identify how players learn to modify their
decisions across the game, while allowing enough variability
to isolate the impact of specific variables on player decisions.

1) Level Characteristics: We varied the levels in terms of
ships, oil spill location, and goals. First, we populated each
level with 30 different ships. We randomized all the ship values
between realistic values for one level first. For example, we
calculated the arrival time by multiplying a random number
between zero and one and multiplying this by three days. For
the other levels we kept the same values except for industry
type, arrival time, and due time. For those characteristics we
calculated a new random value. We made these variations
to make sure players experience different scenarios, and are
therefore not inclined to take the exact same decisions.

Second, we varied the location of the oil spill between three
locations for Challenge 1, 2, and 3; no oil spill occurred during
the tutorial. The three locations were chosen such that they
would have the same impact on the game; however, it gives
players the illusion that there is variation and that they cannot
predict what will happen. Every oil spill happens around the
same time, after two days, with a few hours difference between
each level. Unlike the oil spill, we used the exact same network
with the same number and type of docks for all four levels.
For each industry type (breakbulk, dry bulk, liquid bulk, and
cruise ships) we included two docks and mapped them to how
these industry types are located in the Port of Houston.

Third, we varied the earnings and welfare goals between
levels. At the start of each level, players receive a message
that specify the earnings and welfare targets that they have
to obtain. We determined realistic target goals for both the
revenue and welfare based on prior playtests. For example,
the first level is much harder and so we set the target goals
lower than for the subsequent levels.
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2) Level Manipulations: Our manipulations pertaining to
the levels are related to the provision of a decision aid that
provides recommendations regarding how to prioritize the
ships. In addition to a level where no decision aid is provided,
we settled for this initial study on two variations: a recom-
mendation without and with justification. These manipulations
allowed us to explore how players make decisions when
confronted with a complex, unfamiliar task under varying
circumstances. This manipulation resulted in the following:
players received no recommendations for Challenge 1; they
received recommendations regarding prioritizing ships with
no justification for the recommendation for Challenge 2; and
they received recommendations regarding ship prioritization
and justifications for those recommendations for Challenge 3.

In both recommendation systems, the player receives up
to three recommendations in each decision phase. For each
level (other than the tutorial) there are 20 decision phases
across the five days. Recommendations are based on the ships
that are at the time of the decision phase waiting outside of
the port; ships that are moving and unloading are ignored.
Both systems will first check if any cruise ship is going to
be overdue or is already overdue. Then they will check on
overdue or nearly overdue ships. From there recommendations
involve prioritizing ships with the highest total cargo value.

Recommendations with suggested priority values are made
in the order described above and in the format of “Consider to
prioritize ship <ship name> to priority <x>.” We decided for
both systems to recommend a specific priority because in that
way we can determine whether players comply with the ad-
vice. The difference between the two recommendation systems
concerns the justification. Justifications are short explanations
such as ”Because this ship has a high cargo value.”

The three recommendations are provided but only after
players requested the advice. As players cannot progress
without requesting advice, we essentially required them to do
this. This seems unnatural but was implemented to ensure that
players would consider the recommendations, which is the ma-
nipulation they are exposed to, and not play the game without
the recommendations provided. Once the recommendations are
requested, players then need to accept or reject each one of
them before they can progress to the priority queue to make
their changes. In this priority queue, they see the old value as
well as the suggested value by the recommendation system.

We designed the recommendation system to be imperfect
and purposely did not inform players about its logic. For
example, players could prioritize moving ships whereas the
recommendation system does not include these. Therefore, a
better performance is possible by not completely relying on
the recommendations.

C. Procedure

We implemented a within-subjects experiment where every
participant experiences every condition. There are three con-
ditions: • Challenge 1 (no recommendation), • Challenge 2
(recommendation), and • Challenge 3 (recommendation with
justification). The tutorial level was included to make sure

that players first learn how to play the game before starting
the experiment and to minimize the practice effect from
Challenge 1 to Challenge 2. We did not vary in the order of
the conditions because seeing the recommendation, and most
certainly the recommendation with justification, would likely
affect further play. A consideration for just three conditions
was a possible fatigue effect. We requested that all players
finish the experiment in one session to minimize any possible
bias from contextual factors for when and how players engage
with the game. Although the within-subjects design creates the
possibility of learning effects and behavior constancy, it was
necessary to determine whether prior performance in the game
predicted future compliance with the recommendations.

The implementation was different at both Universities. At
the first University the game was distributed with instructions
to play over e-mail. Participants were requested to take an hour
and complete all levels in one sitting. At the second University
players participated in person in a lab setting. After the
facilitator briefed them about the purpose of the study and how
to play, they were assigned to a computer where the game was
installed. This variation in play context was not intentional. It
was pragmatic and based on the infrastructures in place for the
researchers involved. For both locations selected participants
were contacted for a debriefing interview to understand what
strategies they used in the game.

D. Data Analysis

We applied several different data analysis techniques to
evaluate player behavior. We first analyzed the distribution of
the players’ earnings and welfare results to examine if the
game is well balanced. If the game is too difficult or too easy,
it becomes harder to distinguish players, and what decisions
can be considered good or bad. We then examined the role of
the recommendation systems by considering the relationship
between compliance rates with player performance. We also
compared a typical poor and top player from our sample with
a hypothetical player who does not take any actions (“No
Action Player”) and one who complies with everything that
the recommendation systems suggest but does nothing else
(“Compliance Player”). We performed these analyses to show
if the recommendation systems are useful and if players can
perform better than the imperfect recommendation systems.

To discover the decision patterns, we performed a coarse-
grained analysis and a fine-grained analysis. For the coarse-
grained analysis, we linked the players’ decisions on the oil
cleaning solutions and the ship priorities with their results on
earnings and welfare. For the ship priorities we categorized
different groups of priority level changes and counted the
changes per group. We then performed a clustering analysis
and used the resulting clusters of player decisions to predict
players’ win/lose probability. The clustering was done by first
whitening [13] the number of actions of each priority group
category, and then using Ward method [14] as the criterion to
perform hierarchical clustering [15] analysis.

For each of the above analyses, all 37 players’ data are
considered; however, for the fine-grained analysis we focused
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on only two players to illustrate our proposed method of
analyzing specific player decisions in serious games. By com-
paring the cycle-by-cycle decisions of two similar players, we
explored how individual decisions impacted the performance
trajectory of each player, and tried to infer what strategies the
players had used. To complement our strategy inferences, and
see if players intentionally took certain actions, we compared
this analysis with our interview notes of selected players who
articulated their strategies to us.

V. Results

In this section, we discuss first the overall player per-
formance and then the role of the recommendation system,
followed by the influence of the oil cleaning decisions and
the priority change decisions. Finally, we illustrate the play
trajectories of two players and show how making similar
decisions can still lead to drastically different results in a
dynamic environment such as VistaLights.

A. Player Performance

The final results on earnings and welfare are depicted for
each player in each level in Figure 2. The horizontal lines
represent the earnings target in each subfigure; the vertical
lines represent the welfare target. The resulting quadrants show
if players won the game (upper right quadrant), lost because
they failed to meet the earnings goal (lower right quadrant),
lost because they failed to meet the welfare goal (upper left
quadrant), or lost because they failed to meet both earnings
and welfare goals (lower left quadrant). Except for Challenge
3, where few players lost on both earnings and welfare, players
were well-distributed over the quadrants, suggesting that the
targets were fair and that the game had a reasonable difficulty.

There was no immediate clear pattern for previous player
performance predicting future performance. A player who did
well in Challenge 1 did not necessarily do well in Challenges
2 and 3. The likelihood that a player got the same result in
Challenges 1 and 2, Challenges 1 and 3, and Challenges 2 and
3 were 51%, 62%, 48%, respectively. This finding was also
illustrated by the win percentage: the percentages of players
who won were 58% (21 of 36), 29% (10 of 34), and 60% (18
of 30) for Challenges 1, 2, and 3, respectively, suggesting that
Challenge 2 may have been been more difficult than the other
challenges. Of the 30 participants who completed all levels,
five players won every challenge and five lost every challenge.
Losing two or winning two was split almost equally as well.

B. Recommendation System

In Challenges 2 and 3, we provided players with an imper-
fect recommendation system. However, this recommendation
system was most certainly beneficial. Table I illustrates the
performance of the recommendation system by modeling a
player who complies with all provided recommendations and
does not do anything else. We compared this performance by
modeling a player who does not take any action at all and a
typical poor and top player from our sample. This table shows
that even the poorest players made some good decisions but

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Welfare

-4
-2
0
2
4
6
8

Ea
rn

in
gs

 (M
ill

io
n 

Do
lla

r) None
Burn

Disp
Skmr

Win
Lose

(a) Players’ final earnings and welfare for Challenge 1.
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(b) Players’ final earnings and welfare for Challenge 2.
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(c) Players’ final earnings and welfare for Challenge 3.

Fig. 2: Distribution of the players’ final results. The blue lines
are the target earnings and welfare. The shapes represent the
oil spill solutions players chose.

that if they only complied with the recommendation system,
doing nothing else, their final results would have been better. In
fact, if a player simply accepted all the recommendations and
chose dispersants or burning as their oil spill solution, they
would have exceeded the targets and won both challenges.
The table also shows that players can outperform the recom-
mendation system. The system only suggested three priority
changes and only for ships that were waiting outside of the
port. Therefore, room existed for human decision making to
outperform simple recommendation compliance in the game.

In terms of the usage of the recommendation systems, we
calculated the rate with which players accepted the recom-
mendations and then the rate that they complied by actually
implementing the advice. A strong correlation existed between
the acceptance rate and the compliance rate for both Challenge
2, r = .96, p < .001, and Challenge 3, r = .93, p <
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TABLE I: The performance comparison between a hypothet-
ical player not taking any action, a typical poor player, a
hypothetical player who complies with every recommendation
and nothing else, and a typical top player. For the hypothetical
players we chose dispersants when an oil spilling happens.

Player Item C2 C3

No Action Player Earnings -3.89M -0.76M
Welfare 0.00 1.98

Poor Player Earnings -1.87M 1.45M
Welfare 0.00 0.00

Targets for Players Earnings 2.60M 2.50M
Welfare 0.50 1.50

Compliance Player Earnings 3.13M 3.15M
Welfare 1.48 2.30

Top Player Earnings 4.60M 5.33M
Welfare 1.42 2.93

.001. Therefore, when players accepted the advice, they also
complied by implementing the advice. The actual acceptance
rates were similar across challenges: in both challenges, a
small majority of the advice was implemented (M2 = .55,
SD2 = .29; M3 = .55, SD3 = .33). The rates were, in fact,
similar because reliance on the recommendation system in
Challenge 2 was a strong predictor of reliance in Challenge 3,
accounting for 81% of the variability (R2 = .81). Knowing that
the recommendations do help, it seems that more players could
have benefited from an increased reliance. However, we did not
find any relationship in the data between the compliance rates
and performance, suggesting that any differences we found
between the challenges in terms of performance could not be
explained by the use of the recommendation systems. There-
fore, other factors determined how well players performed.

Additionally, performance on previous challenges (earnings,
welfare, and whether or not the player won the challenge) did
not predict whether players would rely on the recommenda-
tions for later challenges. It should be expected that players
who had seen that they were unsuccessful would have been
more likely to comply with the recommendations, but this was
not the case. Because compliance did not predict performance
and previous performance did not predict future compliance,
despite the fact that simply following the recommendations
and doing nothing else would lead to success, we argue
that players were not able to effectively decide when the
recommendations were beneficial and when they were not.
This result may have been due to players not having received
immediate feedback about their decisions to comply. The sum
of their decisions was reflected as a final score at the end of
the challenge, making it difficult to identify which decisions
should be changed.

C. Oil Cleaning Decisions

The response to the oil spill was one of the key player
decisions, and our results confirmed this. Figure 3 shows the
distribution of the earnings and welfare for each challenge by
different oil cleaning solutions. The trend of how solutions
impacted earnings was clear and similar from challenge to
challenge. The null-option did not cost anything and did not
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(a) Distribution of earnings of different oil cleaning solutions in each
challenge.
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Fig. 3: Oil cleaning solution impact on the final result.

cause traffic to stop. Burning did stop traffic but had the
advantage that it cleared the oil relatively quickly. Few players
chose skimmers and the figure highlights that it may not have
been the best solution for earnings. Its advantages were likely
overruled by the penalties for overdue cargo.

The solutions were also related to welfare. The null-option
was a guarantee for losing the game. However, the patterns
for the effects across the challenges were dissimilar. Further
investigation revealed that this had to do with the arrival of
the cruise ships around the oil spill. With Challenge 2, two
cruise ships arrived shortly after the oil spill, explaining why
so many players lost that challenge due to welfare. In contrast,
there was little variation in Challenge 3 because no cruise
ship arrived during the oil cleaning period. The variance of
burning was also a result of cruise ship scheduling. Those
that implemented burning after letting the cruise ships pass
first, did better on welfare.

D. Priority Change Decisions

In addition to the one-time oil-cleaning decision, players
were tasked with changing the ship priorities. As shown in
Figure 4a, we counted the number of priority change actions
and what kind of priority changes players made in Challenge
1. We divided priority changes into the following groups:
priority 1, priorities 2 and 3, priorities 4 to 8, priorities 9 to 20,
and priorities higher than 21. In this figure we further placed
those who won to the left side of the vertical line and those
who lost to the right side. This figure shows that players who
won Challenge 1 made more changes, and that the number of
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(a) The number of actions for assigning new priorities in Challenge
1, categorized by type of priority change. To the left of the vertical
line are the players that won. In both the win and lose groups, players
are sorted by their earnings in descending order.
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Fig. 4: Analysis of players decision pattern

actions predicted performance earnings with 26% variability
(R2 = .26). This prediction was not evident in Challenges 2
and 3, and the number of actions did not increase due to the
recommendation systems. Therefore, it may be that players
who put in more effort in Challenge 1 were able to change the
priorities of critical ships, whether intentionally or by chance.

To better understand player decision patterns, we conducted
a cluster analysis, and the result is depicted in Figure 4b. There
were three major clusters, and from the top to bottom, they can
be characterized as the medium amount of priority change, the
low amount of priority change, and the high amount of priority
change. An outlier was player 31 who had a large amount of
actions that set priority to 1 and to a value of higher than 20.
A related subgroup included Players 2 and 6 who also moved
ships to a priority higher than 20. By explicitly moving the
ship to the end of the priority queue, they freed up the main
channel and let more urgent ships enter.

E. Detailed Play Trajectories

From these results we were unable to get a fine-grained
decision evaluation, such as determining if a particular deci-
sion was good or bad. For example, Players 12 and 15 made
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(b) The action and the status of each decision phase of Player 34.

Fig. 5: Analysis of individual play trajectories. The trajectory
includes the scores on earnings and welfare across the decision
phases as well as the priority changes for all 30 ships. The
priority changes are color coded with the priority groups.

almost the same number of priority changes and they both used
dispersants as oil cleaning solutions. However, they ended up
with different results. To perform a more fine-grained decision
evaluation we selected two seemingly similar players, Players
2 and 34, and analyzed their play trajectories. Their trajectories
are illustrated in Figure 5. This figure shows their earnings and
welfare over time, in addition to what changes they made to
the 30 ships over the 20 decision phases.

According to the earnings curve, there was a turning point at
decision Phase 9. After Phase 9, the earnings of Player 2 kept
increasing while the earnings of Player 34 sharply plunged
until the end of the game. Player 34 must have made some
critical decision just before or during this phase that caused the
avalanche effect. The first difference was that player 34 moved
Ship 3 to Priority 1 at Phase 9 and this ship was a breakbulk
ship. When we recreated the game according to the player’s
log file, we noticed that by that time, the breakbulk docks were
already heavily overloaded and Ship 3 was going to be overdue
according to the system estimation. During that decision phase,
Player 34 made the natural decision to move Ship 3 to a higher
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priority. As a consequence, ships at breakbulk docks and ships
that were already in the port had to wait for Ship 3 to move in.
Dock utilization was then significantly reduced by this action,
and other ships may have, as a result, become overdue. Similar
actions were made by Player 34 repeatedly throughout the
game, including prioritizing another breakbulk ship, Ship 26,
at Phase 9. We consider such decisions to be bad decisions.

Another key difference between Player 2 and Player 34 was
that Player 2 moved Ships 4 and 19 to a low priority. By
explicitly moving ships to the end of the priority queue, Player
2 let the ships that had already unloaded wait close to the
dock before moving out of the port, which prevented outgoing
ships to occupy the channel. We consider such actions as good
decisions and Player 34 did not take these.

An interview with Player 2 confirmed that the strategy
was intentional. He stated: “I gave lower priority to the
unloading ships and higher priority to cruise and cargo with
high value.” Others also articulated this strategy. However,
Player 14 did not use that strategy and still outperformed
Player 2 in Challenge 1. From the interview it becomes clear
that this player has a well thought out strategy for playing,
and is not a top player by chance: “First, I usually set high
priority to the overdue cargo or cargo that is going to be due.
Second, I watched the docks closely, each color represents a
particular type of industry and I always tried to keep the docks
busy all the time and if I see any dock is empty, I will give
higher priority to a proper ship to enter that dock. Third, I
will also keep an eye on the values. The more expensive the
ship’s cargo, the higher priority the cargo will have.” Player
14’s strategy of watching the under utilized docks was only
used by the high-performing players.

VI. Conclusion
In this paper we presented a supply chain game called

VistaLights that we developed to model human decisions.
The results from a within-subjects experimental pilot study
with 37 participants highlighted that this is a fair and valid
environment to study decision making: the participants were
reasonably well distributed in terms of their performance
and participants had to make the right decisions to perform
well. Our results illustrate that straightforward analyses do not
illuminate what happens in these complex dynamic decision-
making environments and that fine-grained decision models
are needed in addition to data mining techniques.

Key insights are that certain critical bad decisions can
negatively impact the outcomes. Therefore, it is of importance
to identify when people are about to make such bad decisions.
Likewise, critical good decisions can positively impact the
outcomes. Identification and recommendation of such good
decisions would help improve the effectiveness of serious
games for training, and may even impact the actual workplace.
The results also highlight that participants may need to rely
more on recommendation systems, even if they are imperfect,
especially when their own performance suggests an inability
to succeed. Finally, when it comes to the recommendation

systems we show that some people are simply more willing
to rely on these than others, as illustrated by the only signif-
icant predictor of future recommendation compliance having
been past compliance. This signifies the importance of player
modeling as it identifies individual differences.

Our work can serve as an example of how to design for
games to model player decisions and then how to analyze
these decisions. We acknowledge there are limitations to our
game and our analysis approach. To understand how the rec-
ommendation system can help in the decision making process,
we plan to perform studies with more players, and compare
the performance with additional players that do not have
recommendations in any challenge. We plan to expand this
pilot work with additional design variations and by developing
analytical techniques that will help to analyze fine-grained
decisions on a larger scale. The analytical model should also
be implemented together with the game to give players real-
time guidance as part of the recommendation system.

Acknowledgment

We thank the Greater Houston Port Bureau for their input.

References
[1] A. Drachen, A. Canossa, and G. N. Yannakakis, “Player modeling

using self-organization in Tomb Raider: Underworld,” in Computational
Intelligence and Games, 2009, pp. 1–8.

[2] C. Holmgård, A. Liapis, J. Togelius, and G. N. Yannakakis, “Generative
agents for player decision modeling in games,” Foundations of Digital
Games, 2014.
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Abstract—Fear and tension are the primary emotions elicited
by the genre of horror, a peculiar characteristic for media whose
sole purpose is to entertain. The audience is often lead into
tense and fearful situations, meticulously crafted by the authors
using a narrative progression and a combination of visual and
auditory stimuli. This paper presents a playable demonstration
of the Sonancia system, a multi-faceted content generator for
3D horror games, with the capability of generating levels and
their corresponding soundscapes. Designers can also guide the
level generation process, by defining an intended progression of
tension, which the level generator and sonification will adhere
to.

I. INTRODUCTION

Digital games can be defined as a synthesis of different
types of content, such as sound, visuals and level architecture,
which provide different interactive entertaining experiences
for players [1]. Procedural content generation (PCG) systems
have often concentrated on the level architecture facet of
creativity [2], however more recently various efforts have
been made for procedurally generating playable experiences
that blend a variety of different faceted content such as:
audio and gameplay [3]; level architecture and gameplay [4];
and audio, level architecture and visuals in earlier studies of
the Sonancia generation [5]. The orchestration of audiovisual
content can augment and provide meaningful experiences as
digital games are primarily an interactive audio-visual activity.
This is especially true in the survival horror genre, where the
effective use of lighting, audio and labyrinths provide tense
and frightening experiences [6].

This paper showcases a playable demonstration of Sonancia,
a multi-faceted procedural content generator for the horror
genre. Sonancia can generate multi-faceted levels by first
evolving the level’s layout, lighting, enemy positioning and 3D
diegetic audio placement. Once a structure has been created,
the system will then pick and allocate background audio
assets within the level (i.e. sonification) for the creation of
its soundscape. Sonancia targets the survival horror genre
as a specific case study for the concepts of multi-faceted
blending, due to the genre’s heavy reliance on the audio and
visual facets [6]. It also follows a specific game progression
scheme based on tension, where the focus is to lead the
audience into uncomfortable and fearful situations. Sonancia
attempts to simulate this scheme by generating levels through
a tension frame, allowing designers to define the intended
rise and fall of tension guiding the level generation process,

which will adhere to the defined frame. Sonification will
also take into account the tension frame by proxy through
the level generation. It allocates background audio assets by
following the level’s tension progression and a crowdsourced
ranking annotation attributed to each background audio asset
available in the Sonancia library. The methodologies used in
this demo are detailed in [5], while the autonomous generation
of levels using dramatical tropes are described in [7]. In this
demo, however, several features are added to the evolutionary
blending component of Sonancia, including the placement of
lighting and 3D audio (not to be confused with background
audio) within the level layout. For demonstration a play-
through of the demo can be found here1 and downloaded here2.

II. SONANCIA

The generated game consists of a 3D first-person survival
horror game, taking place in a dark underground dungeon.
These dungeons consist of multiple rooms that are intercon-
nected through doorways. Each dungeon contains an ancient
statue that players must reach in order to complete the level,
acting as the objective. These dungeons also host several
monsters that will run after the players, if they are in their
line of sight. If the player gets hit more then three times by
a monster, they will be defeated and the level will restart.
Players can not directly fight back, but they can run away and
use stealth to get past and progress through the level.

A. Level Generation

Sonancia generates levels using a genetic algorithm without
recombination, and a human or machine defined framing of
tension. Due to spatial constraints, this paper will briefly
describe the algorithm, but for the interested reader a more
detailed description can be found in [5].

The level structure in the genotype consists of an array of
integers that represent a tile within the level and what room
it belongs to. Mutations will shift walls, divide rooms and
move, place or remove monsters, lights, doors, and 3D audio
in rooms, if possible. The level generation currently applies
the following constraints: than one type of the same object
(i.e. monster, light or 3D audio) may be placed in the same
room; rooms must have at least 5 tiles; and a path between
the start and objective must exist.

1http://goo.gl/2RQDG6
2http://goo.gl/jcXcBu
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(a) Example 2D level (b) 3D Level of 1a.

Fig. 1: Figure 1a depicts a 2D illustration of a dungeon,
consisting of rooms and interconnecting doors. Thin black
lines represent walls, while thick red lines represent doors.
Monsters are represented as green triangles, the objective is
represented as a blue square, lights are circles, 3D audio are
half circles, and the black diamond is the player position
in Fig. 1b. The darker room is the player’s starting room.
Figure 1b consists of gameplay footage of the level represented
in Fig. 1a.

The frame represents the intended progression of the rise
and fall of tension that the level generator must adhere to.
More specifically, a frame consists of a line graph where the
y-axis represents a numerical representation of tension, while
the x-axis consists of a specific room in the level. This frame is
then used as the fitness function for the level generator, which
informs the optimal number of rooms for the level, and how
monsters, lights and 3D audio will be distributed throughout
the level. For example, adding a monster or a 3D audio (to a
lesser degree) raises the tension of that room; adding lights
decreases the tension slightly as it is less dark compared
to other rooms, allowing players to orient themselves better.
Sequences of rooms that do not increase in tension will
continuously suffer a tension decay, in order to simulate the
player relaxation after a stressful event.

B. Sonification

Level sonification consists of the selection and allocation
of background audio assets that will loop during gameplay.
Two constraints are enforced by the sonification algorithm:
only one background audio piece may be allocated per room,
to avoid cacophony; and audio pieces may not repeat in the
same level. Sonification will also select and position 3D audio
assets within the rooms, which were defined by the previous
level generation process.

Background Audio is allocated according to the charac-
teristics of a generated level, such as the distribution of
monsters, lighting and which rooms the 3D audio assets
were placed. More precisely it follows the tension that was
obtained through the generation process (the actual tension
progression), and not the previously defined tension frame.
This allows sonification to more closely adapt a soundscape
that follows the exact characteristics of the level, instead of
the conceptual specifications defined by the tension frame.

All background audio assets in the library (40 in total) are
ranked based on human-annotated tension preferences. The
global order of sound tension is derived through the pairwise
preference test statistic [8], which is used by the sonification
algorithm to select which sounds are better suited for a specific
section of the level based on both the tension progression of
the generated level and the annotated audio piece. For the
interested reader a video demonstrating some examples of
background audio is available here3.

3D Audio consists of audio cues that play only once, when
players trigger them within the environment. Although the
level generation specifies these sounds should be located in,
the sonification system places the audio trigger event within
the room itself, by calculating the mid-point of the shortest
path between two doors of the room. If a room contains only
one door, the trigger is placed at the room’s centre. For the
interested reader a video demonstrating examples of 3D audio
is available here4.

III. FUTURE WORK

Future work will include enhancements to the sonification
system such as the creation of a data-driven model of ten-
sion, allowing the system to automatically annotate and more
accurately choose between which audio assets in comparison
to others. Extensive user testing will also be conducted, for
both validating and improving the multi-faceted game content
generation algorithms developed.
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Abstract—This paper introduces the revival of the popular Ms.
Pac-Man Versus Ghost Team competition. We present an updated
game engine with Partial Observability constraints, a new Multi-
Agent Systems approach to developing Ghost agents, and several
sample controllers to ease the development of entries. A restricted
communication protocol is provided for the Ghosts, providing
a more challenging environment than before. The competition
will debut at the IEEE Computational Intelligence and Games
Conference 2016. Some preliminary results showing the effects of
Partial Observability and the benefits of simple communication
are also presented.

I. INTRODUCTION

Ms. Pac-Man is an arcade game that was immensely popular
when released in 1982. An improvement on the original Pac-
Man game; Ms. Pac-Man added better graphics, additional
mazes and new Artificial Intelligence (AI) behaviour for the
ghosts. The primary difference that interests academics and
researchers is the ghost AI. In Pac-Man the ghosts behaved
in a deterministic manner. Ms. Pac-Man added a semi-random
element to the ghost behaviours making them non determin-
istic. This non determinism vastly increased the challenge in
creating an effective agent for Ms. Pac-Man.

Ms. Pac-Man has been the focus of two previous com-
petitions. The Ms. Pac-Man screen capture competition [15]
which periodically provided the agents with a pixel map of the
game and requested the direction of travel. This competition
only allowed the entrants to submit agents for the Ms. Pac-
Man character. The second Ms. Pac-Man competition was the
Ms. Pac-Man Vs Ghost Team competition [22] which was
was based on a simulator that mimicked the original game
reasonably closely. Entrants had to submit a controller for
either the Ms. Pac-Man agent or the ghost team.

This new competition adds Partial Observability (PO) to Ms.
Pac-Man. PO greatly increases the challenge in creating good
AI controllers. Limited information about the ghosts makes
it more difficult for Ms. Pac-Man to plan effectively. Limited
information about Ms. Pac-Man forces the ghosts to search
and communicate effectively in order to trap Ms. Pac-Man
and capture her.

Computational Intelligence (CI) has a long history of using
competitions to galvanise research in game agent development.
These competitions typically focus on trying to develop the
strongest AI for a particular scenario although some exceptions
such as the BotPrize [11] competition that focuses on develop-
ing Unreal Tournament agents that are human-like. There are

many competitions currently active in the area of games. The
Starcraft competition [17] runs on the original Starcraft: Brood
War (Blizzard Entertainment, 1998). Starcraft is a complex
Real-Time Strategy (RTS) game with thousands of potential
actions at each time step. Starcraft also features PO, greatly
complicating the task of writing strong AI. The General Video
Game Artificial Intelligence (GVGAI) competition [19] runs
a custom game engine that emulates a wide variety of games,
many of which are based on old classic arcade games. The
Geometry Friends competition [20] features a co-operative
track for two heterogeneous agents to solve mazes, a similar
task to the ghost control of Ms. Pac-Man.

Previous competitions have been organised that focused on
games or scenarios with PO. An early example is the classic
Iterative Prisoner Dilemma (IPD) [12], a game featuring a
small amount of PO in the form of the simultaneous actions
of the two prisoners.

Section II contains a review of the research into the domain
of Ms. Pac-Man. Section III contains a description of the alter-
ations to the problem domain since the previous competition.
Section IV concludes the paper and describes some possible
future work for the competition.

II. RECENT RESEARCH

A large amount of research has been put into both Ms. Pac-
Man and the ghost teams, which is covered in depth in this
section.

A. PacMan AI

Gallagher and Ledwich [8] investigated a simplified version
of the game including for the majority of their experiments
using only a single near deterministic ghost and no power
pills.

Lucas [14] explored using a simple Evolutionary Algorithm
(EA) in (N +N ) form with N = 1 or 10. The EA was used
to train the weights for a Neural Network.

Robles and Lucas [21] investigate writing a simple tree
search method for writing an agent to play Ms. Pac-Man. This
was performed on the actual game using screen capture and a
simulator. The tree was formed as every possible path through
the maze (depth limit 10) with information in the nodes about
ghosts and pills encoded. A simulator of the game was used
to evaluate the state of the game in future ticks. The simulator
was not identical to the game actually played, leading to some
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possible errors in judgement. The authors tried a few heuristics
and found that some performed better than others.

Burrow and Lucas [3] compared two different approaches
to learning to play the game of Ms. Pac-Man. The paper uses
a Java implementation of the game Ms. Pac-Man that allowed
easy integration of existing machine learning implementations.
The two techniques used were Temporal Difference Learning
(TDL) and EA. These techniques were used to train a Multi-
Layer Perceptron (MLP) that was then evaluated within the
game. The EA was subsequently shown to be superior to TDL.

Handa and Isozaki [10] used Fuzzy logic tuned by a 1+1
EA. The rules were tuned with the EA and consisted of a
series of predefined rules about avoidance and chasing as well
as pill collecting.

Wirth and Gallagher [27] used Influence Maps to drive a
Ms. Pac-Man agent. Positive influence was exerted by pills
and edible ghosts, whilst ghosts exerted a negative influence
upon the map. The map is then checked in the four cardinal
directions that Ms. Pac-Man can move in and the maximum
influence is chosen.

Alhejali and Lucas [1] [2] studied the use of Genetic
Programming (GP) for evolving heuristics to control Ms.
Pac-Man. Some care was needed to prevent the agent from
focusing too much on ghost eating instead of pill clearing by
using multiple mazes.

Samothrakis et al [24] used a 5 player maxn tree with
limited tree search depth. The paper experimented with both
Monte-Carlo Tree Search (MCTS) for Ms. Pac-Man and for
the Ghosts. Schrum and Miikulainen [25] investigated the use
of modular neural networks to control Ms. Pac-Man. The agent
was developed for the same simulator as used in the Ms. Pac-
Man Versus Ghost Team competition.

Flensbak and Yannakakis [5] describe their solution to the
Ms. Pac-Man competition of WCCI 2008. This controller was
a largely hand coded agent based around pill hunting and
ghost avoidance as its primary tactics. The agent avoids ghosts
within a 4x4 grid around Ms. PacMan and then collects pills.
With this approach, less time is spent in danger from the ghosts
before the maze is reset.

Pepels et al [18] describe their work in creating an entrant to
the Pac-Man Versus Ghost Team competition (WCCI’12 and
CIG’12). A MCTS agent is described in detail containing a
number of enhancements and alterations designed to improve
performance specifically in Ms. Pac-Man. Emilio et al [4]
worked with Ant Colony Optimisation (ACO) to design an
agent for Ms. Pac-Man. Two objectives are chosen to drive
the agent. The first is to maximise pill collecting. The second
is to minimise being eaten by ghosts. This leads to two types
of ants used in the system, the collector ants maximising pill
collecting and the explorer ants minimise death.

Foderaro et al [7] [6] used a tree search technique after
abstracting the maze into a connected graph of cells.

B. Ghost Control

Nguyen and Thawonmas [16] present their agent that was
entered into the CEC 2011 Ms. Pac-Man vs Ghost Team
Competition, subsequently winning. The agents used for this

Figure 1. A view of the basic Ms. Pac-Man game

Figure 2. The various characters of the game, Left to Right: Blinky, Inky,
Pinky, Sue and Ms. Pac-Man

controller were to control Pinky, Sue and Inky with MCTS
whilst using a completely rule based approach for Blinky.

Wittkamp et al [28] investigate using an online learning
technique - Neuro-Evolution Through Augmenting Topologies
(NEAT) - to evolve the controllers for the ghosts team. Each
ghost evolves separately but shares the score of the team.

Liberatore et al [13] look into the use of Swarm Intelligence
(SI) to control the ghost team.

III. THE COMPETITION

A. The game

The game that we have based the competition on is the
Ms. Pac-Man arcade game. This game consists of 5 agents,
a single Ms. Pac-Man and 4 Ghost agents. The world is a
maze environment, with peachy coloured walls that are non
traversable. There is a ghost lair in the center, where the ghosts
start and also respawn after being eaten. Pills are placed in
the corridors for Ms. Pac-Man to collect as well as larger
Power Pills that allow Ms. Pac-Man to consume the ghosts
and score additional points. A view of the game is shown
in Figure 1. The various characters in the game are shown in
Figure 2. Eating a pill earns Ms. Pac-Man 10 points and eating
ghosts earn 200 points for the first ghost but doubling each
time up to 1600 points for the fourth ghost. The maximum
points s for a maze where n is number of pills in the maze is
s = 10n+ 4× (200 + 400 + 800 + 1600).
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B. Partial Observability

PO is the impairment of the ability of an agent to completely
observe the world that it is situated within. PO in Ms. Pac-
Man can vary in its implementation. We consider some simple
methods that could be used, before explaining why we chose
the final implementation. First we consider the approach taken
in another paper, followed by some simple methods.

1) pocman: PO has been applied to the game of Ms. Pac-
Man previously by Silver and Veness [26]. This work covered
a small number of domains, one of which was pocman - a PO
Ms. Pac-Man clone.

In pocman, the main agent had to navigate a 17x19 maze
and eat the food pellets randomly distributed across the
maze. Four ghosts roamed the maze with a simple strategy
controlling them. The 4 power pills are also present, allowing
pocman to eat the ghosts upon contact for 15 steps instead of
being eaten in the usual manner.

The ghosts operate randomly unless they are within Man-
hattan distance 5 of Pacman in which case they chase or evade
based on if he is under the effect of a power pill. This implies
that the simulation does not support the usual method of ghosts
respawning as non-edible before the edible time is up and
could be eaten again. This is a major difference to the game
that would require some serious modification to the framework
in order to replicate. An alternative to replicating this is to
make the minor alteration to the ghost AI that it runs away if
it is edible and attacks Pacman if it is not edible.

The pocman agent receives a reward to his score each tick
from Table I. For example, if the agent moves across an empty
square it will receive a reward of -1. This should help force
agents to try to finish levels as quickly as possible.

Table I: Table of rewards for pocman
Reason Reward
Eating Pellet +10
Eating Ghost +25
Dying -100
None of above -1

pocman has a particular type of observability in which he is
sent 10 observation bits. The first four refer to each cardinal
direction and are high if a ghost is present in that directions
Line-of-Sight (LOS). The fifth observation bit tells him if he
can hear a ghost which occurs when at least one ghost is within
Manhattan distance of 2. Four more observation bits refer to
the presence of a wall at distance 1 in each of the cardinal
directions. The final observation bit is set to high if he can
smell food which occurs when a pill is adjacent or diagonally
adjacent to him.

2) Line-of-Sight: LOS is where the agents can see in
straight lines up to a limit unless there is an obstacle in the
way. Obstacles are considered to be the walls in the maze.
Ghosts and pills don’t count as obstacles. This applies to both
Ms. Pac-Man and the Ghosts and means that they can see both
forwards, backwards and sideways. This method is simple to
implement as well as fairly realistic based on how light travels.
Agents cannot see around corners just like real people. This

Figure 3. A view of the basic Ms. Pac-Man game with Partial Observability
enabled

is similar to the standard first person view although we allow
full backwards, left and right sight as well.

3) Forward Facing Line-of-Sight: This is an additional
restriction on LOS where the agent can only observe in the
direction they are currently travelling.

4) Radius based Partial Observability: Radius based PO
is a simple technique where we consider anything within a
distance d from the agent is considered visible. This technique
provides a circular vision when Euclidean Distance is used,
and a diamond shaped vision when Manhattan Distance is
use. This allows agents to view other agents that are around
corners or behind walls. This is not particularly realistic but
does provide more information to the agent than LOS.

5) Partial Observability Implementation: The method of
PO that has been implemented in Ms. Pac-Man is based on
LOS. This we felt was the most realistic without being overly
restrictive. The game supports a range limit to the sight -
allowing some level of customisation, although at present it
is larger than the longest corridor. The view generated by this
restriction for Ms. Pac-Man is shown in Figure 3.

With the PO constraints, the ghost entrants must now submit
a controller for each ghost. These controllers will be given a
40ms shared time budget, equal to the original competition.
The ghosts will be called sequentially in order: (Blinky, Pinky,
Inky and Sue). This will allow the flexibility to adjust how
much time is spent on each ghost in each tick. This flexibility
is useful due to the game rules forcing ghosts to have no actual
decision ability when not at a junction in the maze. Locking
each ghost into 10ms each would be potentially wasteful for
ghosts in tunnels and doesn’t leave as much time free for
ghosts at junctions.
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C. Messaging

Communication is the cornerstone of teamwork and vital
to the creation of co-operative agents. In the competition,
the communication will be heavily controlled by the game in
order to force agents to share information rather than attempt
to control the actions of each other. The communication
component is composed of two main parts - the messenger and
the message. The messages allowed are presented in Table II.

The messages allowed will have a large impact on the ability
and even potentially the design of the controllers. In early
versions of the messaging system there were more messages
planned, allowing the controllers to ask other controllers where
they were and where they were heading. Logically it was
clear that most controllers would ask for that information
every tick and would receive a reply every tick (once enough
time has passed). It therefore made sense to simply remove
the messages asking and allow the controllers to pass on the
information spontaneously. Logically the game could simply
provide the information - however the effects of information
delay would be lost if that were the case.

The data variable is a single integer at present due to the
internal structure of the Ms. Pac-Man simulator. Locations
are represented as indices of the node graph, with only a
single integer required to show a location in the map. If
the messaging system is expanded to include more complex
messages, then a more complex system can be used. The
extension to a more complex data type for messages would
allow even harder messages to use instead of the perfect
information messages previously discussed. A more difficult
version of the game would only allow an AI to transmit that
they can see Ms. Pac-Man or that they can only see Ms. Pac-
Man in a certain direction. Imperfect information would lead to
more possibilities such as triangulation between reports from
multiple ghosts being used to improve the data received.

Messages can be either sent to a single recipient or broadcast
to all ghosts on the map. The Java interface for the Messages
is presented in Listing 1.

Table II: Table of messages allowed in PacMan
Message Type Description
Pacman Seen A message informing others that PacMan

has been seen.
I Am A message informing others where the

sender is currently located.
I Am Heading A message informing others where the

sender is currently heading.

Other potential messages could be allowed to be passed.
Some simple user defined messages for example could allow
agents to declare the current strategy they are using. Ghosts
could be interested in not just declaring their current position
but also their state. Once a powerpill is eaten no ghost knows
who has been eaten and who hasn’t. An edible ghost could
travel towards a chasing ghost for protection if it knew more
information.

The messenger system will deliver messages at the time
specified by a simple formula. The time it takes to deliver
a message for the implementation can be calculated using

Equation (1). This allows a level of configurability in how
quick the messages get delivered. Each message type has its
own cost, the δm, and the system has both a multiplier to that
δx and a constant delay applied equally to all messages δc.
This allows for example all messages to be delivered equally
(δm = 0).

The messenger system at present makes no charge for
delivering its messages. This allows AI agents to use as many
messages as they wish. Introducing the notion of cost to a
message would force the algorithms to become more careful
with messages and decide whether it is worth sending the
message at all. This would increase the level of difficulty for
the AI agents as effective and thrifty strategies for messaging
would need implementing.

The Java interface for this system is in Listing 2.

Table III: Explanation of terms in Equation (1)
td The tick a message will be delivered.
ta The tick a message arrives in the system.
δc The constant delay added to all messages equally.
δm The individual message delay.
δx The constant delay multiplier applied to message delay.

td = ta + δc + (δx × δm) (1)

Listing 1. Message Interface
p u b l i c i n t e r f a c e Message {

/ / Ge ts t h e s e n d e r o f t h e message
p u b l i c GHOST g e t S e n d e r ( ) ;

/ / Ge ts t h e i n t e n d e d r e c i p i e n t o f t h e message
p u b l i c GHOST g e t R e c i p i e n t ( ) ;

/ / Ge ts t h e message t y p e o f t h e message
p u b l i c MessageType ge tType ( ) ;

/ / Ge ts t h e d a t a a s s o c i a t e d wi th t h e message
p u b l i c i n t g e t D a t a ( ) ;

/ / Ge ts t h e t i c k t h a t t h e message was c r e a t e d
p u b l i c i n t g e t T i c k ( ) ;

/ / C o n t a i n s i n f o r m a t i o n a b o u t message d e l a y s
p u b l i c enum MessageType {

PACMAN SEEN( 2 ) ,
I AM ( 1 ) ,
I AM HEADING ( 1 ) ;

p r i v a t e i n t d e l a y ;

p r i v a t e MessageType ( i n t d e l a y ) {
t h i s . d e l a y = d e l a y ;

}

p u b l i c i n t g e t D e l a y ( ) {
r e t u r n d e l a y ;

}
}

}
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Listing 2. Messenger Interface
p u b l i c i n t e r f a c e Messenger {

/ / Ge ts a deep copy of t h e messenger o b j e c t
Messenger copy ( ) ;

/ / Upda tes t h e messenger
vo id u p d a t e ( ) ;

/ / Adds a message t o t h e messenger
/ / t o be d e l i v e r e d as soon as i t can be
vo id addMessage ( Message message ) ;

/ * *
* Get a l l messages t h a t a r e due t o
* be d e l i v e r e d t o me t h i s t i c k
* @param q u e r i e r The a g e n t do ing t h e q u e r y i n g .
* @return The messages due ( c o u l d be empty ) .
* /

A r r a y L i s t<Message> ge tMessages (GHOST q u e r i e r ) ;
}

D. Sample Controllers for Ms. Pac-Man vs Ghosts

Having implemented PO for both Ms. Pac-Man and the
Ghosts an initial trio of new controllers were also implemented
that could function within PO. These controllers required
the minimum amount of modification to the original basic
controllers from the previous competition. The controllers,
along with the original starter controllers, will be described
next.

1) StarterPacMan (COP): This is the original basic control-
ler for the previous competition and works only in Complete
Observability (CO) environments. This controller follows a
very basic algorithm with some simple sequential rules as
shown in Algorithm 1. The controller will avoid ghosts that are
too close, chase ghosts that are edible or travel to the nearest
pill.

Algorithm 1 StarterPacMan basic algorithm
function GETMOVE()

distanceLimit ← 20
nearestGhost ← GETNEARESTCHASINGGHOST(limit)
if nearestGhost 6= NULL then

return NEXTMOVEAWAYFROM(nearestGhost)
end if
nearestGhost ← GETNEARESTEDIBLEGHOST(limit)
if nearestGhost 6= NULL then

return NEXTMOVETOWARDS(nearestGhost)
end if
nearestPill ← GETNEARESTPILL()
return NEXTMOVETOWARDS(nearestPill)

end function

2) StarterGhosts (COG): This is the original basic control-
ler for the previous competition to control the four ghosts.
It is a puppet master style algorithm, meaning it is a single
block of logic that generated moves for all of the ghosts. The
controller follows some basic strategies if a ghost is allowed
to make a move as shown in Algorithm 2. The ghosts will
run away from Ms. Pac-Man if she is able to eat the ghost, or
near a power pill (Potential to eat ghost). If the previous rule
doesn’t apply then the ghost will 90% of the time chase Ms.
Pac-Man and 10% of the time move randomly.

Algorithm 2 StarterGhosts basic algorithm
function GETMOVE()

if GAME.DOESREQUIREACTION() = False then return
NULL end if

pacman ← GETPACMANINDEX()
if ISEDIBLE() OR PACMANCLOSETOPPILL() then

return NEXTMOVEAWAYFROM(pacman)
end if
if NEXTFLOAT < 0.9 then

return NEXTMOVETOWARDS(pacman)
else

return NEXTRANDOMMOVE()
end if

end function

3) POPacMan (POP): This is a modification of the Starter-
PacMan where each strategy is followed if it is possible as
shown in Algorithm 3.

Algorithm 3 POPacMan basic algorithm
function GETMOVE()

limit ← 20
nearestGhost ← GETNEARESTCHASINGGHOST(limit)
if nearestGhost 6= NULL then

return NEXTMOVEAWAYFROM(nearestGhost)
end if
nearestGhost ← GETNEARESTEDIBLEGHOST(limit)
if nearestGhost 6= NULL then

return NEXTMOVETOWARDS(nearestGhost)
end if
nearestPill ← GETNEARESTPILL()
if nearestPill 6= NULL then

return NEXTMOVETOWARDS(nearestPill)
end if
return NEXTRANDOMMOVE()

end function

Other than modifying the original strategies with guards
against null, it was clear that a new default strategy was
needed. This is because within the PO game, it was possible
to proceed through the previous strategies without returning a
move. This new default strategy was to simply return a random
move.

4) POGhosts (POG): This is a modification of the
StarterGhosts where each strategy is followed if it is possible
in the PO case. If there is no information available to the ghost,
then the ghost will behave randomly at intersections as shown
in Algorithm 4.

5) POCommGhosts (POGC): This is a modification of the
POGhosts but attempts to communicate each tick in order to
improve its chances. If this ghost can see Ms. Pac-Man then
it will send a message to everyone else. If it can’t see Ms.
Pac-Man then it will check if anybody else has seen it. If
someone else has seen Ms. Pac-Man then it pretends it can
see Ms. Pac-Man and follows the original POGhosts strategy
outlined above. This controller will presumably lose capability
as the message delay increases due to the reduced accuracy.
The pseudo code for this is shown in Algorithm 5.

The threshold used to determine when to forget Ms. Pac-
Man’s location needs tuning. Every value from 0 to 200
were put to a test on 4000 games against the COP agent
and 33, 300 games against the POP agents. The results are
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Algorithm 4 POGhosts basic algorithm
function GETMOVE()

if DOESREQUIREACTION() = False then return NULL end
if

pacman ← GETPACMANINDEX()
if pacman 6= NULL then

if ISEDIBLE() OR ISPACMANCLOSETOPOWERPILL()
then

return NEXTMOVEAWAYFROM(pacman)
end if
if NEXTFLOAT < 0.9 then

return NEXTMOVETOWARDS(pacman)
end if

else
return NEXTRANDOMMOVE()

end if
end function

Algorithm 5 POCommGhosts basic algorithm
function GETMOVE()

currentTick ← GETCURRENTTICK()
if currentTick = 0 || currentTick - tickSeen

≥ TICKTHRESHOLD then
lastPacmanIndex ← −1
tickSeen ← −1

end if
pacman← GETPACMANINDEX()
messenger ← GETMESSENGER()
if pacman 6= −1 then

lastPacmanIndex ← pacman
tickSeen ← currentTick
if messenger 6= NULL then MESSEN-

GER.ADDMESSAGE(. . .)
end if

end if
if pacman = −1 AND messenger 6= NULL then

for message in MESSENGER.GETMESSAGES(ghost) do
if MESSAGE.GETTYPE() = PACMANSEEN then

if MESSAGE.GETTICK() > tickSeen then
lastPacmanIndex ← MESSAGE.GETDATA()
tickSeen ← MESSAGE.GETTICK()

end if
end if

end for
end if
if pacmanIndex = −1 then pacmanIndex ← lastPacmanIndex

end if
if DOESREQUIREACTION() = False then return NULL end

if
pacman ← GETPACMANINDEX()
if pacman 6= NULL then

if ISEDIBLE() OR PACMANCLOSETOPPILL() then
return NEXTMOVEAWAYFROM(pacman)

end if
if NEXTFLOAT < 0.9 then

return NEXTMOVETOWARDS(pacman)
end if

else
return NEXTRANDOMMOVE()

end if
end function

displayed in Figure 4 and show that the value of 50 is a good
value against these two agents. Interestingly the data against
the POP algorithm is significantly noisier than COP. This is
presumably due to COP being deterministic and POP being

non-deterministic.

Figure 4. Tuning results of POGC against COP(Top) and POP(Bottom) both
with error bars.

E. Sample Controllers Results
These basic controllers may not represent the best agents

for the game, but they do provide simple comparisons between
them as they rely on the same strategy. The only difference
between them is the addition of PO and the effects of this are
apparent. Running these controllers over 1000 runs in each
combination provides the results displayed in Table IV. It is
clear that for the same strategies, PO is a large handicap to the
agent. Against COG, adding PO to Ms. Pac-Man caused the
score to drop to only 45% of previous performance. Adding
communication abilities to the PO Ghosts allowed CO Ms.
Pac-Man to achieve only 33.43% of her previous score. This
is a huge difference between two very simple algorithms and
clearly shows the benefits of communication in this scenario.

F. Competition Tracks
The competition was originally run with two main tracks.

The first track allowed participants to submit code to control
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Table IV: Table of results after 1000 runs of different control-
lers

Agents Mean Score Std. Error
COP Vs COG 3895.67 48.23
COP Vs POG 17257.24 280.49
COP Vs POGC 5769.30 77.41
POP Vs COG 1753.52 26.97
POP Vs POG 2708.15 37.98
POP Vs POGC 2349.34 30.32

the Ms. Pac-Man character. The second track allowed parti-
cipants to submit a single class to control the Ghosts.

The revived competition will also feature two tracks. The
first track will allow participants to submit code to control Ms.
Pac-Man but they will be operating within PO constraints. The
second track will allow participants to submit 4 controllers
- one for each ghost - that will be operating under PO
constraints.

G. Entrant Ranking

While the number of entrants remains low, a round robin
tournament will be used for simplicity. If this process begins
to take too long, entrants will be assigned scores using the
Glicko2 rating algorithm [9] as recommended for competi-
tions [23] similar to this. These will be used to calculate
matches in the competition periodically, with these matches
updating the scores. The final results will be calculated with a
full round robin of the top 10 ghost and top ten Ms. Pac-Man
controllers before being announced at IEEE Computational
Intelligence and Games Conference (CIG).

IV. CONCLUSIONS AND FUTURE WORK

In this paper we presented a major update to the Ms. Pac-
Man Vs Ghost Team competition that will be running at
CIG. We presented the PO constraint that has been added
to the environment and studied the effect that the ability to
communicate has on the ghosts performance when there is
incomplete information available. Finally we presented the two
tracks: PO ghosts and PO Ms. Pac-Man. The controllers used
in this paper were of a very basic nature, and there is a great
deal more potential to be realised. This competition aims to
explore PO in real time games and communication within PO
constraints.

There is a lot of potential work to be done in the future. The
current competition still only has 4 mazes for the entrants to
play on. Additional mazes can be created and included. The
competition has maintained the original balance of one Ms.
Pac-Man and 4 ghosts. The competition could be extended to
allow for modifications to this balance, with more or less of
either type of player.

At present, there is only the one method of sight for
observing the environment. The competition could be extended
to include additional observations such as hearing or smell.
These would be less precise than sight but have the potential
to provide information that sight can’t.
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mon Lucas, Adrien Couëtoux, Jeyull Lee, Chong-U Lim, and Tommy
Thompson. The 2014 General Video Game Playing Competition.

[20] Rui Prada, Phil Lopes, Joo Catarino, Joo Quitrio, and Francisco S. Melo.
The Geometry Friends Game AI Competition. In CIG2015 - IEEE
Conference on Computational Intelligence and Games, IEEE CIG, pages
431–438, Tainan, Taiwan, August 2015. IEEE Computer Society.

2016 IEEE Conference on Computational Intelligence and Games (CIG’16) 426



8

[21] David Robles and Simon M Lucas. A Simple Tree Search Method For
Playing Ms. Pac-Man. In Computational Intelligence and Games, 2009.
CIG 2009. IEEE Symposium on, pages 249–255. IEEE, 2009.

[22] Philipp Rohlfshagen and Simon M Lucas. Ms Pac-Man versus Ghost
Team CEC 2011 Competition. In Evolutionary Computation (CEC),
2011 IEEE Congress on, pages 70–77. IEEE, 2011.

[23] Spyridon Samothrakis, Diego Perez, Philipp Rohlfshagen, and Simon
Lucas. Predicting dominance rankings for score-based games. 2014.

[24] Spyridon Samothrakis, David Robles, and Simon Lucas. Fast Approxim-
ate Max-n Monte Carlo Tree Search for Ms Pac-Man. Computational
Intelligence and AI in Games, IEEE Transactions on, 3(2):142–154,
2011.

[25] Jacob Schrum and Risto Miikkulainen. Discovering multimodal behavior
in ms. pac-man through evolution of modular neural networks.

[26] David Silver and Joel Veness. Monte-Carlo planning in large POMDPs.
In Advances in neural information processing systems, pages 2164–
2172, 2010.

[27] Nathan Wirth and Marcus Gallagher. An Influence Map Model for
Playing Ms. Pac-Man. In Computational Intelligence and Games, 2008.
CIG’08. IEEE Symposium On, pages 228–233. IEEE, 2008.

[28] Markus Wittkamp, Luigi Barone, and Philip Hingston. Using NEAT for
continuous adaptation and teamwork formation in Pacman. 2008.

2016 IEEE Conference on Computational Intelligence and Games (CIG’16) 427



Beyond Computational Intelligence to
Computational Creativity in Games

Dan Ventura
Computer Science Department

Brigham Young University
Provo, UT 84602

Email: ventura@cs.byu.edu

Abstract—This paper argues that computational creativity is
the logical next step in the evolution of game design; briefly
overviews what is meant by computational creativity and suggests
some ways in which it could augment contemporary games;
explores some initial ideas for its incorporation into the future
of gaming and game design; and argues for increased cross-
pollination and collaboration between the computational intel-
ligence and games research community and the computational
creativity research community.

I. INTRODUCTION

Computational intelligence has become the (near) future of
game design and development, and it is interesting to ask then
what might be the next logical step for the longer-term. Here,
it is argued that step is computational creativity (CC).

The computational intelligence and games (CiG) commu-
nity has facilitated the wide-spread adoption of procedural
content generation (PCG) and artificial intelligence (AI) into
game development and experience. Procedural generation of
content for games is increasingly allowing designers to focus
on higher-level concerns, while automatic generators produce
lower-level content such as textures, landscapes, buildings,
layouts, music, simple dialogues, etc. [1], [2]. Artificial in-
telligence is being used most commonly in the form of non-
player characters and other types of agents, but it has been
used in many other ways as well, including dynamic difficulty
balancing [3], [4], player experience modeling [5], [6], and
datamining of user behavior [7], [8].

Recently, it has been proposed that the games domain may
be the “killer app” for the nascent field of computational
creativity [9], and the arguments supporting this position are
rather compelling, enough so to suggest a reciprocal kind of
relationship—if games are the “killer app” for computational
creativity, then perhaps computational creativity is the future
of games. The beginnings of this idea have, in fact, been
suggested elsewhere [10], and the purpose here is to argue
for this evolution in the extreme. As the games community
has embraced computational intelligence as an integrated aug-
mentation device for the designer’s intelligence, this suggests
that the next possible step is to do the same thing for the
designer’s creativity. By embracing computational creativity,
game developers can build computational collaborators that
take real creative responsibility as a member of a team, and,

in the extreme, may build fully autonomous content- or game-
creation systems that are legitimate designers themselves.

The integration of CC philosophies and techniques into the
game design process is a natural next step in the computa-
tional intelligence and games evolution, allowing for greater
personalization of the gaming experience, novel and adaptable
system behaviors, and the transitioning of intelligence into
higher-level components of game creation. It can produce
a more immersive game-play experience (e.g. more robust
and believable NPC intelligence, personalized and adaptive
content), allow for the automatic creation of additional types of
game content (and eventually even complete complex games),
and make game creation more scalable by relieving the human-
creator bottleneck.

II. WHAT IS COMPUTATIONAL CREATIVITY?
Because the concept of creativity is very difficult, if not

impossible, to formalize and is likely, in fact, an essentially
contested concept [11], the field as a whole has agreed not to
argue (any longer) about what exactly it is but instead focuses
on building computationally creative systems. While this may
seem disingenuous, it should be noted that the broader field of
AI has dealt with a similar crisis of agreement cf. the meaning
of intelligence, and yet has still made remarkable discoveries
and inventions that everyone agrees are useful progress and
likely even constitute “intelligence” in some sense. It is in
this same hopeful spirit that the CC field has, in the last few
years adopted a circular description suggested by Colton and
Wiggins [12] as its stand-in for a proper definition:

[Computational creativity is] the philosophy, sci-
ence and engineering of computational systems
which, by taking on particular responsibilities, ex-
hibit behaviours that unbiased observers would
deem to be creative.

So, the goal is to build systems that do things that are creative.
This is pretty wide open, as almost any domain of endeavor
can be argued to require creativity to meet at least some of its
challenges, from the artistic to the scientific to the mundane.
Indeed, creativity is certainly an aspect of intelligence and is
likely at least part of the reason that human intelligence is
so robust. While, to date, computationally intelligent systems
have demonstrated and continue to demonstrate some remark-
able abilities, they are, at the same time, distinctly fragile, in
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the sense that their domain of expertise is almost vanishingly
narrow. In contrast, humans demonstrate an impressively broad
general intelligence, and at least one thing that differentiates
human and computational intelligence seems to be creativity.

Perhaps the defining difference between computational in-
telligence and computational creativity is in the types of
problems to which they are applied; or possibly the difference
can be captured in the their approaches to solving these
problems. In the case of computational intelligence, problems
are usually framed as some type of optimization—the system
is trying to attain the highest accuracy, or maximize area under
the curve, or minimize losses, or maximize discounted future
reward, or win. Actually, perhaps the concept of winning could
be argued to be not quite optimization, in the sense that there
may be more than one winning strategy, and in fact, given
the case of an opponent strategy, the winning strategy may be
dynamic, but fixing opponent strategy, it is still largely a type
of optimization, or, possibly it is a form of satisficing, which is
simply a weaker form of optimization—it is just “optimizing”
for “good enough”. In contrast, the kinds of problems that
computational creativity addresses are of an entirely different
class. There is no such thing as a best song, or best theorem
or best design. One cannot maximize a piece of visual art
or a recipe or a poem. There are many interesting songs,
theorems, designs, paintings, recipes and poems, and the goal
is to find one or more of these. What constitutes a “solution”
for these types of “problems” might also be dynamic based
on environment, but even if such environmental factors can
theoretically be held constant, this is still nothing like an
optimization problem, at least in the traditional sense.

Instead, success is qualified (and sometimes possibly quan-
tified) with notions of novelty and utility. Whatever the domain
in question, a computationally creative system should produce
artifacts1 that are novel and useful. Here, these qualities will
be defined as follows:

novelty: the quality of being new, original or unusual; this
is relative to the population of artifacts in the domain in
question and can apply in the personal or historical sense.

value: the importance, worth or usefulness of something; this
would typically be ascribed by practitioners of the domain
in question.

Note that these qualities are most commonly addressed with
respect to product; however, creativity often refers at least as
much to process as it does to product, and, in particular, it
has been argued that the (perception of the) process by which
a computational system produces artifacts is likely at least as
important as the artifacts produced [13].

To summarize, computational creativity deals with con-
structing artificial agents that produce artifacts that are judged
novel and useful by those that understand the domain in which
the agent works.

Fig. 1. An abstraction of a creative agent. The component internal mech-
anisms are meant to be likely necessary though possibly not sufficient.
No attempt here is made to accurately visualize the dependencies and
communication between these mechanisms. The agent communicates with
the environment in several ways, represented by labeled arrows entering or
leaving the agent (borrowed from [14]).

A. An Abstraction of the Creative Agent

Figure 1 offers a gross visualization of an abstract, archety-
pal CC agent. Such an agent is composed of multiple internal
mechanisms/processes, some of which include background
knowledge, an ability to learn, intentionality, an ability to
conceptualize, a sense of aesthetic and some method of
generating artifacts.

1) Background knowledge: can be encoded in a variety
of forms, including rules, associations, semantic networks,
iconic representations, prototypical artifacts, a model or set
of models (e.g. built from training examples), a database,
statistical information, etc.

2) Learning: typically happens by some appropriate ma-
chine learning technique such as training (deep or recurrent)
neural networks, building a (variable order) Markov model or
other form of graphical model, inducing decision trees, forests
or other forms of rules, nearest neighbor methods, etc.

3) Intentionality: can be effected by giving the system
goals such as the communicating of a concept, innovation (e.g.,
with respect to its background knowledge), utility (e.g., with
respect to some objective function), the accomplishment of
some task or the realization of some state, etc. More advanced
systems will typically have fewer, more abstract goals and will
generate their own concrete subgoals.

4) An aesthetic: can be encoded explicitly (e.g. as a fitness
function or a probability distribution over possible outcomes)
or implicitly (e.g. in the generative mechanism, etc.), should
likely be correlated with both background knowledge and what
is learned and should be dynamic in the sense of changing over
time in response to changes in either the internal or external
environment.

1Note that the use of artifact here is abstract, and that, in particular, the
artifact produced might, in fact, itself be a process.
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5) Conceptualization: includes the ability to represent, ma-
nipulate and invent concepts in the domain. What makes a
reasonable representation is certainly domain specific, with
examples including things like rule sets, statistical models,
vectors and mixed modalities. Conceptual representations
should be grounded in the domain, and can be quite specific,
with a simple mapping to an element of the domain (e.g.,
like the relationship between the genotype and phenotype
in evolutionary computation), or they can be quite abstract,
mapping to large subsets of the domain.

6) Generation: of artifacts can be accomplished with a
random process, an evolutionary mechanism, a grammar, a
generative model, etc. It is important to note that the use of
the term artifact here is meant in a very abstract sense, so that,
in particular, an artifact could be a concrete product, such as a
game level, a weapon, an NPC monster, etc.; a more complex
product such as a puzzle, a game mechanic, a narrative, etc.; an
abstract product like a strategy to be used by an NPC monster,
a quest to be assigned to a player, a level theme, etc., or even
a process, such as a method for generating a game level, an
aesthetic by which to evaluate a potential weapon design, or
a new goal to drive the system’s behavior.

Of course, in reality there are rarely crisp boundaries that
clearly differentiate these mechanisms/components, and some
of these are already very developed (in a computational sense)
in the computational intelligence and games community, but
some are still almost exclusively the purview of the human
designer. It is in the consideration, development and incorpo-
ration of these others by which the games community might
take a quantum leap forward.

In addition to these internal mechanisms, because the agent
exists in an environment, it interacts with the environment
in multiple ways, including being taught, presenting artifacts,
being inspired, receiving feedback and other influences.

7) Teaching: often comes in the form of a supervisory
signal derived from either structured or unstructured data
resources, many of which are now freely available on the
web; additional sources of supervisory signal can be obtained
through human-labeled examples, human or computational
reaction to queries, etc.

8) Presentation: of created artifacts is typically constrained
by domain (e.g., visual images, written or performed music, a
set of rules defining a strategy, a theorem and accompanying
proof, a recipe, a process, a game); if the output is intended
for human consumption, it obviously must be presented in a
form appreciable by humans. In addition, the presented artifact
can (and often should) be accompanied with some form of
framing information (e.g., a title, a backstory, instructions,
context, etc.)

9) Inspiration: is an ill-defined concept that encompasses
environmental stimuli that directly or indirectly affect the
agent’s creative process. The most obvious source of in-
spiration would typically be example artifacts produced by
others (e.g., for a musician, another musician’s composition);
however, inspiration may be found in artifacts from other
domains, outside advice, etc.

10) Feedback: may take the form of immediate and direct
(positive or negative) reinforcement with respect to a presented
artifact, or, it may take less direct forms, such as a collection
of survey responses, sale/resale value, citation or adoption data
and so on.

11) Other influences: might include things like feedback
from the environment about others’ work (when publicly
available), the behaviors, opinions, preferences and aesthetics
of other creators or consumers, current events, etc.

This abstract notion of a creative agent has been instantiated
in many different forms, and a variety of systems of varying
degrees of sophistication and efficacy have been built by
the CC community for creating artifacts in a broad range
of domains, including culinary recipes [15], [16], language
constructs such as metaphor [17] and neologism [18], visual
art [19], [20], poetry [21], [22], humor [23], [24], advertising
and slogans [25], [26], narrative and story telling [27], [28],
mathematics [29] and music [30], [31].

At least some of these kinds of systems, and possibly
any of them, could be incorporated directly in games, or the
techniques they use could be repurposed for use in creating
games or components of games. However, in the long run,
the most useful takeaway for the CiG community is the set
of meta-level ideas driving this research independent of a
particular domain. Subscribing to these can have a lasting
impact in extending the autonomy/responsibility that can be
given to game systems.

The meta-level ideas referred to here are those discussed
above in the treatment of an abstract creative agent and should
be considered necessary, though possibly not sufficient, for a
(sophisticated) CC system. Indeed, because creativity is here
assumed to be an essentially contested concept, it is likely im-
possible to establish a sufficiency condition for computational
creativity. Instead, analogous to scientific theories, a system
likely may only conclusively be discredited as not creative,
and this list is a starting point for avoiding the obvious ways
this might happen (cf. some of the arguments in [13]). The
avoidance of such a discrediting may seem like a dubious
goal to which to aspire; however, a system that cannot easily
be argued to be uncreative is likely a quite impressive one.

B. How is this different than PCG?

It is possible to consider this proposal of computational
creativity as just procedural content generation on steroids,
and in one sense, that may not be completely incorrect.

However, the idea of content should be expanded beyond
the low-level (though certainly important and by no means
trivial) components currently being tackled (e.g., maps, levels,
skins and other visuals, some music, simple dialogue, etc.) to
include much higher-level constructs such as complete quests,
complex mechanics, goals and objectives, governing rules,
ludic considerations, full narratives and eventually complete
games (cf. Smith’s position on the future of PCG [32]).

Perhaps the most significant improvement over traditional
PCG approaches is the consideration of agent intentionality—
CC research targets the building of systems that demonstrate
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deliberation or purposiveness in their creating. Accomplishing
this is nontrivial, to be sure, and is a topic of ongoing research
and debate. One way in which this might be approached is by
building systems that share a perceptual grounding with users.
Such shared grounding facilitates successful communication
of intention between the system and those with which it
interacts by providing a common medium for motivating and
interpreting system actions. Games are an ideal domain for
this kind of research, because it is possible to forge that
shared grounding through the game experience (which may
even facilitate types of grounding and types of intentionality
not possible in the real world).

Of course, CiG research is already beginning to explore
some of these possibilities, and that’s why this discussion is
timely—the computational creativity perspective can lend a
transformative momentum to this trend.

III. IMAGINING THE POSSIBILITIES

Several classic and recent games provide good examples
of how CC ideas might be incorporated; here, the games are
categorized as research or commercial, with the allowance that
others may see the dichotomy somewhat differently.

A. Research Games

These games have typically been used as research platforms
over many years, are well-understood and are relatively simple,
in the sense that one might be able to envision an automated
system for inventing something like them in its entirety.

For example, consider the class of platform- or level-based
puzzle games. Super Mario Bros.2 is certainly the most studied
of these, likely because of both its original popularity and be-
cause of its conservative nature—it is easy to generate playable
levels. Examples like Ms. Pac-Man3 and Spelunky4 complexify
the genre by adding ghosts and bombs, respectively, that make
both level design and play more challenging. Is it possible to
abstract a complete description of such games in such a way
that comparable new, cohesive and interesting games of the
genre could be created automatically?

Or consider card-based games such as Hearthstone5 and
Lords of War6. Because these games lack mechanics, it is
perhaps even simpler to imagine abstracting the genre and
building a system that creates new complete games. The
challenge is the invention of diverse card packs and their
coherent incorporation into a set of gameplay and ludic rules.

Racing games like TORCS7 provide another relatively sim-
ple class of games to consider for abstraction. The mechanics
are well-defined and immutable (though, an interesting varia-
tion would allow mutation of the mechanics in coherent ways).
Vehicle types, tracks, obstacles, race conditions, skins, and
soundtracks could all be the subject of CC intervention, and

2Nintendo, 1985
3Bally/Midway Manufacturing, 1982
4Mossmouth, 2008
5Blizzard Entertainment, 2014
6Black Box Games Publishing, 2012
7Eric Espié and Christophe Guionneau, 1997

while the basic ludic principle is to finish first, perhaps even
this could be tampered with in interesting ways.

First person shooters like the very popular Unreal Tourna-
ment8 and strategy games like Starcraft9 and their variants and
expansions introduce multi-player, tactical decision making,
and real-time considerations as well as scale and additional
complexity issues. Perhaps the most obvious focus here is the
development of sophisticated and believable AI NPCs, but not
using traditional tricks that allow NPCs game-knowledge not
available to normal players (cf. the comment below about The
Flame in the Flood10).

Games like Galactic Arms Race11 and Neuro-Evolving
Robotic Operatives (NERO)12 are interesting in that they
might be described as exploring some of the themes taken
up here in a non-cognitive way—by using neuroevolution to
procedurally generate content that dynamically responds to the
game environment.

Other types of research games exist, of course, and the
interactive fiction game Façade13 deserves a special mention
as a very different kind of “game”, that is in some ways much
more complex than those mentioned above and is also in some
ways a true pre-cursor to the idea of CC in games. (A more
recent version of this idea, Versu14, introduces some ground-
breaking work on social modeling and how it affects narrative
and in particular the progression of a group conversation.)
Imagine the core engine for Façade coupled with the ability to
potentially invent any human-drama-based interactive fiction,
based on current events, online novels, movies, etc.

B. Commercial Games (AAA and Indie)

Commercial games have a high “cool” factor, but their
implementations are usually opaque, and therefore it is difficult
to evaluate their process—there is always the possibility of
smoke and mirrors, but if it works, it works—their goals are
different than a research community’s (though hopefully they
are informed by such goals). Given that, what follows are some
potential CC contributions to such games.

The Flame in the Flood (a river journey) and No Man’s
Sky15 (a mind-bogglingly large universe) and, to a lesser extent
Secret Habitat16 (a series of art galleries), offer impressive
PCG of the main game content. However, in the first case, NPC
AIs are supported by dynamic markup of generated terrain,
which would be considered “cheating” in the CC sense, and
in the latter two, there are no NPCs. CC techniques might
facilitate the introduction of believable NPCs that inhabit the
PCG worlds and thereby provide a cohesive plot (of sorts).

At the other end of the spectrum are games with very strong
NPC AIs, with examples including Incognita from Invisible,

8Epic Games and Digital Extremes, 1999
9Blizzard Entertainment, 1998
10The Molasses Flood, 2016
11Evolutionary Games, 2010
12Neural Networks Group, CS Dept., UT Austin, 2005
13Michael Mateas and Andrew Stern, 2005
14Richard Evans and Emily Short
15Hello Games, 2016
16Strangethink, 2014
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Inc.17, the Xenomorph from Alien: Isolation18 and Elizabeth
from Bioshock: Infinite19. These AIs might be made even more
believable with a focus on intentional novelty and utility.

Adventure games such as Assassin’s Creed20, Sunset Over-
drive21 and Dying Light22 are hailed for their visuals, their
combat systems, their mechanics, etc. while at the same time
being criticized for their relatively weak stories. Of course all
games do not need to be all things to all people, but here is
another example of a subcomponent of the game that might
be co-opted by a CC system to positive effect.

Other games of interest here might include Total War:
Rome II23 for its impressive incorporation of Monte Carlo tree
search (discussed in the next section) and Cities: Skylines24 a
building/planning simulation game that might be made more
game-like if it could pose interesting problems to be solved.

IV. COMPUTATIONAL CREATIVITY IN GAMES

As mentioned above, the field of computational creativity is
already beginning to produce working systems that themselves
produce artifacts that could be used as components of games.
However, the bigger vision is, of course, the building of a
system that can contribute significantly to the creation of
complete games (or, in the extreme, autonomously create
complete games). A good deal of recent work has begun to
explore various approaches to this for simple games [33]–
[38], with the most explicit example probably being Cook’s
ANGELINA system [39], [40], so this is of course not a novel
idea; however, the widespread adoption of CC ideas will help
move this effort forward significantly.

The first necessity is some way to describe a game in the
abstract, and many attempts at this exist, including the classic
Zillions of Games [41], the game description language [42]
used in the AAAI general game playing competition, the
game description language used in the Ludi system [33], the
recently developed puzzlescript [43] and a general video game
description language [44].

Now, imagine something like these description languages
that admit the description of a space of possible games in an
abstract, hierarchical manner, as suggested in Figs 2, 3, and 4.
Each level of abstraction consists of a set of design choices,
and the hierarchical organization allows the exploration of the
space by traversal of a tree, as in Figure 5. Making choices
at each node in the tree corresponds to design decisions, both
general and specific for creating a particular game, and the leaf
nodes in the tree correspond to completely specified games,
given the representation/description language. One obvious
possibility for exploring such a tree would be some variation
on Monte Carlo tree search (MCTS), which has become

17Klei Entertainment, 2015
18Creative Assembly, 2014
19Irrational Games, 2013
20Ubisoft, 2007
21Insomniac Games, 2014
22Techland, 2015
23Creative Assembly, 2013
24Colossal Order, 2015

Fig. 2. An abstract (representative, incomplete) model of a game. A game
has theme, genre, type and design elements (among other things), and each
of these elements can take different values, each of which can be expanded
with further detail at a lower level of the abstraction (see Fig. 3).

Fig. 3. An abstract (partial) model of a puzzle-game. A second level of
abstraction specializes the game-type puzzle, which itself has associated
elements goal, type, audio and construct. Again, each of these elements can
be expanded with further detail at a lower level of the abstraction (see Fig. 4)..

widely adopted in the CiG community [45]. (In fact, something
like this has been done very recently on a limited scale, for
the creation of platformer levels [46].)

In traditional MCTS, nodes in the tree represent game states,
and leaf nodes represent completed games, with an outcome
(win or lose, or possibly draw). A path from a node to a leaf
represents a sequence of moves, each resulting in a new game
state further down the tree, until the leaf is reached and the
game is completed. Following one of these paths is called a
playout, and the search involves making many playouts and
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Fig. 4. An abstract model of a tile for a tile-based puzzle-game. This third
level of the abstraction provides concrete detail that can be implemented—a
tile has three parameterized functional characteristics: .CanEnter, .HasEntered
and .HasExited and an associated sprite, which can take any of several visual
values (of course in general, the levels of abstraction could continue).

Fig. 5. Search tree for exploring the hierarchical space of possible games
(partially) described by the abstractions of Figs 2, 3, and 4. Each node in the
tree represents a partial game design, and each branch represents a particular
design decision that further specifies the game. Leaf nodes represent fully
specified games.

collecting statistics on their results (wins/losses/draws) and
backpropagating those statistics up the tree. Eventually, based
on these collected statistics, a move is actually made, and the
game progresses. In this search, the objective is to win the
game, and the search explores different paths down the tree
in an effort to find a “good” move to make, which increases
the chances of meeting the objective. Each time the search
reaches a leaf, the result is known and the relative quality of
the moves in the path can be updated.

In searching the proposed game creation tree of Fig. 5, the
objective is to create a “good” game, and the search explores

different paths down the tree in an effort to find one of these
“good” games. Each node in the path is a design decision,
with the idea being to make “good” decisions that lead to the
creation of a “good” game, in the same way that making good
moves leads to winning a game. In other words, the game
creation process can be thought of as a meta-game of sorts;
however, it is not a competitive game—there is no explicit
opponent nor explicit concept of winning—another example
of the difference between traditional AI problems and CC
problems. Since there is no objective concept of winning,
how can the leaf nodes of this tree be evaluated? How can
it be determined when one of them represents a “good” game
(or piece of a game, in the case of creating a soundtrack or
mechanics or visuals, etc.)?

This, it turns out, is a really difficult question, that can be
posed in a variety of ways. For example, consider the idea
of using an inductive logic program (ILP) to represent a quest
and the (pre- and post-) conditions that apply to various stages
of that quest. It is not perhaps that difficult to think about how
one might do this (though for a complex quest, this may not be
trivial, either), and this might, in fact, be an interesting way to
approach the problem of realizing a game quest. Having taken
that step, it might not be (too) difficult to then take the next
step—considering how to build a system that could generate
an ILP to represent a quest. However, what determines if the
generated quest is a good one? Is there some way to formalize
an aesthetic for (ILP-encoded) quests, so that the system has
a method for evaluating its own output? This is a difficult
question, of course, and the discovery and implementation of
useful aesthetics for various domains is one of the key points
of study in the field. However, even this is not yet satisfactory.
For, given a formalized aesthetic for “good” quests, the system
now can (in principle) create such quests, but it will not create
other quests that may be considered “good” under some other
defendable aesthetic. In other words, what is really wanted is
a system that can (also) create an aesthetic, and for that, what
is required is an aesthetic for aesthetics (about quests in this
particular example).

This meta-level reasoning has its finger prints all over
computational creativity, and once recognized, it immediately
begs the question, “what about an aesthetic for aesthetics for
aesthetics?” Ad infinitum. This is a fair question, but for now
a satisfactory accounting for one additional level of meta will
constitute serious progress. It is also worth mentioning here
that it is not clear that human creators are capable of this type
of higher-order meta-evaluation either, so if artificial systems
are limited to “only” one meta-level of evaluation, they may
be still in good company.

Now, assume the existence of a system for exploring the
(tree-structured) space of possible games, that the system
knows what constitutes a “good” game, and even that it knows
how to “change its mind” about what makes a game “good”
in a defensible way. There is still work to do, in the sense that
the search space has been given to the system in the first place
and is immutable from the system’s point of view. What if the
system could invent new branches for the tree? This could be
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something as simple as adding an additional item to associate
with the Tile.CanEnter.HAS property of Fig. 4; or as complex
as adding a new Game.Type in Fig. 2; or even inventing
an additional element, Game.NewElement, analogous to the
existing elements: Game.Theme, Game.Type, Game.Design,
and Game.Genre. This is another form of meta-creativity in
which the space to be explored is the space of all possible trees
that define spaces of game representations. But then, what kind
of aesthetic would guide that search?

Of course, MCTS may not be the right approach to this
general problem of exploring the space of possible games.
The search tree envisioned here is possibly relatively shallow,
and possibly very broad (even likely infinitely so). Is MCTS
the best approach for this shape of tree, let alone this kind of
search problem? There are certainly other traditional forms of
search that could also be adapted as a possible mechanism for
exploring this space, and it is possible that the shape of the tree
might be changed significantly by changing the abstraction.
Perhaps a tree isn’t even the appropriate structure for describ-
ing this space. Perhaps it is even possible to search the space
of abstractions for good ones for searching for games. Many
of these considerations are related to interesting foundational
work by Wiggins [47]; however, this is likely beyond the realm
of (immediate) interest for the CiG community.

One additional suggestion that deserves further exploration
is the idea of building games in which computational creativity
is the main feature of the game. It is not yet clear what this
might entail, but a similarly intriguing idea has been suggested
for games featuring AI [48], and as argued there, it seems
likely that taking full advantage of CC as the main event will
require re-thinking at least some accepted ideas about games
and may open the way for entirely new types of game.

A. Evaluation

As with any creative endeavor, it is not sufficient that the
creator believe that the result is novel and useful, though this
is certainly necessary; other creators or consumers or other
“gatekeepers” of the field must also attribute these values to the
result. This sort of external feedback can be measured in any
number of ways, and certainly gross measures such as sales
ranking, hours played and other adoption/popularity metrics
represent something of a bottom line when it comes to games.
However, there is another sense of external measurement
that is also critical to the advancement of computational
creativity as a field and is somewhat more difficult to assess—
the “creativity” of the system. This is a difficult question,
made the more so by the lack of a concrete definition for
creativity. Still, some progress has been made and varying
proposals suggest ways of dealing with the problem, including
suggesting metrics for quantifying various qualities of system
output [49]; an abstract ontology of behaviors potentially
demonstrable by a system [50]; a proposal for a standardized
evaluation methodology that uses case-specific requirements-
based testing [51]; and a spectrum of prototypical abstract
landmark algorithms that characterize varying levels of system
intentionality in producing novelty and utility [52].

V. CONCLUSION

This paper argues that the logical next step for computa-
tional intelligence and games is the incorporation of com-
putational creativity in games. It gives a necessarily brief
overview of the field of computational creativity, imagines
some initial uses for it in contemporary games, and explores
the beginnings of a few ideas for its incorporation into the
next generation of games and beyond. Many more questions
have been raised than have been answered, with the goal being
to arouse interest in the CiG community reciprocal to that
which has begun to grow in the CC field. For those whose
interest is piqued, a good resource for all things CC, and in
particular an extensive and growing bibliography can be found
at www.computationalcreativity.net.

Computational creativity is itself basically domain agnostic.
However, since it is very difficult to make an effective study
in the abstract, it is typical to settle for being agnostic in
the statistical sense of “averaging” over many domains. This
provides interesting opportunities for collaboration between
CC researchers and researchers in a particular domain to
which CC may be applied, and that, in turn, can strengthen
research agendas in both fields. Here the call by Liapis,
et al. for such a collaboration between the CiG and CC
communities is reciprocated as being perhaps the most natural
of possible collusions. Though the extreme possibility of a
fully autonomous system that creates complete games has been
considered, in reality most games are now so complex that
they are built by (often large) teams of creative individuals,
and so the more likely positive outcome would be a system
or systems that can participate in that collaborative process as
true co-creative members of such a team.
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Abstract—General Video Game Playing (GVGP) is a field
of Artificial Intelligence where agents play a variety of real-
time video games that are unknown in advance. This limits
the use of domain-specific heuristics. Monte-Carlo Tree Search
(MCTS) is a search technique for game playing that does not
rely on domain-specific knowledge. This paper discusses eight
enhancements for MCTS in GVGP; Progressive History, N-Gram
Selection Technique, Tree Reuse, Breadth-First Tree Initializa-
tion, Loss Avoidance, Novelty-Based Pruning, Knowledge-Based
Evaluations, and Deterministic Game Detection. Some of these
are known from existing literature, and are either extended
or introduced in the context of GVGP, and some are novel
enhancements for MCTS. Most enhancements are shown to
provide statistically significant increases in win percentages when
applied individually. When combined, they increase the average
win percentage over sixty different games from 31.0% to 48.4%
in comparison to a vanilla MCTS implementation, approaching
a level that is competitive with the best agents of the GVG-AI
competition in 2015.

I. INTRODUCTION

General Video Game Playing (GVGP) [1] is a field of
Artificial Intelligence in games where the goal is to develop
agents that are able to play a variety of real-time video games
that are unknown in advance. It is closely related to General
Game Playing (GGP) [2], which focuses on abstract games
instead of video games. The wide variety of games in GGP and
GVGP makes it difficult to use domain-specific knowledge,
and promotes the use of generally applicable techniques.

There are two main frameworks for GVGP. The first frame-
work is the Arcade Learning Environment (ALE) [3] for
developing agents that can play games of the Atari 2600
console. The second framework is GVG-AI [4], which can
run any real-time video game described in a Video Game
Description Language [5], [6]. This paper focuses on the
GVG-AI framework.

The GVG-AI framework is used in the GVG-AI Competi-
tion [4], [7]. Past competitions only ran a Planning Track,
where agents were ranked based on their performance in
single-player games. In 2016, it is planned to extend this with a
2/N-Player Track, a Learning Track, and a Procedural Content
Generation Track. This paper focuses on the Planning Track.

Monte-Carlo Tree Search (MCTS) [8], [9] is a popular
technique in GGP [10] because it does not rely on domain-
specific knowledge. MCTS has also performed well in GVGP
in 2014 [4], which was the first year of the GVG-AI competi-
tion, but was less dominant in 2015 [7]. This paper discusses
and evaluates eight enhancements for MCTS to improve its

performance in GVGP: Progressive History, N-Gram Selection
Technique, Tree Reuse, Breadth-First Tree Initialization, Loss
Avoidance, Novelty-Based Pruning, Knowledge-Based Evalu-
ations and Deterministic Game Detection.

The remainder of the paper is structured as follows. Sec-
tion II provides background information on the GVG-AI
framework and the GVG-AI competition. MCTS is discussed
in Section III. In Section IV, the enhancements for MCTS in
GVGP are explained. Section V describes the experiments to
assess the enhancements. Finally, the paper is concluded in
Section VI and ideas for future research are discussed.

II. GVG-AI FRAMEWORK AND COMPETITION

In the GVG-AI competition [4], [7], agents play a variety
of games that are unknown in advance. Agents are given 1
second of processing time at the start of every game, and 40
milliseconds of processing time per tick. A tick can be thought
of as a turn in an abstract game. Every tick, the agent can
choose an action to play, and at the end of the tick the chosen
action is played and the game state progresses. Every game has
a duration of at most 2000 ticks, after which the game is a loss.
Other than that, different games have different termination
conditions, which define when the agent wins or loses. Every
game in GVG-AI contains at least an avatar object, which
is the “character” controlled by the agent. Games can also
contain many other types of objects. Games in GVG-AI are
fully observable and can be nondeterministic.

Agents can perform searches and attempt to learn which
actions are good using the Forward Model, consisting of two
important functions; advance and copy. Given a game state st,
the advance(a) function can be used to generate a successor
state st+1, which represents one of the possible states that can
be reached by playing an action a. In deterministic games,
there is only one such state st+1 for every action a, but
in nondeterministic games there can be more than one. The
copy(st) function creates a copy of st. This function is required
when it is desirable to generate multiple possible successors
of st, because every call to advance modifies the original
state, and there is no undo function. Because the framework
supports a wide variety of different games, it is not optimized
as well as any framework dedicated to a specific game would
be. This means that the advance and copy operations tend to
be significantly slower than equivalent functions in individual
game implementations.
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Fig. 1. Example open-loop game tree. Nodes other than the root node can
represent multiple possible states in nondeterministic games.

III. MONTE-CARLO TREE SEARCH

Monte-Carlo Tree Search (MCTS) [8], [9] is a best-first
search algorithm that gradually builds up a search tree and uses
Monte-Carlo simulations to approximate the value of game
states. To handle nondeterministic games with probabilistic
models that are not exposed to the agent, an “open-loop” [11]
implementation of MCTS is used. In an open-loop approach,
the root node represents the current game state (s0), every edge
represents an action, and every other node n represents the set
of game states that can be reached by playing the sequence
of actions corresponding to the path from the root node to n,
starting from s0. See Figure 1 for an example.

MCTS is initialized with only the root node. Next, until
some computational budget expires, the algorithm repeatedly
executes simulations. Every simulation consists of the follow-
ing four steps [12], depicted in Figure 2.

In the Selection step, a selection policy is applied recur-
sively, starting from the root node, until a node is reached
that is not yet fully expanded (meaning that it currently has
fewer successors than available actions). The selection policy
determines which part of the tree built up so far is evaluated in
more detail. It should provide a balance between exploitation
of parts of the search tree that are estimated to have a high
value so far, and exploration of parts of the tree that have not
yet been visited frequently. The most commonly implemented
selection policy is UCB1 [8], [13], which selects the successor
Si of the current node P that maximizes Equation 1. Si and
P are nodes, which can represent sets of states.

UCB1(Si) =Q(Si) + C ×

√
ln(nP )

ni
(1)

Q(Si) ∈ [0, 1] denotes the normalized average score backprop-
agated through Si so far (as described below), C is a parameter
where higher values lead to more exploration, and nP and ni
denote the visit counts of P and Si, respectively.

In the Play-out step, the simulation is continued, starting
from the last state encountered in the selection step, using
a (semi-)random play-out policy. The most straightforward
implementation is to randomly draw actions to play from a
uniform distribution until a terminal game state is reached. In
GVGP, this is typically not feasible, and a maximum play-out
depth is used to end play-outs early.

In the Expansion step, the tree is expanded by adding one
or more nodes. The most common implementation adds one
node to the tree per simulation; the node corresponding to
the first action played in the play-out step. In this paper, the

Fig. 2. The four steps of an MCTS simulation. Adapted from [12].

tree is simply expanded by adding the whole play-out to the
tree. The number of simulations per tick tends to be low
enough in GVG-AI that there is no risk of running out of
memory. Therefore, to keep all information gathered, all nodes
are stored in memory.

In the Backpropagation step, the outcome of the final state
of the simulation is backpropagated through the tree. Let sT be
the final state of the simulation. Next, an evaluation X(sT ) of
the state is added to a sum of scores stored in every node on the
path from the root node to the final node of the simulation, and
the visit counts of the same nodes are incremented. Because
it is not feasible to let all simulations continue until terminal
states are reached in GVG-AI, it is necessary to use some
evaluation function for non-terminal states. A basic evaluation
function that is also used by the sample MCTS controllers
included in the GVG-AI framework is given by Equation 2.

X(sT ) =


107 + score(sT ) if sT is a winning state
−107 + score(sT ) if sT is a losing state
score(sT ) if sT is a non-terminal state

(2)
score(sT ) is the game score value of a state sT in GVG-AI.
In some games a high game score value can indicate that the
agent is playing well, but this is not guaranteed in all games.

Finally, the action leading to the node with the highest av-
erage score is played when the computational budget expires.

IV. MCTS ENHANCEMENTS FOR GVGP

There is a wide variety of existing enhancements for the
MCTS algorithm, many of which are described in [14]. This
section discusses a number of enhancements that have been
evaluated in GVGP; Progressive History, N-Gram Selection
Technique, Tree Reuse, Breadth-First Tree Initialization, Loss
Avoidance, Novelty-Based Pruning, Knowledge-Based Evalu-
ations, and Deterministic Game Detection. Some are known
from existing research, and some are new.

A. Progressive History and N-Gram Selection Technique

Progressive History (PH) [15] and N-Gram Selection Tech-
nique (NST) [16] are two existing enhancements for the
selection and play-out steps of MCTS, respectively. The basic
idea of PH and NST is to introduce a bias in the respective
steps towards playing actions, or sequences of actions, that
performed well in earlier simulations. Because the value
of playing an action in GVG-AI typically depends greatly
on the current position of the avatar, this position is also
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Fig. 3. Tree Reuse in MCTS.

taken into account when storing data concerning the previous
performance of actions. For a detailed description of these
enhancements we refer to the original publications [15], [16].

B. Tree Reuse

Suppose that a search tree was built up by MCTS in a
previous game tick t− 1 ≥ 0, and an action at−1 was played.
The entire subtree rooted in the node corresponding to that
action can still be considered to be relevant for the new search
process in the current tick t. Therefore, instead of initializing
MCTS with only a root node, it can be initialized with a part of
the tree built in the previous tick, as depicted in Figure 3. This
was previously found to be useful in the real-time game of Ms
Pac-Man [17]. This idea has also previously been suggested in
the context of GVGP [11], but, to the best of our knowledge,
the effect of this enhancement on the performance of MCTS
in GVGP has not yet been evaluated.

In nondeterministic games, it is possible that the new root
(which was previously a direct successor of the previous root)
represented more than one possible game state. In the current
tick, it is known exactly which of those possible states has been
reached. Therefore, some of the old results in this tree are no
longer relevant. For this reason, all the scores and visit counts
in the tree are decayed by multiplying them by a decay factor
γ ∈ [0, 1] before starting the next MCTS procedure. Tree
Reuse (TR) with γ = 0 completely resets the accumulated
scores and visit counts of nodes (but still retains the nodes,
and therefore the structure of the generated tree), and TR with
γ = 1 does not decay old results.

C. Breadth-First Tree Initialization and Safety Prepruning

In some of the games supported by the GVG-AI framework,
the number of MCTS simulations that can be executed in
a single tick can be very small; sometimes smaller than
the number of available actions. In such a situation, MCTS
behaves nearly randomly, and is susceptible to playing actions
that lead to a direct loss, even when there are actions available
that do not directly lose the game.

Theoretically this problem could be avoided by adjusting the
limit of the play-out depth of MCTS to ensure that a sufficient
number of simulations can be done. In practice, this can be
problematic because it requires a low initial depth limit to
ensure that it is not too high at the start of a game, and this
can in turn be detrimental in games where it is feasible and
beneficial to run a larger number of longer play-outs.

Fig. 4. Example search tree. Dark nodes represent losing game states, and
white nodes represent winning or neutral game states.

We propose to handle this problem using Breadth-First
Tree Initialization. The idea is straightforward; before starting
MCTS, the direct successors of the root node are generated
by a 1-ply Breadth-First Search. Every action available in the
root state is executed up to a number M times to deal with
nondeterminism, and the resulting states are evaluated. The
average of these M evaluations is backpropagated for every
successor with a weight equal to a single MCTS simulation.
MCTS is only started after this process. When MCTS starts,
every direct successor of the root node already has a prior
evaluation that can be used to avoid playing randomly in
cases with an extremely small number of simulations. The
M states generated for every successor are cached in the
corresponding nodes, so that they can be re-used in the
subsequent MCTS process. This reduces the computational
overhead of the enhancement.

Safety prepruning, originally used in an algorithm called
Iterated Width [18], has been integrated in this process. The
idea of safety prepruning is to count the number of immediate
game losses among the M generated states for each action,
and only keep the actions leading to nodes with the minimum
observed number of losses. All other actions are pruned.

D. Loss Avoidance

In GVGP, many games have a high number of losing game
states that are relatively easy to avoid. An example of such a
game is Frogs, where the avatar is a frog that should cross a
road and a river. The road contains trucks that cause a loss
upon collision, but can easily be avoided because they move
at a constant speed. The river contains logs that also move at
a constant speed, which the frog should jump on in order to
safely cross the river.

An example of a search tree with many losing states is
depicted in Figure 4. In this example, the rightmost action
in the root node is an action that brings the agent back to a
similar state as in the root node. In the Frogs game, this could
be an action where the frog stays close to the initial position,
and does not move towards the road.

The (semi-)random play used in the play-out step of MCTS
is likely to frequently run into losing game states in situations
like this. This leads to a negative evaluation of nodes that do in
fact lead to a winning position. This is only corrected when
sufficient simulations have been run such that the selection
step of MCTS correctly biases the majority of the simulations
towards a winning node. With a low simulation count in GVG-
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Fig. 5. Example MCTS simulation with Loss Avoidance. The X values in
the last three nodes are evaluations of game states in those nodes. The dark
node is a losing node.

AI, MCTS is likely to repeatedly play the rightmost action in
Figure 4, which only delays the game until it is lost due to
reaching the maximum game duration.

This problem is similar to the problem of traps [19] or
optimistic moves [20] in (two-player) adversarial games. In
those cases, MCTS has an overly optimistic evaluation of
some states, whereas in the cases discussed here it has an
overly pessimistic evaluation of some states. In [21], it was
proposed to integrate shallow minimax searches inside some
of the steps of MCTS to improve its performance in game
trees with traps or optimistic moves. Using minimax searches
to prove wins or losses is difficult in GVGP because games
can be nondeterministic, but a similar idea can be used to get
less pessimistic evaluations.

In this paper, an idea named Loss Avoidance (LA) is
proposed for GVGP. The idea of LA is to try to ignore losses
by immediately searching for a better alternative whenever a
loss is encountered the first time a node is visited. An example
is depicted in Figure 5. Whenever the play-out step of MCTS
ends in a losing game state, that result is not backpropagated
as would commonly be done in MCTS. Instead, one state
is generated for every sibling of the last node, and only
the evaluation of the node with the highest evaluation is
backpropagated. All generated nodes are still added to the tree,
and store their own evaluation in memory.

LA causes MCTS to keep an optimistic initial view of the
value of nodes. This tends to work well in the single-player
games of GVG-AI, where it is often possible to reactively get
out of dangerous situations. It is unlikely to work well in,
for instance, adversarial games, where a high concentration of
losses in a subtree typically indicates that an opposing player
has more options to win and is likely in a stronger position.

In an open-loop implementation of MCTS, LA can have a
significant amount of computational overhead in game trees
with many losses. For instance, in the Frogs game it roughly
halves the average number of MCTS simulations per tick. This
is because the node prior to the node with the losing game
state does not store the corresponding game state in memory,
which means that all states generated in the selection and play-
out steps need to be re-generated by playing the same action
sequence from the root node. In nondeterministic games this

process can also lead to finding a terminal state before the full
action sequence has been executed again. To prevent spending
too much time in the same simulation, the LA process is not
started again, but the outcome of that state is backpropagated.

E. Novelty-Based Pruning

The concept of novelty tests was first introduced in the
Iterated Width algorithm (IW) [18], [22]. In IW, novelty tests
are used for pruning in Breadth-First Search (BrFS). Whenever
a state s is generated in a BrFS, a novelty measure (described
in more detail below) nov(s) is computed. This is a measure
of the extent to which s is “new” with respect to all previously
generated states. States with a lower measure are “more novel”
than states with a higher measure [22]. The original IW
algorithm consists of a sequence of calls to IW(0), IW(1), etc.,
where IW(i) is a BrFS that prunes a state s if nov(s) > i. In
GVGP, it was found that it is only feasible to run a single IW(i)
iteration [18]. The best results were obtained with IW(1), and
a variant named IW( 3

2 ) (see [18] for details).
The definition of the novelty measure nov(s) of a state s

requires s to be defined in terms of a set of boolean features.
An example of a boolean feature that can be a part of a state
is a predicate at(cell, type), which is true in s if and only if
there is an object of the given type in the given cell in s.
Then, nov(s) is defined as the size of the smallest tuple of
features that are all true in s, and not all true in any other
state generated previously in the same search process. If there
is no such tuple, s must be an exact copy of some previously
generated state, and nov(s) is defined as n + 1, where n is
the number of features that are defined. For example, suppose
that in s, at((x, y), i) = true, and in all previously generated
states, at((x, y), i) = false. Then, nov(s) = 1, because there
is a tuple of size 1 of features that were not all true in any
previously generated state.

IW(1) prunes any state s with nov(s) > 1. In this paper,
Novelty-Based Pruning (NBP) is proposed as an idea to prune
nodes based on novelty tests in MCTS. The goal is not to
prune bad lines of play, but to prune redundant lines of play.

MCTS often generates states deep in the tree before other
states close to the root. For instance, the last state of the first
play-out is much deeper in the tree than the first state of the
second play-out. This is an important difference with the BrFS
used by IW. It means that the novelty measure nov(s) of a
state s should be redefined in such a way that it not necessarily
uses all previously generated states, but only a specific set of
states, referred to as the neighborhood N(s) of s.
N(s) is the union of four sets of states. The first set consists

of the siblings on the “left” side of s. The ordering of the
states matters, but can be arbitrary (as in a BrFS). The second
set contains only the parent p(s) of s. The third set consists
of all siblings of p(s). The fourth set is the neighborhood of
p(s). More formally, let si denote the ith successor of a parent
p(si). Then, N(si) is defined as N(si) = {s1, s2, . . . , si−1}∪
{p(si)}∪Sib(p(si))∪N(p(si)), where Sib(p(si)) denotes the
set of siblings of p(si). For the root state r, N(r) = Sib(r) =
∅. An example is depicted in Figure 6.
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Fig. 6. States used for NBP in MCTS. The grey states are the neighborhood
of si in MCTS. For si+1, si is also included. The black states would be
included for the novelty tests in IW, but not in MCTS.

Using the above definition of N(s), nov(s,N(s)) is defined
as the size of the smallest tuple of features that are all true in s,
and not all true in any other state in the set N(s). The novelty
tests are used in MCTS as follows. Let n be a node with a list
of successors Succ(n). The first time that the selection step
reaches n when it is fully expanded, all successors Succ(n)
are novelty tested based on a single state generated per node,
using a threshold of 1 for the novelty tests (as in IW(1)).
The same boolean features are used to define states in GVG-
AI as described in [18]. Nodes are marked as not being
novel if they fail the novelty test. Whenever all successors
of a node are marked as not novel, that node itself is also
marked as not novel. There are a few exceptions where nodes
are not marked. If a state has a higher game score than the
parent, it is always considered to be novel. Additionally, states
transitioned into by playing a movement action are always
considered to be novel in games where either only horizontal,
or only vertical movement is available (because these games
often require moving back and forth which can get incorrectly
pruned by NBP otherwise), and in games where the avatar
has a movement speed ≤ 0.5 (because slow movement does
not result in the avatar reaching a new cell every tick, and is
therefore not detected by the cell-based boolean features).

In the selection step of MCTS, when one of the successors
Succ(n) of n should be selected, any successor n′ ∈ Succ(n)
is ignored if it is marked as not novel, unless the average
normalized score Q(n) < 0.5. In such cases, the situation
is considered to be dangerous and all alternatives should be
considered to see if a better position can be found. For the
final selection of the move to play in the real game, non-novel
nodes are also only considered if the best novel alternative has
a normalized average score < 0.5.

When the successors Succ(n) have been novelty tested,
every node ni ∈ Succ(n) stores a set of tuples of features that
were all true in the states generated for the purpose of novelty
testing for the nodes {n} ∪ Succ(n). This means that the
tuples of features that are true in the neighborhood N(s) of a
state s can be reconstructed relatively efficiently by traversing
the path from s back to the root, and collecting the tuples in
the stored sets. This is the main reason for defining N(s) as
described above. Including more states (for instance, the black
states in Figure 6) would require also traversing back down
the tree to collect more sets of tuples. This could increase
the number of nodes that NBP marks as not being novel, but

would also be more expensive computationally. This is not a
problem in the BrFS of IW, because it can simply store all
tuples of features that are all true in any generated state in the
same set for the entire search process.

Novelty measures are assigned to nodes based on only one
state per node. Therefore, given two identical open-loop game
trees in nondeterministic games, it is possible that a node
in one tree is pruned and the equivalent node in the other
tree is not pruned. For this reason, when combining NBP
with Tree Reuse, the results of novelty tests on nodes in the
first ply below the new root node are reset when reusing the
previous tree. This does not entirely remove the influence of
nondeterminism on NBP, but close to the root that influence
is at least reduced.

F. Knowledge-Based Evaluations

An important problem with MCTS in GVG-AI is that it is
often infeasible to find any terminal states, or even states with a
change in game score. This means that the evaluation function
in Equation 2 often returns the same value for all states gen-
erated in the same tick, and MCTS explores the search space
and behaves randomly. In this paper, a heuristic evaluation
function is proposed that uses knowledge collected during
simulations, and distances to objects that could potentially be
interesting, to distinguish between states that have identical
evaluations according to Equation 2. The basic idea is not
new; some agents in the competition of 2014 used distance-
based evaluation functions [4]. A similar idea is also described
in [23], and extended in [24]. The idea discussed here is based
on the same intuition, but a number of implementation details
are different. Another related idea is described in [25], where
MCTS is used to learn which objects are interesting, and a
pathfinding algorithm is used to move towards a selected goal.

Let X(s0) denote the evaluation of the current game state
s0, and let X(sT ) denote the evaluation of the final state
sT of a play-out. If X(sT ) = X(s0), a heuristic evaluation
EvalKB(sT ) is computed and added to X(sT ). For every
object type i observed in a game, let d0(i) denote the distance
from the avatar to the closest object of type i in s0, and let
dT (i) denote the distance from the avatar to the closest object
of type i in sT . These distances are computed using the A*
pathfinding algorithm [26]. The pathfinding algorithm takes
objects of the wall type into account as obstacles. Many games
can also contain other objects that block movement, or portals
that can be used for teleportation. These objects are not taken
into account, because the agent would first need to learn how
these objects influence pathfinding. For every object type i, a
weight wi is used to reward or punish the agent for moving to
objects of that type. This is done by computing EvalKB(sT )
as given by Equation 3, normalizing it to lie in [0, 0.5], and
adding it to X(sT ) if otherwise X(sT ) = X(s0).

EvalKB(sT ) =
∑
i

wi × (d0(i)− dT (i)) (3)

Object types i with a small absolute weight (|wi| < 10−4) are
ignored, to save the computational cost of pathfinding.
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The weights wi are determined as follows. To motivate
exploration, all weights are initialized with positive values (0.1
for NPCs, 0.25 for Movables, and 1 for Resources and Portals),
and incremented by 10−4 every game tick. States st generated
during the selection or play-out steps of MCTS are used to
adjust these weights. Let st−1 denote the predecessor of st.
Whenever such a state st is generated, it is used to update some
of the weights wi. The intuition is that, if X(st) 6= X(st−1),
it is likely that some interesting collision event occurred in the
transition from st−1 to st that caused the change in score. The
framework provides access to a set E(st) of collision events
that occurred in that transition. Every event e ∈ E(st) is a
collision event between two objects, where one object is either
the avatar, or an object created by the avatar (for instance, a
missile fired by the avatar), and the other object is of some
type i. Let ∆ = X(st)−X(st−1) denote the observed change
in score. For every object type i, a sum ∆i is kept of all
changes in scores observed in state transitions where collision
events with objects of type i occurred. Additionally, a counter
ni of event occurrences is kept for every type i, such that the
average change in score ∆i = ∆i

ni
for collisions with every

type can be computed. Whenever an event with an object of
type i is observed, wi is updated as given by Formula 4.

wi ← wi + (∆i − wi)× αi (4)

αi is a learning rate that is initialized to 0.8 for every type,
and updated as given by Formula 5 after updating wi.

αi ← max(0.1, 0.75× αi) (5)

This idea is similar to using gradient descent for minimizing
|∆i−wi|. The main reason for not simply using ∆i directly is
to avoid relying too much on the knowledge obtained from a
low number of observed events.

G. Deterministic Game Detection

The idea of Deterministic Game Detection (DGD) is to
detect when a game is likely to be deterministic, and treat
deterministic games differently from nondeterministic games.
At the start of every game, M random sequences of actions of
length N are generated. Each of the M sequences is used to
advance a copy of the initial game state s0, with R repetitions
per sequence. If any of the M action sequences did not result
in equivalent states among the R repetitions for that sequence,
the game is classified as nondeterministic. Additionally, any
game in which NPCs are observed is immediately classified as
nondeterministic. Any other game is classified as deterministic.
In this paper, M = N = 5 and R = 3.

Many participants in previous GVG-AI competitions [7]
used a similar idea to switch to a different algorithm for
deterministic games (for instance, using Breadth-First Search
in deterministic games and MCTS in nondeterministic games).
In this paper, DGD is only used to modify MCTS and the TR
and NBP enhancements in deterministic games. The Q(Si)
term in Equation 1 (or the equivalent term in the formula of
PH) is replaced by 3

4×Q(Si)+
1
4×Q̂max(Si), where Q̂max(Si)

is the maximum score observed in the subtree rooted in Si.

TABLE I
WIN PERCENTAGES (BENCHMARK AGENTS, 1000 RUNS PER SET)

Sets SOLMCTS MCTS IW(1) YBCRIBER

Set 1 34.5 ± 2.9 41.7 ± 3.1 55.8 ± 3.1 68.8 ± 2.9
Set 2 33.4 ± 2.9 33.5 ± 2.9 47.0 ± 3.1 65.0 ± 3.0
Set 3 13.2 ± 2.1 23.0 ± 2.6 17.8 ± 2.4 40.3 ± 3.0
Set 4 28.3 ± 2.8 30.5 ± 2.9 30.6 ± 2.9 43.5 ± 3.1
Set 5 19.7 ± 2.5 28.9 ± 2.8 17.5 ± 2.4 42.6 ± 3.1
Set 6 30.1 ± 2.8 28.6 ± 2.8 32.8 ± 2.9 54.4 ± 3.1

Total 26.5 ± 1.1 31.0 ± 1.2 33.6 ± 1.2 52.4 ± 1.3

This is referred to as mixmax [27], [28]. Additionally, TR and
NBP are modified to no longer decay or reset any old results.

V. EXPERIMENTS

A. Setup

The enhancements discussed in this paper have been exper-
imentally evaluated using the following setup. Every experi-
ment was run using six sets that are available in the framework,
of ten games each, for a total of sixty different games per
experiment. Table VI lists the names of the games for every
set. Average results are presented for every set of games, and
for the total of all sixty games combined. For every game,
five different levels were used, with a minimum of fifteen
repetitions per level per experiment (leading to a minimum
of 750 runs per set). 95% confidence intervals are presented
for all results. All games were played according to the GVG-
AI competition rules1, on a CentOS Linux server consisting of
four AMD Twelve-Core OpteronT 6174 processors (2.2 GHz).

B. Results

In the first experiment, the following benchmark agents
are compared to each other; SOLMCTS, MCTS, IW(1), and
YBCRIBER. SOLMCTS is the Sample Open Loop MCTS
controller included in the framework. MCTS is our baseline
implementation of MCTS, based on the MAASTCTS [29]
agent, which has a number of differences in comparison to
SOLMCTS. MCTS expands all nodes for states generated in
simulations (as opposed to one node per simulation), C is
set to 0.6 in the UCB1 equation (as opposed to C =

√
2),

it simulates up to ten actions after the selection step (as
opposed to ten steps from the root node), it uses the 1 second
of initialization time for running the algorithm (as opposed
to not using that time), and it plays the action with the
maximum average score (as opposed to the maximum visit
count). IW(1) is the Iterated Width-based agent, as described
in [18]. YBCRIBER is an IW-based agent with a number of
other features, which won the GVG-AI competition at the
IEEE CEEC 2015 conference. The results are given in Table I.
The experimental data reveals that the baseline MCTS agent
outperforms SOLMCTS. IW(1) performs slightly better than
MCTS overall, and YBCRIBER performs much better than the
other benchmark agents.

In Table II, our MCTS implementation with Breadth-First
Tree Initialization and Safety Prepruning (BFTI) is compared

1Revision 24b11aea75722ab02954c326357949b97efb7789 of the GVG-AI frame-
work (https://github.com/EssexUniversityMCTS/gvgai) was used.
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TABLE II
BREADTH-FIRST TREE INITIALIZATION WITH SAFETY PREPRUNING

Win Percentage % of Losses t < 2000
Sets BFTI MCTS BFTI MCTS
Set 1 43.3 ± 3.5 41.7 ± 3.1 42.6 ± 4.7 52.8 ± 4.1
Set 2 33.1 ± 3.4 33.5 ± 2.9 50.8 ± 4.4 51.1 ± 3.8
Set 3 21.2 ± 2.9 23.0 ± 2.6 0.0 ± 0.0 16.1 ± 2.6
Set 4 30.3 ± 3.3 30.5 ± 2.9 73.4 ± 3.8 76.8 ± 3.1
Set 5 23.1 ± 3.0 28.9 ± 2.8 72.4 ± 3.6 73.7 ± 3.2
Set 6 29.2 ± 3.3 28.6 ± 2.8 69.3 ± 3.9 72.3 ± 3.3

Total 30.0 ± 1.3 31.0 ± 1.2 51.0 ± 1.7 56.7 ± 1.5

TABLE III
WIN PERCENTAGES (PH AND NST, 750 RUNS PER SET)

Sets BFTI PH NST NST+PH
Set 1 43.3 ± 3.5 43.2 ± 3.5 45.1 ± 3.6 43.5 ± 3.5
Set 2 33.1 ± 3.4 34.5 ± 3.4 36.5 ± 3.4 38.0 ± 3.5
Set 3 21.2 ± 2.9 23.3 ± 3.0 23.1 ± 3.0 24.1 ± 3.1
Set 4 30.3 ± 3.3 29.5 ± 3.3 29.7 ± 3.3 32.3 ± 3.3
Set 5 23.1 ± 3.0 23.9 ± 3.1 30.0 ± 3.3 28.0 ± 3.2
Set 6 29.2 ± 3.3 30.0 ± 3.3 31.1 ± 3.3 33.1 ± 3.4

Total 30.0 ± 1.3 30.7 ± 1.3 32.6 ± 1.4 33.2 ± 1.4

to the MCTS implementation without BFTI. The results for
MCTS are based on 1000 runs per set, and the results for
BFTI on 750 runs per set. BFTI appears to lower the win
percentage slightly, but the 95% confidence intervals overlap.
The two columns on the right-hand side show the percentage
of lost games where the game was terminated before t = 2000
(where t = 2000 is the maximum duration of a game in GVG-
AI). BFTI reduces this percentage significantly. Even though
it may slightly decrease win percentages, the quality of play in
lost games can be considered to be improved; the agent delays
a significant number of losses. This may leave more time for
other enhancements to find wins. Therefore, BFTI is included
in the baseline MCTS agent for the following experiments that
evaluate other enhancements individually. This is followed by
an experiment with more enhancements combined.

Table III shows the win percentages obtained by adding Pro-
gressive History (PH), N-Gram Selection Technique (NST), or
both to the BFTI agent. PH and NST appear to increase the
average win percentage, but the confidence intervals overlap.
The two combined result in a statistically significant increase.

Figure 7 depicts 95% confidence intervals for the win
percentage of the BFTI agent with Tree Reuse (TR), for six
different values of the decay factor γ. The confidence interval
for BFTI is shaded in grey. TR with γ ∈ {0.4, 0.6, 1.0}
significantly improves the win percentage of BFTI.

Table IV shows the win percentages of adding either
Knowledge-Based Evaluations (KBE), Loss Avoidance (LA)
or Novelty-Based Pruning (NBP) to the BFTI agent. All three
individually show an increase in the average win percentage
over BFTI, with KBE giving the largest increase.

Table V shows the win percentages of a number of variants
of MCTS with multiple enhancements combined. “No DGD”
is an agent with all enhancements discussed in this paper, ex-
cept for Deterministic Game Detection (DGD). “No BFTI” is
an agent with all enhancements except for BFTI. This is added
to test the assumption made earlier that the ability of BFTI
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Fig. 7. 95% confidence intervals for win percentages of BFTI with Tree
Reuse (TR) for different values of the decay factor γ. The area shaded in
grey is the confidence interval for the win percentage of BFTI without TR.

TABLE IV
WIN PERCENTAGES (KBE, LA AND NBP, 750 RUNS PER SET)
Sets BFTI KBE LA NBP
Set 1 43.3 ± 3.5 50.4 ± 3.6 52.0 ± 3.6 49.6 ± 3.6
Set 2 33.1 ± 3.4 52.3 ± 3.6 34.0 ± 3.4 34.5 ± 3.4
Set 3 21.2 ± 2.9 19.1 ± 2.8 23.3 ± 3.0 23.5 ± 3.0
Set 4 30.3 ± 3.3 30.1 ± 3.3 29.6 ± 3.3 32.0 ± 3.3
Set 5 23.1 ± 3.0 31.3 ± 3.3 31.9 ± 3.3 23.9 ± 3.1
Set 6 29.2 ± 3.3 33.2 ± 3.4 28.8 ± 3.2 34.8 ± 3.4

Total 30.0 ± 1.3 36.1 ± 1.4 33.3 ± 1.4 33.0 ± 1.4

to delay games may enable other enhancements to find more
wins. The last agent contains all enhancements. In combination
with all the other enhancements, DGD significantly improves
the win percentage. DGD was found not to provide a signif-
icant increase in win percentage when applied to the BFTI,
TR (γ = 0.6) or NBP agents without other enhancements
(those results have been omitted to save space). Additionally,
BFTI appears to increase the win percentage in combination
with all other enhancements, whereas Table II shows it appears
to decrease the win percentage when other enhancements are
absent, but these differences are not statistically significant.

VI. CONCLUSION AND FUTURE WORK

Eight enhancements for Monte-Carlo Tree Search (MCTS)
in General Video Game Playing (GVGP) have been discussed
and evaluated. Most of them have been shown to significantly
(95% confidence) increase the average win percentage over
sixty different games when added individually to MCTS. All
the enhancements combined increase the win percentage of our
basic MCTS implementation from 31.0±1.2 to 48.4±1.5. This
final performance is relatively close to the win percentage of
the winner of the IEEE CEEC 2015 conference; YBCRIBER,
with a win percentage of 52.4± 1.3.

Many of the discussed enhancements have parameters,
which so far have only been tuned according to short, prelimi-
nary experiments. These parameters can likely be tuned better
in future work to improve the performance. Loss Avoidance
(LA) and Novelty-Based Pruning (NBP) as proposed in this
paper have binary effects, in that LA backpropagates only
one result from multiple generated siblings and NBP classifies
nodes as either novel or not novel. Perhaps these can be im-
proved by making them less binary. The overall performance
of the agent can also likely be improved by incorporating more
features that are commonly seen among the top entries in past
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TABLE V
WIN PERCENTAGES (ENHANCEMENTS COMBINED, 750 RUNS PER SET)

Sets BFTI No DGD No BFTI All Enhanc.
Set 1 43.3 ± 3.5 62.7 ± 3.5 62.7 ± 3.5 62.8 ± 3.5
Set 2 33.1 ± 3.4 56.4 ± 3.5 55.7 ± 3.6 59.3 ± 3.6
Set 3 21.2 ± 2.9 22.1 ± 3.0 28.5 ± 3.2 28.7 ± 3.2
Set 4 30.3 ± 3.3 32.7 ± 3.4 47.1 ± 3.6 48.1 ± 3.6
Set 5 23.1 ± 3.0 37.2 ± 3.5 39.6 ± 3.5 42.1 ± 3.5
Set 6 29.2 ± 3.3 38.3 ± 3.5 49.2 ± 3.6 49.1 ± 3.6

Total 30.0 ± 1.3 41.6 ± 1.4 47.1 ± 1.5 48.4 ± 1.5

TABLE VI
NAMES OF THE GAMES IN EVERY SET

Set 1 Aliens, Boulderdash, Butterflies, Chase, Frogs, Missile
Command, Portals, Sokoban, Survive Zombies, Zelda

Set 2 Camel Race, Digdug, Firestorms, Infection, Firecaster,
Overload, Pacman, Seaquest, Whackamole, Eggomania

Set 3 Bait, BoloAdventures, BrainMan, ChipsChallenge, Modality,
Painter, RealPortals, RealSokoban, TheCitadel, ZenPuzzle

Set 4 Roguelike, Surround, Catapults, Plants, Plaque-Attack,
Jaws, Labyrinth, Boulderchase, Escape, Lemmings

Set 5 Solarfox, Defender, Enemy Citadel, Crossfire, Lasers,
Sheriff, Chopper, Superman, WaitForBreakfast, CakyBaky

Set 6 Lasers 2, Hungry Birds, Cook me Pasta, Factory Manager, Race
Bet 2, Intersection, Black Smoke, Ice and Fire, Gymkhana, Tercio

competitions, such as the use of influence maps [30]. Finally,
some of the new enhancements for MCTS, such as LA and
NBP, can be evaluated in domains other than GVG-AI.
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Abstract—This paper proposes an application of 
reinforcement learning and position-based features in rollout 
bias training of Monte-Carlo Tree Search (MCTS) for General 
Video Game Playing (GVGP). As an improvement on 
Knowledge-based Fast-Evo MCTS proposed by Perez et al., the 
proposed method is designated for both the GVG-AI 
Competition and improvement of the learning mechanism of the 
original method. The performance of the proposed method is 
evaluated empirically, using all games from six training sets 
available in the GVG-AI Framework, and the proposed method 
achieves better scores than five other existing MCTS-based 
methods overall.  

Keywords—General Video Game Playing; Reinforcement 
Learning; Monte-Carlo Tree Search;  

I. INTRODUCTION 

Despite being a new research topic, General Video Game 
Playing (GVGP) has gathered the interests of many AI 
researchers recently. Monte-Carlo Tree Search (MCTS) is 
widely applied in the field of GVGP and has proven to be 
effective in a wide range of games. In the past few years, many 
researchers have proposed modifications to MCTS so as to 
further improve its performance in GVGP, and Perez et al.’s 
Knowledge-based Fast-Evolutionary MCTS (KB Fast-Evo 
MCTS) [1] is one of such proposals. Using (1 + 1) 
Evolutionary Strategy (ES) to train the rollout bias and game-
specific knowledge acquired via a rollout as a rollout reward, 
KB Fast-Evo MCTS was successful in outperforming standard 
UCT-based MCTS [2] in the domain of GVGP. While 
innovative and effective, KB Fast-Evo MCTS bears a number 
of shortcomings. The training mechanism (1 + 1) ES might be 
efficient, but too randomized as a learning mechanism; and 
using Euclidean distances between the avatar and other objects 
as the features oversimplifies the game state at hand. To 
overcome such shortcomings, this paper proposes an 
improvement on KB Fast-Evo MCTS, by replacing (1 + 1) ES 
and distance-based features with reinforcement learning and 
position-based features.  

Reinforcement learning is no stranger to application in 
GVGP. In past researches, reinforcement learning has been 
applied in training a game-playing agent [3] and recognizing 
contingency awareness in Atari 2600 games [4]. However, in 
our approach, reinforcement learning is used for training 
rollout bias of MCTS, instead of feature extraction or a stand-
alone decision-making mechanism. Being able to update the 
weight matrix at every turn of the rollout, reinforcement 

learning is an efficient and flexible mechanism for training 
rollout bias.  

In order to apply reinforcement learning in training rollout 
bias, an effective feature extraction method for sampling game 
states is instrumental. Game states in GVGP are often 
complicated, involving dozens of objects and NPCs. Thus, a 
feature extraction method that can simplify the game state 
while preserving its meaningful features is necessary. Previous 
studies have attempted the use of various features, for instance, 
the Euclidean distances between avatar and other objects [1], 
or game statistics such as time steps and scores [4]. In this 
paper, we propose the use of position, i.e., relative coordinates, 
of nearby objects as the extracted features for representing the 
game state and biasing rollout.  

In this paper, our proposal of using reinforcement learning 
and position-based features for training rollout bias is discussed. 
Open Loop search structure is also incorporated to further 
enhance the performance of our method. The method described 
in this paper is part of our entry in the GVG-AI Competition 
2016. While our agent applies other techniques such as Breath-
First-Search and pathfinding, this paper focuses mainly on the 
use of reinforcement learning and position-based features for 
training rollout bias.  

II. BACKGROUND AND RELATED WORK 

A. General Video Game Playing 
The goal of GVGP research is to develop a game-playing 

agent that can play various types of games. While traditional 
general game playing focuses on board games, GVGP mainly 
concerns real-time 2D video games. There are two active 
GVGP platforms - the Arcade Learning Environment (ALE) 
[5] and the GVG-AI Framework. Using the latter as its 
platform, the GVG-AI Competition has picked up steam and 
received more than 70 submissions in last year [6].  

The major difference between ALE and GVG-AI 
Framework is that the former is emulator-based while the latter 
is model-based. On the one hand, ALE provides only the visual 
outputs and memory data, and the AI program has to deduce 
the current game state from these inputs. On the other hand, the 
GVG-AI Framework provides information on the current game 
state directly from the game engine to the game-playing agent. 
The availability of game state information does not only clear 
the hurdle of deducing game states from visual outputs, but 
also allows simulation and exploration of future game states, 
thus allowing for simulation-based approaches such as MCTS.  
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B. MCTS variants for GVG-AI Competition 

Relying on not domain-specific knowledge but random 
sampling of the search space for decision making, MCTS is a 
viable and versatile technique in GVGP. In past competitions 
and studies, application of MCTS in GVG-AI framework is 
frequently attempted and researched. For instance, apart from 
the basic UCT (Upper Confidence Bound 1 applied to trees), 
researchers have attempted a combination of UCT and 
influence map [7]. Other researchers investigated various 
modifications of MCTS, such as reverse penalty and MixMax 
backups, in the GVG-AI framework [8].  

One of the more remarkable MCTS variants is KB Fast-Evo 
MCTS, proposed by Perez et al. in 2014 [1]. KB Fast-Evo 
MCTS improves UCT in two ways: the introduction of a 
knowledge-based reward formula and the use of rollout bias 
trained by (1 + 1) ES. In the GVG-AI framework, the game-
playing agent has no knowledge of the game rule prior to 
playing the game, meaning that there is no telling of which 
objects are beneficial to the player (i.e., the score increases 
upon collision) and which objects are hostile (i.e. score is 
reduces or the player is killed upon collision). KB Fast-Evo 
MCTS overcomes this by acquiring knowledge during rollouts. 
The effect of colliding with different types of objects is 
examined in simulations and beneficial objects are identified in 
the process. The knowledge acquired is then applied to reward 
calculation at the rollout end. Similar to UCT in the GVG-AI 
framework, KB Fast-Evo MCTS uses score change as a main 
reward. However, if the score has not changed after the rollout, 
i.e., ∆ܴ ൌ 0,	knowledge change ∆Z ൌ	∑ ܭ∆

ே
ୀଵ  and distance 

change ΔD ൌ	∑ ܦ∆
ே
ୀଵ  are used instead, where N is the 

number of object types; a rollout that increases knowledge and 
reduces the distance between the avatar and beneficial or 
unknown object will lead to a higher reward, according to the 
following formulae: 

ܭ∆ ൌ ቊ
								ܼி 											 ∶ 	 ܼ ൌ 0

														
ಷ
బ

െ 1			 ∶ Otherwise             (2.1) 

ܦ∆ ൌ ቐ
1 െ ಷ

బ
			 ∶ 	 ܼ ൌ 0				OR	

ܦ																																				  0	AND	̅ݔ  0
0											 ∶ Otherwise

       (2.2) 

݀ݎܽݓܴ݁ ൌ ቄ		 ∆ܴ																																		 ∶ 	 ∆ܴ	 ് 0
0.66 ൈ ∆ܼ  0.33 ൈ 	ܦ∆ ∶ 	݁ݏ݅ݓݎ݄݁ݐܱ

              

(2.3) 

In the above formulae, ܼ and ܼி represent the number of 
occurrences of event i before and after the rollout, respectively. 
 ி are the Euclidean distance to the closest sprite typeܦ  andܦ
i at the beginning of rollout and after the rollout, respectively. 
 . is the average score change triggered by event iݔ̅

Another way by which KB Fast-Evo MCTS enhances the 
performance of UCT is the use of rollout bias, which is trained 
by (1 + 1) ES. Normally, UCT performs rollouts randomly, 
meaning that each action during a rollout is selected randomly. 
Selecting actions randomly may be simple and efficient, but 
not effective and intelligent. KB Fast-Evo MCTS attempts to 

improve the quality of rollouts by tuning the rollouts using a 
weight vector and features extracted from the game state. In 
KB Fast-Evo MCTS, for each type of object in the game state, 
the Euclidean distance between the avatar and the closest 
object of that type is extracted as a feature of the game state. 
The feature value fj for object type j is then used in calculating 
the weight of action i, ai, using the formula below: 

                             ܽ ൌ 	∑ ݓ 	ൈ	 ݂
ே
ୀଵ                       (2.4) 

In the above formula, N is the total number of features, and 
wij is the ij-th element in the weight matrix W being trained by 
(1 + 1) ES, using the reward of the rollout as the fitness value. 
The probability of selecting each action among A available 
actions is then calculated using the following softmax formula: 

ܲሺ݅ሻ ൌ 	 షೌ

∑ 
షೌೕಲ

ೕసభ
    

Although KB Fast-Evo MCTS introduced many novel 
modifications to UCT, the algorithm is not without flaws. For 
example, Jim van Eeden [9] criticized that the use of Euclidean 
distances does not take obstacles into account, and the ES-
trained weight matrix converges too quickly, therefore not 
being able to evolve in the later part of the game. In light of its 
shortcomings, he further improved KB Fast-Evo MCTS by 
introducing the A* pathfinding algorithm, changing the 
evolutionary approach, and fine-tuning the parameters and 
formulae of the original method.  

Another noteworthy MCTS variant is Open Loop Search 
for GVGP [10], proposed by Perez et al. 2015. In ordinary 
UCT, game states visited during rollouts will not be recorded 
and remembered; but in Open Loop Search, statistics of each 
state, i.e., the average score and highest score, are stored in the 
game tree and carry over to inform the next search. Moreover, 
Perez et al.’s method introduced the use of pheromone trail, 
adding negative and degrading potential field to recently 
visited positions so as to discourage the avatar from staying in 
the same position during the simulation. The search structure is 
compatible to various search algorithms, including Rolling 
Horizon Evolutionary Algorithm, MCTS and Directed Breath-
First-Search.  

C. Reinforcement Learning in GVGP 

Reinforcement Learning is a common technique in the field 
of GVGP. Google DeepMind team developed deep 
reinforcement learning, a variant of Q-Learning that can learn 
playing Atari 2600 games and outperform human experts in 
several games [11]. Hausknecht et al. [12] experimented with 
four different types of evolutionary neural networks and 
showed that evolved polices are capable of beating human 
experts in three Atari 2600 games. SARSA(λ), a traditional 
model-free reinforcement learning method, was applied as a 
benchmark for the ALE platform [5].  

While many applications of reinforcement learning in 
GVGP have been proposed, these methods can hardly be 
directly applied in the GVG-AI framework for several reasons. 
One is that existing reinforcement learning methods for GVGP  

(2.5)
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are catered the ALE platform, not the GVG-AI framework. 
Also, the existing methods require a long training time to learn 
the game rules beforehand, but the Planning track of GVG-AI 
Competition allows little time for training before the game 
starts, rendering existing reinforcement learning or neural 
network techniques inapplicable. Nonetheless, these existing 
methods are inspirations for our proposed method.  

Apart from its application in GVGP, reinforcement learning 
has been widely adopted to enhance MCTS in game AI. Using 
temporal difference values to evaluate game states, Vodopivec 
and Šter proposed an enhancement of the UCT algorithm with 
the temporal difference algorithm [13]. While their work 
precedes our study, there are many notable differences between 
the two. First, their method used reinforcement learning for 
estimating the value of game state, whereas our study 
investigates the use of reinforcement learning for training 
rollout bias. And more importantly, their method was applied to 
two-player turn-based games such as Gomoku and Tic-Tac-
Toe, and the parameters were tuned offline on 10,000 to 
100,000 games, while our method is intended for single-player 
real-time videogames with little training time.  

Recently, the use of reinforcement learning and MCTS in 
Computer Go has seen major. Using reinforcement learning to 
train the policy and value networks in an MCTS algorithm, 
Silver et al. successfully built a Computer Go AI called 
AlphaGo that managed to defeat human professional players in 
full-size Go games [14]. Prior to AlphaGo, Silver has also 
introduced temporal-difference search, which is a combination 
of reinforcement learning and simulation-based search methods 
[15].  Due to their extensive uses of reinforcement learning 
techniques, AlphaGo and temporal-difference search are 
relevant to our work, but their work concentrates at Computer 
Go, allowing considerable amount of time and computational 
resource for pre-game training and simulation between steps. 
Since agents in the Planning track of GVG-AI Frameworks are 
subject to real-time gameplay and short simulation time, 
techniques in AlphaGo and temporal-difference search are not 
directly applicable in our case.  

III. PROPOSED METHOD 

 Our proposed method is based on KB Fast-Evo MCTS and 
improves the original method by four major modifications: the 
use of position-based features, the use of Q-Learning for 
rollout bias training, a new knowledge-based reward formula, 
and incorporation of Open Loop structure. Each of our 

proposed improvements is discussed in details in the following. 
Furthermore, the effectiveness of each improvement is 
evaluated in Section IV.  

A. Position-based Feature 

In KB Fast-Evo MCTS, the Euclidean distances between 
the avatar and other objects are extracted as features to 
represent a game state. Even though the Euclidean distance is 
easy to calculate, using it as a feature oversimplifies the game 
state, because the distance ignores obstacles in the game map, 
and neglects the relative position of the object. An object at the 
left of the avatar and another object at the right of the avatar 
may have the same Euclidean distance, but their positions are 
different. Nonetheless, using the Euclidean distance feature 
omits the relative positions and directions of objects, rendering 
the feature values not representative of the actual game state.  

In order to overcome such weakness, we propose the use of 
relative coordinates feature. In each game state, the 8 grid cells 
surrounding the avatar are scanned and for each object existing 
in these cells, the object type t and its coordinates relative to 
the avatar (x, y) are extracted as features. The possible values 
of x and y are 1, 0 and -1. Using Fig. 1. as an example, 
assuming the wall sprite is type 0, the extracted feature list will 
be [(type:0, x:-1, y:0), (type:0, x:-1, y:1)]. The weight matrix is 
adjusted to fit the new feature set. In the original KB Fast-Evo 
MCTS, the weight matrix is a 2D matrix with size A × N, 
where A and N are the number of available actions and the 
number of object types, respectively. Using positions as 
features, the weight matrix is a 3D matrix with size A × N × P, 
where P is the total number of possible positions (i.e., 8).  

Since the representation of features has changed, so should 
the formula for calculating the weight of each action. As shown 
in formula (2.4) in the previous section, KB Fast-Evo MCTS 
computes the weight of each action by multiplying the 
corresponding weight value by the feature value (i.e., the 
Euclidean distance of the object). Using the proposed position-
based features, for each available action, the sum of weights of 
all features in the extracted feature set F is used as the weight 
of action i, ܽ, as shown in the following formula:  

ܽ ൌ 	∑ ݓ
ி
ୀଵ   

In contrast to formula (2.4), the above formula does not 
include the feature value. This is because features are defined 
as item type and relative position. For every set of action i and 
feature j, a weight value is defined and evolved separately. 
Since feature (i.e., the position of a sprite) is already reflected 
in the specification of j in ݓ , there is no need to include 
another feature value in the formula. 

 In our implementation, the size of extracted grid is set to 3 
× 3, but it is possible to increase the size (e.g., 4 × 4, 5 × 5) to 
extract more information from the state. However, in our 
experiment, increasing the grid size did not improve the 
performance significantly, and may run the risk of time 
overspent and running out of memory (since more information 
has to be extracted and stored in each step). Therefore, the grid 
size is set to 3 × 3 in our entry.  

(3.1)

Fig. 1. A game state in the zelda game (left) and extracted features (right)
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B. Q-Learning for Rollout Bias Training 

KB Fast-Evo MCTS uses (1 + 1) ES for training the weight 
matrix, but the learning mechanism has several drawbacks. As 
criticized by Eeden [9], if the roller achieved a high score in a 
rollout at the early stage of the game, the learning mechanism 
will suffer from early convergence. This is because (1 + 1) ES 
algorithm decreases its noise factor whenever the evolution is 
not successful (i.e., the fitness value of the current individual 
did not surpass the fitness value of the best individual), if the 
weight matrix fails to evolve consecutively, the noise factor 
may fall too low, rendering mutation meaningless.  

 In our proposed method, we attempted to apply Q-
Learning in rollout bias training. The pseudo-code of the 
proposed learning mechanism is depicted by Algorithm 1. The 
Q in the algorithm corresponds to the weight matrix W in the 
previous section. In the selectAction(F, Q) function, after the 
weight of each action is computed, the bias of each action i is 
determined by a logistic function: 

ሺ݅ሻܤ ൌ 	 ଵ

ଵା	ೌ
       (3.2) 

The probability of selecting each action i is then computed 
by 

ܲሺ݅ሻ ൌ 	 ሺሻ

∑ ሺሻಲ
ೕసభ

                               (3.3) 

 The learning mechanism is based on the growing-batch 
approach [16], which has also been applied by Mnih et al. [17]. 
We used the following parameters: learning rate α  = 0.1, 
discounting factor γ = 0.1, size of D = 500, mini-batch size = 
10 and C = 500. The last one, C, appears on line 17 of 
Algorithm 1 and affects how frequent the values of ࡽ  are 
updated. The values of the parameters were decided 
empirically. Unlike (1 + 1) ES, our proposed method updates 
weight at every step in the rollout, and the score change of each 
action is applied as a reward in the learning. Only weight 
values that correspond to the extracted features are updated in 

the weight matrix.     

C. New Knowledge-based Reward Formula 

In GVG-AI Competition, the game-playing agent must 
finish its search and decide the next action within 40 ms, thus 
many UCT-based methods set a maximum rollout depth to 
limit the time spent in the tree search. Hence, most rollouts 
cannot reach the end of the game or even receive any score 
change, and such rollouts contribute little to the evaluation of 
tree nodes. In KB Fast-Evo MCTS, when the simulated game 
has not reached an end state and has no score change at the end 
of the rollout, the increase of knowledge and change in 
distance are used as the reward instead.  

 KB Fast-Evo MCTS’s reward function (2.3) poses a 
number of problems.  As Eeden [9] pointed out, the knowledge 
change adds little information, and since in our proposed Q-
Learning mechanism, the reward is calculated in each rollout 
step, the change in distance and knowledge is insignificant. 
When we tested the Q-Learning mechanism with the reward 
function, we found that the values of ΔZ and ΔD were 
negligible in most cases. Furthermore, ΔD is calculated based 
on the Euclidean distance, which neglects obstacles, in KB Fat-
Evo MCTS. The following reward function is, therefore, 
proposed to replace the original formula: 

,ݏሺݎ ܽሻ ൌ 	ቐ
		1000 ∶ ݏ	݁ݐܽݐݏ	݊݅	ݏ݊݅ݓ	ݎܽݐܽݒܽ	݂݅
െ1000 ∶ ݏ	݁ݐܽݐݏ	݊݅	ݏ݁ݏ݈	ݎܽݐܽݒܽ	݂݅

10	 ൈ 	∆ܴ  ሻݏሺݏ݁݊݉ݎ݄݁ܲ  0.1	 ൈ ∑ ܦ∆
ே


    (3.4) 

In the above formula, ∆ܴ  represents the score difference 
between the current state and the previous; Pheromones(s) is 
adopted directly from [10]; ∆݅ܦ  is the change of distance 
between the avatar and the beneficial or unknown sprite type i. 
For each beneficial or unknown sprite type i, only the closest 
object to the avatar is considered, and the change of distance is 
calculated using the A* algorithm in terms of the number of 
tiles. Beneficial sprites are identified by knowledge acquired in 
rollouts, similar to KB Fast-Evo MCTS. 

The A* algorithm being used is similar to the one 
introduced in [18]. The nature of each type of sprite is learned 
through simulations during Monte-Carlo rollouts. While 
information on the game rules is not available, the agent can 
simulate a collision with different sprites using the forward 
model given by the game engine, and examine the effect of the 
collision. By doing so, the agent can identify which sprite 
affects the score and which sprite can be traversed. Such 
information is applied in the A* algorithm to select beneficial 
sprites as targets and identify the shortest path between the 
avatar and any given object. After every simulated step, A* 
algorithm is applied to the new game state in order to compute 
the distance change. While there may be concerns that using 
A* algorithm so frequently may cause severe overhead, our 
experiment, which is described in Section IV, has shown that 
A* algorithm combined with the open-loop structure vastly 
improves the performance of our method.  

D. Open Loop Structure 

Algorithm 1: Q-Learning Biased Rollout 
1. while rollout not finished do 
2.      F  ← extractFeatures(s) 
3.      a  ← selectAction(F, Q) 
4.      s’  ← advanceStep(s, a) 
5.      r   ← getReward(s, s’) 
6.      F’ ← extractFeatures(s’) 
7.      store transition (F, a, r, F’) in D 
8.      sample a mini-batch of transitions, T, from D  randomly 
9.      foreach ݐ in T 
10.           a’ ← greedy( ݐ.F’, Q) 
11.           foreach  ݂ in  ݐ.F 
12.                maxReward ← 0 
13.                foreach   ݂’ in   ݐ.F’ 

14.                    maxReward ← ࡽ( ݂’, a’) +  maxReward 

15.                ΔQ ← α(ݐ.r +  γ	maxReward - Q ( ݂,  ݐ.a)) 

16.                Q ( ݂,  ݐ.a) ← Q ( ݂,  ݐ.a) + ΔQ  

17.       Every C steps reset ࡽ  = Q 
18. end while 
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Apart from the aforementioned modification, the Open 
Loop Search technique proposed in [10] is integrated in our 
entry as well. Each tree node in our entry stores an action and 
its statistics, but not the game state; and statistics data, namely 
the average score and the highest score, of every tree node is 
retained after each game step for the search at the next game 
step.   At the end of a search, for each child node of the root, 
the weighted sum of the average score and the highest score is 
computed, and the action with the highest sum is performed in 
the game space.  

IV. EVALUATION 

In order to analyze and evaluate of our proposed method, 
several tests have been performed. First, using the first level of 
Survive Zombies, a comparison of (1 + 1) ES and Q-Learning 
was undertaken. Then, a series of tournaments were performed 
to evaluate the performance of our proposed method.    

A. Analysis of Learning Process in (1+1) ES and Q-Learning 

Jim van Eeden has criticized that (1 + 1) ES in KB Fast-
Evo MCTS converged too quickly [9]. This criticism is 
illustrated by Fig. 3, which shows the normalized weight 
values for the “honey” object trained by (1 + 1) ES in the first 
level of Survive Zombies. Depicted in Fig. 2, Survive Zombies 
is a relatively simple game where the avatar has to collect as 
many “honey” object as possible while evading the zombies. 
The latest version of the Survive Zombies game was used here. 
The avatar gains a score and a health point for every honey 

collected. The weight value of each action i for the honey 
object ݓ,௬	was trained using (1 + 1) ES algorithm of KB 
Fast-Evo MCTS over the whole game, and the values were 
then normalized and plotted. As shown in Fig. 3, the weight 
values converged at around 90th rollout, and they remained 
largely unchanged for the rest of the game. The convergence 
occurred very early, considering that more than 15,000 rollouts 
were performed throughout the game. The early convergence 
happened because the noise factor had fallen to an extremely 
low value, after which the weight matrix failed to evolve in 
several iterations.  

 The early convergence alludes to some concerns. The early 
convergence means that learning after the first hundred rollouts 
was ineffective and could not contribute any meaningful 
change to the weight values. This is particularly problematic, 
considering that Survive Zombies, like most games in GVG-AI 
Framework, is dynamic and fast-paced. In this game, the avatar 
is supposed to move quickly in order to collect the yellow 
honey produced by bees, which move freely around the stage. 
The relative position between the avatar and the nearest honey 
changes vigorously throughout the game, but the change in 
game state could not be reflected in the weight matrix, due to 
early convergence. While convergence may be desirable in 
static problem, in the dynamic environment of real-time games, 
early convergence might cause inflexibility and 
irresponsiveness. 

 Fig. 4 shows how Q values evolved during a Survive 
Zombie game. The weight value of each action i for the feature 
[type: honey, x:0, y:1] was evolved using Algorithm 1. In this 
feature, a honey is positioned right under the avatar; thus it is 
logical that ACTION_DOWN should attain the highest weight 
value, since moving downwards will immediately yield a 
reward. As such, the weight of ACTION_DOWN remained the 
highest in most of the game, but the weight values for other 
actions also show a lot of adjustments throughout the game. 
The weight values changed drastically near the end, because as 
the game approached the end state, game over occurred much 
more frequently in the rollout, therefore introducing a lot of 
reward with extreme value to the weight matrix. 

Fig. 4.  Normalized weight values for the feature (type: honey, x: 0, y: 1) in 
the first level of Survive Zombies trained by Q-Learning 

Fig. 3.  Normalized weight values for the honey object in the first level of 
Survive Zombies trained by (1 + 1) ES 

Fig. 2    Screenshot of the first level of Survive Zombies  
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B. Evaluation of Q-Learning and Position-based Features 

The performance of Q-Learning and position-based features 
was tested. At the time of writing, there are 6 training game 
sets available in the GVG-AI Framework, and all of them were 
used in our experiments. The latest version of the platform and 
game level files as of 9th April 2016 were downloaded from the 
official GitHub1. Each game set contains 10 games, each game 
has 5 levels, and each level is played 5 times by each of the 
controllers being tested. The evaluation method follows the 
GVG-AI Competition rules2. For each game, each controller is 
ranked according to its win rate (if two or more controllers 
achieve the same win rate for the same game, the average 
scores are compared instead). Based on the ranking, each 
controller is awarded points according to the F1 Score System. 
The overall ranking is determined by the total points earned by 
each controller. As the competition server is under maintenance 
at the time of writing, the tests were performed on our personal 
computer (Mac OS X, 3.5 GHz Intel Core i5, 8GB Memory).  
There are four combinations being tested: 

 ES-D: Using (1 + 1) ES as the learning mechanism, 
Euclidean distance as the feature;  

 ES-P: Using (1 + 1) ES as the learning mechanism, 
position as the feature;  

 QL-D: Using Q-Learning as the learning mechanism, 
Euclidean distance as the feature; and 

 QL-P: Using Q-Learning as learning mechanism, 
position as the feature. 

The implementation of each controller was based on the 
Fast-Evo MCTS suggested in [1], and all controllers used score 
change as a rollout reward (without the knowledge-based 
scoring function used in [1]). The test results are shown in 
Table I. Table I shows only the final F1 score of each 
controller. The reader is referred to our homepage3 for the 
detailed results and replay log of every controller for each 
game. As shown in the results, QL-P gained the highest F1 
score in the overall ranking. Thus, we conclude that Q-
Learning and position-based feature is the best learning 
mechanism and feature combination among the methods being 
tested.  

C. Evaluation of New Reward Formula and Open Loop 

Next, the effect of the new reward formula and open loop 
structure was evaluated. Four combinations were tested: 

 CL-Raw: Using close loop with the score change 
reward, which is the same as QL-P in Section IV B; 

 OL-Raw: Using open loop with the score change 
reward; 

 CL-New: Using close loop with the new formula 
reward; and 

 PB−RL MCTS: Using open loop with the new formula 
reward. (our final proposed method) 

All controllers used Q-Learning for rollout bias training and 
position as the feature, as it is proven in the previous test that 
this combination begets the best performance. The results of 
QL-P in the last section were reused as CL-Raw here. The test 
results are depicted in Table II. Detail breakdown of the test 
results and replay log is available on our homepage3. An 
interesting behavior can be spotted in Table II: while open loop 
and the new reward formula did not improve performance 
when applied separately, the two modifications offer a 
significant boost to the performance when combined together. 
Clearly, the open loop structure and the new reward formula 
have a strong synergy effect, and achieved the best 
performance in all game sets among the four combinations.  

D. Evaluation of the Final Proposed Method 

After confirming that the combination of our proposed Q-
Learning algorithm, position feature, new reward formula and 
open loop structure indeed provides the best performance 
among all other combinations, a set of final tests was 
undertaken to compare our proposed method with other 
existing MCTS variants, including: 

 sampleOLMCTS: a benchmark controller provided by 
the GVG-AI Framework, which is an open loop version 
of the UCT algorithm; 

 KB Fast-Evo MCTS: the MCTS variant proposed in [1], 
which applied rollout bias and a knowledge-based 
reward formula to improve the performance of MCTS, 
the detail of the algorithm is explained in Section II; 

 AIJim: an upgraded version of KB Fast-Evo MCTS, 
proposed in [8];  

 Frydenberg: a modified UCT program proposed in [7]. 
UCT + MixMax + Reverse Penalty was used for 
Training Set 1 as it is reported that this combination 
performs the best for the set. For other game sets, UCT 
+ Reverse Penalty was used in our test; and 

 ES-D ES-P QL-D QL-P 

Training Set 1 154 170 184 192 

Training Set 2 189 192 129 193 

Training Set 3 173 190 171 192 

Training Set 4 179 189 142 199 

Training Set 5 180 202 145 203 

Training Set 6 213 200 204 215 

Total 1088 1143 975 1194 

     

 
CL-Raw OL-Raw CL-New 

PB−RL 
MCTS

Training Set 1 168 142 141 237 

Training Set 2 160 150 147 243 

Training Set 3 167 142 189 226 

Training Set 4 162 135 199 213 

Training Set 5 192 148 173 217 

Training Set 6 190 183 180 236 

Total 1039 900 1029 1372 

     

1. https://github.com/EssexUniversityMCTS/gvgai 
2. http://gvgai.net/evaluation.php 
3. http://www.ice.ci.ritsumei.ac.jp/~ruck/downloads.html 

TABLE II. F1 SCORES FOR EACH LOOP STRUCTURE AND REWARD 

FORMULA PAIR 
TABLE I. F1 SCORES FOR EACH LEARNING MECHANISM AND FEATURE 

PAIR 
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 TeamTopBug (MCTS): the open loop search technique 
proposed in [9]. Since the purpose of our experiment is 
to compare multiple MCTS variants, the MCTS version 
of the method was used.  

The test results of the PB−RL MCTS controller in Section 
IV C were reused in this section. Since there are 60 games in 
total, each controller played each level 5 times, and there were 
6 controllers (5 MCTS variants and our proposed method) 
being tested; a total of 60 × 5 × 5 × 6 = 9000 game levels 
results were considered for this test, including the reused 
results for our proposed method. The test results are presented 
in Appendix. Unfortunately, Frydenberg did not perform well 
in our test environment, while AIJim achieved good results, 
especially in deterministic games such as sokoban, catapults 
and escape, and outperformed KB Fast-Evo MCTS overall. 
TeamTopBug performed well and stably, and came out on top 
in Training Set 5 and 6. Nonetheless, our proposed method 
won in all of the rest training sets, and is the overall champion 
in our test.  

Compared with other MCTS variants, the proposed method 
achieved the highest average win rate in all game sets but 
Training Set 5; and among all game sets, the proposed method 
earned the highest win rate in Training Set 1, followed by 
Training Set 2. Games in Training Set 1 and 2 are relatively 
simple, and can be solved easily using MCTS and pathfinding 
algorithms, i.e., Aliens, Butterflies, Portals, Zelda, Camel 
Race, Firestorms, etc. Since the proposed method is based on 
MCTS and utilizes pathfinding in its reward formula, it can 
achieve good performance in those games. However, games in 
other game sets are far more complicated, and involve a lot of 
puzzle game elements. In particular, games in Training Set 3 
and 6 are mainly puzzle games which are difficult even for 
human players, and most of the controllers being tested 
struggled at those games. Nonetheless, the proposed method 
achieved a higher average win rate than other competitors in 
those game sets as well. Overall, the proposed method 
performed well across different types of games, but was 
relatively weak in puzzle games like WaitForBreakfast, Race 
Bet 2 and Cook me Pasta, resulting in less satisfying 
performance in Training Set 5 and 6. 

V.  CONCLUSIONS AND FUTURE WORK 

This paper proposed the use of Q-Learning as learning 
mechanism for training rollout bias in GVGP, the use of 
relative position as feature, and a new knowledge-based reward 
formula for evaluating rollout actions. The proposed method 
was tested against 5 existing MCTS variants in 60 games, and 
the proposed method achieved the best overall performance. As 
our future work, applying the Q-Learning algorithm and 
position feature with Genetic Algorithm or other search 
algorithm can be interesting future work. 
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APPENDIX 
TESTS RESULTS OF PROPOSED METHOD AND 

EXISTING METHODS 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sampleOL 
MCTS 

KB Fast-Evo 
MCTS 

AIJim Frydenberg 
TeamTopbug 

(MCTS) 
PB-RL 
MCTS

Avg Win% Avg Win% Avg Win% Avg Win% Avg Win% Avg Win%

aliens 64.36 1 67 1 66.52 0.92 52.84 0.48 69 1 66.8 1 

boulder 
dash 

10.84 0.12 155 0.04 146.52 0.08 9.04 0.12 0 0 452.24 0.04

butter-
flies 

28.4 0.92 31.84 1 30.32 0.92 31.28 0.92 26.32 1 27.04 1 

chase 1.28 0 3.32 0.04 3.56 0.04 1.48 0 4.52 0.36 6.88 0.68

frogs 0.16 0.16 0.44 0.44 0.52 0.52 0 0 0.8 0.8 0.84 0.84

missile 
command 

2.52 0.52 1.56 0.28 6.04 0.8 -1.16 0.2 -1.6 0.2 6.68 0.88

portals 0.08 0.08 0.12 0.12 0.32 0.32 0.08 0.08 0.88 0.88 0.8 0.8

sokoban 0.96 0.12 1.08 0.2 1.68 0.36 0.32 0 1.4 0.2 1 0.2

survive 
zombies 

-5.92 0.12 -3.4 0.36 -6.32 0.04 -9.24 0 -9.04 0.16 -11.4 0.12

zelda 4.12 0.2 3.64 0.08 4.2 0.4 1 0.16 2.08 0.04 7 1 

Avg. 
Win% 

0.324 0.356 0.44 0.196 0.464 0.656 

 

sampleOL 
MCTS 

KB Fast-Evo 
MCTS 

AIJim Frydenberg 
TeamTopbug 

(MCTS) 
PB-RL 
MCTS

Avg Win% Avg Win% Avg Win% Avg Win% Avg Win% Avg Win%

camel-
race 

-0.52 0.12 -0.6 0.08 0.2 0.6 -0.04 0.48 1 1 1 1 

digdug 9.76 0 9 0 9.28 0 2 0 2.44 0 33.6 0 

fire-
storms 

-0.52 0.2 -0.2 0.12 -1.2 0.24 -1.2 0.16 1 1 1 1 

infection 9.96 0.96 9.6 0.96 17.8 1 -1 0.96 2.84 0.88 22.88 1 

fire-
caster 

7.88 0 372.88 0 12.32 0 9.36 0 2.2 0 406.28 0 

overload 290 0.12 419.32 0.04 840 0.28 32.84 0.2 2.2 0 1588.24 0.28

pacman 62.44 0 69.88 0 339.76 0 225.64 0 245.6 0.24 631.32 0.16

seaquest 1342 0.52 2490.52 0.96 2002.08 0.56 683.04 0 1120.96 0.64 4604.32 0.68

whack-
amole 

24.08 1 24.32 0.76 20.84 0.4 12.4 0.44 46.56 1 39.24 0.8

eggo-
mania 

5.56 0 3.88 0.08 1.04 0 5.76 0.08 0.44 0 71.84 0.68

Avg. 
Win% 

0.292 0.3 0.308 0.232 0.476 0.56 

 

sampleOL 
MCTS

KB Fast-Evo 
MCTS

AIJim Frydenberg 
TeamTopbug 

(MCTS)
PB-RL  
MCTS

Avg Win% Avg Win% Avg Win% Avg Win% Avg Win% Avg Win%

rogue 
like

3.92 0 0.52 0 6.56 0.12 2.68 0 0.48 0 14.8 0.08

surround 1 1 1 1 1 1 1.96 1 1 1 1 1 

catapults 2.56 0 2.92 0.12 2.96 0.16 1.72 0 0.68 0 2.36 0 

plants 17.32 0.08 5.36 0 1.6 0 4.08 0.04 1 0 -0.6 0.04

plaque 
attack

34.88 0.68 8.56 0.24 46.36 0.96 5.24 0.36 -19.2 0 45.84 1 

jaws 112.48 0.68 1149.28 0.76 201.72 0 4.44 0 0.88 0.16 2144.04 0.4

labyrinth 0.04 0.04 0.24 0.24 0.52 0.52 0.04 0.16 0.8 0.8 1 1 

boulder
chase

248.04 0.12 9 0 15.8 0 9 0 8.88 0 663.44 0.12

escape 0 0 0 0 0.44 0.48 -0.04 0.16 0.4 0.4 0.08 0.08

lemmings -22.4 0 -1.68 0 -1.92 0 -31.68 0 -0.04 0 -0.08 0 

Avg. 
Win%

0.26 0.236 0.324 0.172 0.236 0.372 

 

sampleOL 
MCTS 

KB Fast-Evo 
MCTS 

AIJim Frydenberg 
TeamTopbug 

(MCTS) 
PB-RL 
MCTS

Avg Win% Avg Win% Avg Win% Avg Win% Avg Win% Avg Win%

bait 0.96 0.08 2.48 0 4.16 0.08 1.16 0 2.8 0 2.28 0.04

bolo 
adventures 

0.84 0 0.12 0 0 0 0.52 0 0 0 1.2 0.2

brainman 23.96 0.08 25.12 0.04 23.84 0.04 23.44 0 21.2 0 24.8 0 

chips 
challenge 

2.84 0 2.56 0 3.68 0 1.56 0 1.96 0 4.88 0 

modality 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

painter 337.68 0.76 109.76 1 784 0.2 531.68 0.2 27.56 1 34.56 1 

real 
portals 

1.28 0 0.12 0 5.44 0 1.28 0 0 0 1.84 0 

real 
sokoban 

0.28 0 1.2 0 1.32 0 0.16 0 1.2 0 1.2 0 

the 
citadel 

1.12 0.04 1.84 0.12 1.04 0 0.72 0.04 3.6 0.4 1.72 0.08

zen 
puzzle 

23.92 0.12 27.6 0.44 20.68 0.2 21.8 0 24.44 0 23.28 0.2

Avg. 
Win% 

0.128 0.18 0.072 0.044 0.16 0.172 

 

sampleOL 
MCTS

KB Fast-Evo 
MCTS

AIJim Frydenberg 
TeamTopbug 

(MCTS)
PB-RL  
MCTS

Avg Win% Avg Win% Avg Win% Avg Win% Avg Win% Avg Win%

solarfox 9.28 0 5.24 0 6.96 0 8.08 0 7.28 0 5.8 0 

defender -24.28 0.64 -16.08 0.8 -45.08 0.44 -30.92 0.6 82.44 0.88 37.52 0.96

enemy 
citadel

1.04 0.08 1.12 0.04 0.6 0 0.48 0 1.48 0 1.6 0.04

crossfire 0.16 0.04 0.96 0.2 -1 0 -0.52 0.08 5 1 4.28 0.88

lasers 0 0 0 0 0 0 0 0 0 0 0 0 

sheriff 6.48 1 8.44 0.84 7.28 0.72 0.44 0.08 9.16 1 7.76 0.8

chopper -4.84 0.2 8.16 0.72 4.44 0.44 -5.2 0 -1.28 0.08 -7.6 0 

superman 5.8 0 9.32 0 118.76 0 188.32 0.04 1153.64 0 592.8 0.12

waitfor 
breakfast

0.04 0.04 0.32 0.32 0.4 0.4 0.56 0.56 0.52 0.52 0.28 0.28

cakybaky 178.2 0 593.48 0 539.92 0 9.12 0 1366.36 0.04 1088.04 0 

Avg. 
Win%

0.2 0.292 0.2 0.136 0.352 0.308 

 

sampleOL 
MCTS

KB Fast-Evo 
MCTS

AIJim Frydenberg 
TeamTopbug 

(MCTS)
PB-RL  
MCTS

Avg Win% Avg Win% Avg Win% Avg Win% Avg Win% Avg Win%

lasers2 0 0 0 0 0 0 0 0 0 0 0 0 

hungry 
birds

0 0 0 0 0 0 0 0 40 0.4 80 0.8

cookme 
pasta

1.6 0 0.68 0 2.32 0 2.2 0 2.4 0 0.96 0 

factory 
manager

-1.24 0.92 -0.2 0.96 -1.72 0.92 -0.56 0.92 1 1 1 1 

racebet2 0.64 0.64 0.24 0.24 0.64 0.64 0.8 0.8 0.4 0.4 0.28 0.28

inter-
section

1.32 1 1 1 -0.04 0.96 -1.72 0.88 123 1 108.2 1 

black 
smoke

1.4 0 0.64 0 16.12 0.12 0.88 0 2.76 0 5.28 0 

iceandfire 1.56 0 1.96 0 8.44 0.16 2.4 0 15.8 0.8 14.36 0.76

gymkhana 1.8 0 1.48 0 1.16 0 0.96 0 0.2 0 2.72 0.08

tercio 0 0 0 0 0 0 0 0 0 0 0 0 

Avg. 
Win%

0.256 0.22 0.28 0.26 0.36 0.392 

 sampleOL 

MCTS

KB Fast-

Evo MCTS
AIJim Frydenberg 

TeamTopbug 

(MCTS)

PB-RL 

MCTS

Training Set 1 128 151 151 104 161 187

Training Set 2 125 130 141 115 157 226

Training Set 3 162 173 176 115 141 189

Training Set 4 152 142 173 130 131 183

Training Set 5 153 162 130 142 189 166

Training Set 6 158 141 171 157 203 199
Total 878 899 942 763 982 1150

TABLE A I.          TRAINING SET 1 (CIG2014TRAININGSETGAMES) 

TABLE A III.        TRAINING SET 3 (CIG2015TRAININGSETGAMES) 

TABLE A VII.         OVERALL PERFORMANCE 

TABLE A V.          TRAINING SET 5 (GECCO2015TESTSETGAMES) 

TABLE A IV.          TRAINING SET 4 (CIG2014TESTSETGAMES) 

TABLE A VI.        TRAINING SET 6 (CEEC2015VALIDATIONSETGAMES) 

TABLE A II.          TRAINING SET 2 (CIG2014VALIDATIONSETGAMES) 
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Abstract—So far, Evolutionary Algorithms (EA) have been
the dominant paradigm for Procedural Content Generation
(PCG). While we believe the field has achieved a remarkable
success, we claim that there is a wide window for improvement.
The field of machine learning has an abundance of methods that
promise solutions to some aspects of PCG that are still under-
researched. In this paper, we advocate the use of Intrinsically
motivated reinforcement learning for content generation. A
class of methods that thrive for knowledge for its own sake
rather than as a step towards finding a solution. We argue that
this approach promises solutions to some of the well-known
problems in PCG: (1) searching for novelty and diversity can
be easily incorporated as an intrinsic reward, (2) improving
models of player experience and generation of adapted content
can be done simultaneously through combining extrinsic and
intrinsic rewards, and (3) mix-initiative design tools can incor-
porate more knowledge about the designer and her preferences
and ultimately provide better assistance. We demonstrate our
arguments and discuss the challenges that face the proposed
approach.

I. INTRODUCTION

Psychologists distinguish between extrinsic and intrinsic
motivations. While the former user a form of explicit reward
to motivate the learner to move towards a predefined goal, the
agent in the latter is driven by its own curiosity to discover its
world while enjoying the process of information gathering.
Intrinsic motivation, according to a number of studies, “leads
organisms to engage in exploration, play, and other behavior
driven by curiosity in the absence of explicit reward. These
activities favour the development of broad competence rather
than being directed to more externally-directed goals” [1].

Researchers have proposed the framework of Intrinsi-
cally Motivated Reinforcement Learning (IMRL) to explore
behaviours guided by intrinsic motivations as a form of
reward [1]. IMRL has a strong motivation in robotics where
robots might be placed in an unknown environment and
they are expected to learn their own world model through
exploration and adaptation to new observations.

Computer games provide a unique testbed for several
AI methods due to their rich environment and multifaceted
nature that makes them well suited for wide range of studies
in machine learning [2], computational creativity [3] and gen-
eral AI [4]. We argue in this paper that intrinsically motivated
reinforcement learning provides a promising framework for

game content generation and is a viable addition to the
spectrum of methods investigated in the literature [5]. We
believe the framework is well suited, yet not explored, in the
Procedural Content Generation (PCG) paradigm. The IMRL
framework promises solutions to the three main categories
under which most of the work in the field of PCG revolves:
(1) creating new, yet interesting and novel content, (2) con-
tinuous adaptation to players’ need and (3) supporting and
inspiring game designers during the game design process.

In this work we investigate the applicability, practicality
and advantages of the IMRL framework within the computer
games domain. In particular, in this paper we formalise the
framework of IMRL in the PCG domain and demonstrate
its advantages in (1) exploring meaningful space of content
through searching for diversity, prioritising quality, improvis-
ing content and encouraging rapid feedback; (2) establishing
an efficient incorporation of players in the content generation
process through simultaneous update of models of player
experience and search for adapted content; and (3) providing
effective collaborators for game designers through modelling
her preferences and learning from the feedback. We finally
discuss a number of key challenges that one should expect
when implementing the IMRL framework.

After all, EA has so far been the dominant approach to
PCG. What we propose is the use of a method that has been
widely implemented in other fields yet minimally explored
for PCG. The reader is advised not to view this paper
as an EA vs. IMRL discussion. Rather, we are interested
in highlighting the potential of a well established method
in machine leaning field and presenting an argument that
encourages researchers to implement, test and compare the
two paradigms. We expect that in some cases, the two
methods would provide complementary strengths, so hybrid
approaches are advisable.

II. INTRINSIC MOTIVATION

The idea of intrinsic motivation was pioneered by Barto,
Singh, & Chentanez [1] and has originally departed from
studies on animal behaviour. The studies showed that
dopamine plays a critical role both in the extrinsic motiva-
tional control guiding the behaviour towards a goal, and in
the intrinsic motivational control associated with novelty and2016 IEEE Conference on Computational Intelligence and Games (CIG’16) 452



exploration. The analysis showed activations of dopamine
associated with salient stimuli which extinguishes as the
stimuli become familiar [6], [7]. These findings are the key
building blocks of the framework of Intrinsically Motivated
Reinforcement Learning (IMRL) [1].

Due to their curious nature, intrinsically motivated learners
enjoy more flexibility when faced with new problems or
when the environment is constantly changing [1]. Such
properties led to novel solutions in the field of robotics
and machines that outperform traditional active learning
methods [8].

To better understand intrinsic motivation, one could ob-
serve the behaviour of children and young infants and how
they learn skills. Children continuously pursue exploration of
the affordance of their world through performing primitive
actions such as throwing, biting squashing or even shouting
at new objects they encounter. As Wardle put it [9]: “Children
do not play for a reward-praise, money, or food. They
play because they like it”. An intrinsically motivated system
aims to imitate constructive play: examining objects in the
environment, discovering what/how they work and building
knowledge and skills [10].

Formally, intrinsic motivation was defined according to
Ryan and Deci [11] (pp. 56) as:

“The doing of an activity for its inherent sat-
isfaction rather than for some separable conse-
quence. When intrinsically motivated, a person is
moved to act for the fun or challenge entailed rather
than because of external products, pressures, or
rewards.”

III. INTRINSICALLY MOTIVATED REINFORCEMENT
LEARNING

Reinforcement learning (RL) addresses the general prob-
lem of an agent learning to approximate an optimal be-
havioural policy through interactions with its environment in
a trail-and-error process. The agent must learn a mapping
that assign rewards to actions. Through its lifetime, the
agent learns how to maximise the rewards it receives for
performing actions. This reward signal is the only learning
feedback obtained from the environment. The mapping,
policy, constructed determines how the agent behave in each
possible state.

The most common representation of a RL agent is a
Markov decision processes (MDPs). At each time step, t,
the agent observes the environment state, st, and chooses to
perform an action accordingly. The action, a, is chosen from
a finite set of possible actions, A, and by performing the
action, the environment state becomes st+1 with probability
P (st+1|st, at). Accordingly, the agent receives a reward
r(st, at) and the process repeats. The goal of the agent is to
chose a sequence of actions so that it gathers as much reward
as possible. Formally, the agent needs to learn a state-action
policy π : S → A. The optimal policy π∗ is typically defined
as the policy that maximises the cumulative reward over all
states S:

π∗ = argmax
π

V π(s), (∀s) (1)

where V π(s) is the cumulative reward received from state s
using policy π. There are different approaches to find the
optimal policy, π∗, most of which involve search in the
policy space or value function space. Search in the policy
space attempts to optimise the parameter for a given policy
parametrisation. Value function methods attempts to learn a
value function, V π

∗
, which returns the expected cumulative

reward for the optimal policy from any given state [12]. There
are different approaches to learning the policy and the value
function and the most commonly used ones are Temporal
Difference (to learn the value function) [13], Gradient-
based methods [14], model-based methods [15] and dynamic
programming and evolutionary algorithms (for learning the
optimal policy) [12].

Recently, a novel framework for intrinsically motivated re-
inforcement learning, where search for information is a goal
in itself, was proposed [1]. Studies of intrinsic motivations
started in the field of psychology where researchers were
interested in investigating the cognitive processes underlying
intrinsic motivation [16], [11]. As this direction progresses
and matures, it gathered increasing interest from researchers
in developmental robotics where several computational mod-
els have been developed [17]

The goal of intrinsically motivated systems is to maximise
their knowledge about the world through executing sequences
of actions that leads to observations yielding maximal ac-
curate world model [18]. To achieve this, Intrinsic Reward
(IR) is given which is proportional, for instance, to the
predictor’s surprise/ information gain given the history of
observed world states. Intrinsic rewards can come from a
number of sources including surprise [18], novelty [19],
learning progress [20] or emotions [21].

IV. CURIOSITY, NOVELTY AND SURPRISE

The literature identified a number of properties that con-
tribute to intrinsic motivation. Such properties include fun,
challenge, knowledge acquisition, novelty, or curiosity. Stud-
ies have shown that such abstract qualities are usually hard to
define let alone to be computationally represented [18], [17].
In what follows we review previous attempts on quantifying
such attributes so that they can be implemented within the
IMRL framework.

Artificial curiosity (AC) [22] refers to the process of
developing skills through play and is closely tied to intrinsic
motivation [23]. Curiosity is “the drive to actively explore
the interesting regions in search space that most improve the
models predictions or explanations of what is going on in the
world” [24]. AC was originally introduced for RL [22] where
it has been used mainly for active learning [25] to explain
patterns of human visual attention and to help understand
abstract concepts such as beauty and creativity [18].

According to this theory, a curious agent needs two
learning components: a general reinforcement learner and
an adaptive world model (i.e., predictor of the agents world2016 IEEE Conference on Computational Intelligence and Games (CIG’16) 453



given the growing history of perceptions and actions). The
learning progress or expected improvement of the model
becomes an intrinsic reward for the reinforcement learner.
Hence, to achieve high intrinsic reward, the reinforcement
learner is motivated to create new experiences such that
the model progresses faster. In other words, the learner is
regarded as being curious about its world [10].

Artificial curiosity couples RL with an intrinsic reward
motivation. Many forms of such intrinsic reward for AC
systems can be found in the literature. A function of the
difference between the posterior and the prior knowledge
about the world forms one example of IR of curiosity that
has been widely used [26].

Novelty has been used frequently in the literature as an
intrinsic motivation [1], [27]. Traditionally, a novel reward
is given to an event, e, that is proportional to the probability
of observing the event [28]:

r(e, t) = C · (1− P (e, t)) (2)

where C is a constant, P (e, t) is the probability of observing
certain events e at time t.

Surprise is typically understood as “the observation of
an event that violates strongly expectations, i.e., an event
that occurs and was strongly expected not to occur” [28].
Mathematically, it can be defined as:

r(e, t) = C · 1

P (e, t)
(3)

Note that according to this definition, for an event to be
surprising, it should occur in cases where there are not so
many other options that could have happened (an event drawn
from a uniform distribution where it is different from all
other events, is not necessarily surprising) [28]. Surprise is
also know as contextual novelty as it is related to a particular
event happening within a short time span.

Curiosity, novelty or surprise are valuable sources for
driving agent’s actions towards exploration, however they
do not guarantee learning. According to [29], “the mere
fact that an event is novel or surprising does not guarantee
that it contains regularities that are detectable, generalizable
or useful. Therefore, heuristics based on novelty can guide
efficient learning, but are very inefficient in large open ended
spaces, where they only allow the agent to collect very
sparse data and risk trapping him in unlearnable tasks”. Such
heuristics-based approaches have been tested in small and
closed spaces [27]. Their applicability to large spaces is
impractical and more powerful mechanisms for maximising
learning are usually needed [8], [29].

It is worth mentioning that there are other factors to intrin-
sic motivation than those mentioned above. A curious agent
is usually driven by exploration [19], [30]. In another family
of intrinsically motivated systems, the actions are chosen
so that the error in predicting the environment or certain
situation is minimised. In such scenario, the goal is to master
a specific task rather than explore the space [31]. Some
intrinsically motivated systems rely on Learning progress
to develop. The term refers to the specific case where the

error in prediction decreases maximally fast [22], [20], [31].
It has been argued that this form of intrinsic motivation is
largely correlated to aspects of children’s development [31].
For this approach to effectively work, one need to identify
what is usually referred to as progress niches: situations that
are neither too hard nor too easy to predict. Once identifies,
the niches are used to guide the behaviour towards progress
in development. When a niche is learned, it is automatically
discarded as it becomes predictable and learning continues.

V. PROCEDURAL CONTENT GENERATION

Procedural Content Generation (PCG) refers to the process
of automatic design of game content with little or no human
interference [5]. The field has enjoyed increasing attention in
recent years and rapidly expanded both in academia and the
industry. PCG methods are widely used, and very beneficial,
in cases that require generation of massive amount of content
that is similar yet variant. Popular examples include the
use of variations of fractal methods to generate trees and
vegetation [5] as demonstrated in the movie Avatar and in
the game No Man’s Sky.

Research in PCG is motivated by three main streams;
generating infinite variations of content, adapting content
generation to players and providing aid during the game
design process. In what follows, we elaborate on each of
these categories and demonstrate that RL methods powered
by intrinsic rewards promise solutions in all of these areas.

VI. INTRINSICALLY MOTIVATED REINFORCEMENT
LEARNING FOR CONTENT GENERATION

One of the main motivations behind the use of PCG in
games is that it permits automatic exploration of infinite
variations of content. This is attributed to a great extent to
the efficiency of well established stochastic search methods
such as Evolutionary Algorithms (EA) and the applicability
of exhaustive search to constraint satisfaction problems [32].
Most of the research in the field of PCG navigates the search
space of possible content through some form of evolution
combined with predefined quality criteria that guides the
search towards better fit individuals (there are of course some
exceptions where other approaches such as constraint satis-
faction are used [32] but EA is still considered the dominant
paradigm). The hope is that, with efficient representation of
the search space, a proper definition of a fitness function and
enough time, one could generate infinite amount of content
variations that satisfy certain quality measure(s). This type of
methods falls under the umbrella of Search-based Procedural
Content Generation (SB-PCG) [33], a paradigm that has been
widely adopted to generate different types of content that
ranges from necessary game components such as tracks in
racing games [34], levels in 2D platformers and physics-
based games [35] and maps in strategy games [36], to the
creation of decorations and auxiliary items such as weapons
in shooter games [37] and towers in defence games [38], to
even the generation of complete games [39].

To generate content with SB-PCG, one need to iden-
tify efficient content representation and define an accurate2016 IEEE Conference on Computational Intelligence and Games (CIG’16) 454



fitness measure of content quality. Different measures of
quality have been proposed in the literature that mostly
relate to a predefined scale of playability [35], fun [40]
or difficulty [41]. While these measures find good solu-
tions for traditional problems such as learning, planning, or
creating playable content, there is no clear guidelines for
how such methods can be adopted to creating solutions of
more abstract qualities such as beauty, novelty, curiosity or
surprise. Such aspects are generally hard to model or capture
computationally. Previous attempts to model such aspects
within the IMRL framework, such as the ones we described
in Section IV, have proven effective and shown promising
results when dealing with such attributes [42], [18], [24].

One could claim that measures of curiosity and novelty,
for instance, can be encoded in the fitness function of EA.
Although possible, and indeed tested [43], [44], evolution
through novelty is still in its infancy and investigation on
its applicability to the field of PCG is still in its early
phases. Even if such approach is viable, this particular setting
of EA works well for episodic content generation (where
interaction between the user and the system is suspended
until the system produces the final results, e.g. one level). RL
is particularly interesting for online/interactive PCG systems
where intermediate interactions and progressive feedback
from the user are necessary to guarantee the quality of the
solution (as we will discuss in Section VII and VIII). As
the direction of implementing novelty in traditional PCG
systems and the direction we propose in this paper are still in
their infancy, we believe that comparison between these lines
constitutes a future direction as both become more mature.

Traditional PCG methods are usually evaluated based on
how well the solutions found satisfy the objectives defined.
This measure of quality however discards one of the very
important aspects of a good PCG system: diversity or ex-
pressiveness of the solution space [45]. A PCG system that
generates hundreds of good solutions that differ in a few
small details should not be regarded as a better system
than the one that generates only a few solutions but with
more interesting variations. Defining measures of qualities
for PCG systems, where diversity, novelty and surprise (as
computationally defined in Section IV) play key roles, is
recently gaining more attention [46]. So far, these measures
are employed to evaluate the content generated and they
are not regarded as goals by themselves (with very few
exceptions [47]). Steering content generation through intrin-
sic rewards towards solutions that encompasses such notions
constitutes an important motivation behind the direction we
advocate in this work.

We believe IMRL is promising for generating content.
We summarise the reasons loosely following the traditional
terminology to identify PCG systems:

• Intrinsic vs. extrinsic PCG: Most current PCG systems
create content according to predefined explicit good-
ness measures that relate to design constrains, playa-
bility or factors of player experience. Alternatively, an
intrinsically motivated PCG system could potentially

progresses towards solutions that satisfy the aforemen-
tioned objectives while being internally motivated to
creating content of wider diversity and better aesthetic
quality through its curious nature. In a PCG system
that create content for a 2D platform game such as
Spelunky for instance, an external reward could be given
for arranging blocks so that the final design is playable.
The system could also employ an intrinsic reward for
novel placement of components measured according to
Equation 2.

• Partially vs. fully observable domain knowledge: Most
PCG systems attempt to create content for predefined
games or game domains. The system is usually equipped
with knowledge about the representation, mechanics
and rules. Very few studies approached the problem
of generating complete games with no (or minimal)
prior knowledge [48], [39]. This is largely attributed to
the difficulty in searching a wide space of possibilities
when the system is bounded by only a few constraints.
IMRL can be applied to problems for which domain
knowledge is only partially observable or expensive to
obtain. RL is particularly interesting when the goal is to
improvise new types of games from scratch with no or
minimal domain knowledge. The system starts from an
initial, minimal definition of the game and gradually
increase the game complexity through, for example,
interactions with the player. For instance, in a simple
physics-based game that teaches a child the basic physic
laws, tapping a floating bubble will cause the candy
inside to fall down. Once the player learns this principle
and the game observe this (by monitoring the score), the
game detects a gradual increase in the state of boredom
(according to the PEM). Driven by its inherent pursue to
please the player and to learn something new, the game
initiates a new concept such as blowing a bubble or
introduces a more complex mechanic (by picking from
an annotated repository or combining previously learnt
concepts) such as attaching the candy inside the bubble
to another item to prevent it from falling when tapping
the bubble. Using layered learning to acquire hierarchal
skills that permit complex adaptive behaviour can be
applied for this purpose [49], [30].

• Standalone vs interactive PCG: Most current PCG sys-
tems work under the standalone or the mixed-initiative
paradigms. Unlike standalone systems, interaction with
the system is permitted in the mixed-initiative approach.
the interaction however is used as a form of reward for
functional solutions and not through the intermediate
steps towards building the solution. For instance, in
Galactic Arms Race [37], a game pioneered in introduc-
ing the mixed-initiative paradigm for content evolution,
each customised weapon produced is based on the his-
tory of the user’s preferences demonstrated by the usage
patterns of previous weapons. Although the system is
considered highly interactive, adjusting the behaviour
of the system through interaction with the user only
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happens when the final solution (a functional weapon)
is ready. Potentially, Interaction could also be introduced
earlier when producing micro content. A PCG system
could as well be rewarded for the incremental progress
rather than the quality of the final solution. RL is well
suited for such scenarios.

VII. INTRINSICALLY MOTIVATED REINFORCEMENT
LEARNING FOR EXPERIENCE-DRIVEN PROCEDURAL

CONTENT GENERATION

Player experience plays a key role within the Experience-
Driven Procedural Content Generation (ED-PCG)
paradigm [50]. ED-PCG methods are centred around
the player as they rely of the her implicit or explicit
feedback to evaluate content quality [51]. A number of
sources have been investigated as measures of player
experience: subjective feedback can be collected from
questionnaires [52], [53], objective measures such as heart
rate, skin conductance or facial expressions [54], [53] and
data collected from players’ behaviour during the in-game
interactions [37]. Any of these signals, or a combination of
them, can be implemented in a PCG system.

Few studies have successfully adopted players’ feedback in
the content generation loop [52], [53]. Those they do usually
utilise classification methods to profile players. Identified
personas are then used by a search method (Gradient Ascent
Optimisation, EA or stochastic search) to select the next con-
tent [53], [52], [55]. These methods work well when a large
enough dataset is available for classification. In contrast,
RL is particularly interesting in situations in which labels
are sparse and/or when we want to reward the subsequent
progress of learning about the player and not only the final
outcome of the system.

Recently it has been suggested that interactive learn-
ing [56], that combines ideas from learning by demon-
stration, learning by exploration and tutor feedback, might
be a new perspective on learning in applications such as
robot learning [57]. Extra reinforcement signals traditionally
used include: requesting actions [58], preferences between
states [59], iterations between practice and user feedback [60]
or merely negative and positive reinforcement signals [61].
Studies have shown that systems that augment human sig-
nals in their learning progress outperform other autonomous
learning alternatives [61].

The IMRL is an interesting framework for ED-PCG. In
the IMRL framework, the intrinsic reward signal can incor-
porates several reward components coming from different
sources. While curiosity, surprise and novelty constitute some
of the frequently used rewards as intrinsic motivation, emo-
tions have recently been suggested as a viable supplementary
signal. Joy, fear and distress [42], as well as basic emotional
dimensions defined in the appraisal theory such as valence
and arousal [62] are translated into numerical features that
provide intrinsic reward in a reinforcement learning context.
Inspired by the success of such mapping, it appears that

IMRL can be extended, under similar settings, to incorporate
players’ feedback to guide content generation.

During an interaction session, the system is driven to
increase its knowledge about the player –i.e. learning a
better Player Experience Model (PEM)– and consequently
to provide better content. The steps the system follows can
be described as follows:

1) Observe the current game state, st.
2) Explore the action space, A, for a set of content

modifications that has the desired effect on player
experience.

3) Perform the set of actions, at, to modify the game
content and observe the new game state, st+1

4) Predict how the current change of content affects
player’s experience, p̂t+1.

5) Present the best predicted state, s∗t+1, to the player
and inquire the player about the actual change in
experience, pt+1.

6) Use the error in predicting player experience, e =
p̂t+1 − pt+1, to update the predictive model (PEM).

7) Use the learning progress, et+1 − et, to update policy.
8) Return to step 1.
Models of player experience –which map content to af-

fective states (see for example [52], [63])– are essential in
this process as they serve two main purposes: they are used
to predict the appeal of content to a specific player (step
2 and 4), and to guide the search of good content (step 2).
The hope is that, with enough time, the game will eventually
learn an accurate estimator of player preferences and be able
to effectively create personalised content. For the method to
work, the feedback coming from an actual player is used to
adjust the behaviour of the system. Two adjustment functions
are derived from human response, the first function calculates
the difference between the system’s belief and the actual
knowledge of player experience (step 6). Techniques such as
back propagation can then be implemented to adjust the PE
models to become better predictors. The second function cal-
culates the accumulated differences of the system predictions
of player experience through time (i.e. it measures how the
system progresses in learning to predict player experience)
(step 7).

Through the aforementioned procedure, the quality of the
presented content and the accuracy in predicting player expe-
rience will continuously increase. Once PEMs with sufficient
accuracy are built, these models can be used in absence of
the player. The possibility that the player can interfere when
necessary to adjust the behaviour can still be present.

We identified a number of key advantages for the use of
IMRL within the ED-PCG framework:

• Active learning of personalised models of PE: The
IMRL can start from average models of PE which can be
actively adjusted during the in-game sessions to better
fit a specific player preference. There will be minimal
need to collect data about player-specific behaviour and
build personalised models offline.

• Online creation of personalised content: improving the2016 IEEE Conference on Computational Intelligence and Games (CIG’16) 456



PEMs and presenting personalised content can be done
simultaneously. As PEMs become more accurate, the
content presented becomes better as well as interesting
(since the system explores the content space in its
pursuit of maximising its knowledge about the player).

Note that emotion is of complex nature, and modelling it
has proven to be a hard problem. However, recent trends have
shown that there are some aspects of players’ emotion that we
could quantify with powerful machine learning methods such
as neural networks [64]. These models could be used within
the proposed framework and incremental learning approaches
could be used to improve the model performance at runtime.
Needless to say, the performance of the proposed approach
is greatly bounded by the accuracy of the PEMs and the
efficiency of the update methods.

VIII. INTRINSICALLY MOTIVATED REINFORCEMENT
LEARNING FOR MIXED-INITIATIVE DESIGN TOOLS

This case could be regarded as a special setting of the
previous section where the feedback in this scenario comes
from the designer rather than the player.

So far, PCG systems designed to provide assistant for
game designers can be categorised into two main directions:
(1) systems that are based on constraint satisfaction and
work by observing constraints or partially designed content
and propose solutions with minimum conflicts [65]; and (2)
systems that generate large amount of content in an aim
to provide diversity [66]. Since it is impractical for the
designer to iterate through the full space, such methods are
usually supported with interactive visualisation techniques
that project the space of generated content on predefined,
problem specific, expressive axis [46]. In both approaches,
the feedback coming from the designer is treated as either
constraints that should be satisfied or an indicator of prefer-
ence that is translated to a measure of similarity.

IMRL can be a viable solutions for designing efficient
mixed-initiative design tools that learns from designers. Such
approaches are also more appealing to human designers as
they are inquired about feedback frequently without delaying
it to the end of the process. An IMRL mixed-Initiative tool
makes use of established supervised learning techniques to
model a humans reward function and uses the learned model
to create content so that the reward is maximised (although
in some studies, human reward can be directly applied as an
enforcement signal without the need to construct a model).

There is a well-established body of work in the field of
robot learning on implementing RL framework that incor-
porates a human in the learning process. Those can be a
potential inspiration of implementing a similar method for
designing assistive tool for games. The feedback coming
from the user can take many forms: some learning systems
relies on humans providing advice encoded in a domain-
specific language [67]. Another approach is to learn through
demonstration provided by human trainers which can take
the form of taking control temporally [68] or performing the

task while the system monitor the process [69]. The other
possibility is to gather human feedback as a scalar reward
that indicates a positive, negative or neutral signal [61].
Some of these methods are more appealing to humans while
others are easier to implement in a computational models. We
hypothesise that there will be interesting and useful lessons
to be learned and challenges to be overcome by investigating
these approaches.

IX. CHALLENGES

We argue that IMRL framework is a feasible solution to the
main problems in PCG. Naturally, the application of IMRL
to PCG presents a number of interesting domain-specific
challenges. Some of these challenges are also common in
traditional methods for content generation:

A. Choice of an appropriate content representation

Similar to EA, Content Representation (CR) plays a very
important role in the efficiency of the search algorithm. In the
IMRL framework, CR is particularly important for detecting
salient features that support the discovery of novel solutions.
For this purpose, it is important that CR should not be limited
to the visual appearance of the game but should also include
other facets that contribute to what the game is actually about
and that could be of potential interest for curious behaviour.
For instance, novel content could be generated as a result of
a new combination or mutation of existing game rules and
mechanic [48], [70].

B. Choice of an appropriate action representation

The possible actions available to the RL system are usually
those defined by the game mechanics and rules. However,
since we are interested in creative behaviour and improvi-
sation, the system should be allowed to apply meaningful
modifications even to the core elements of the game. While
this will significantly increase the size of the search space,
the hope is that with efficient representation and modelling
methods, this will also boost spotting novel instances.

C. Choice of reward function

Judging the quality of content is what actually steers
the behaviour of a generator. While the most significant
reward for a curious agent comes from itself as a pursue
of knowledge and discovery, additional augmenting signals
can be incorporated to maintain a desirable behaviour. As
discussed, extrinsic rewards can come from game-specific
constraints, but they can also come from a human interact-
ing with the system either as a player providing feedback
about experience or as a designer looking for inspiration or
assistance. The actual formulation for integrating different
sources of rewards is a nontrivial empirical question but
one can draw from previous research on multi-objective
optimisation [71] and cooperative coevolution [72]. Special
care should also be taken when humans are present in the
loop as they have a general tendency of being inconstant in
the rewards they provide and their preference might change
over time [73]. Moreover, studies have shown that people2016 IEEE Conference on Computational Intelligence and Games (CIG’16) 457



have different patterns in assigning rewards (some have clear,
strong opinion while others do not) and some are more
dedicated that others [73]. All of these factors have a great
influence on the system’s behaviour and learning progress.

X. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we advocate the use of intrinsically motivated
reinforcement learning approaches for automatic generation
of game content. We discussed our motivations and high-
lighted the factors that inspired this work. We extensively
surveyed previous work on exploring the applicability of
IMRL to different problems that PCG can benefit from. We
further formulated the main features that promote the use of
intrinsically motivated systems for game content generation.
We investigated a number of directions for implementing
an IMRL system for PCG and highlighted a number of
interesting use cases: (1) efficient exploration of the content
space and higher chances of creating diverse and interesting
artefacts, (2) active construction of models of player experi-
ence while generating personalised content and (3) building
efficient mixed-initiative design tools. We explored a number
of directions where IMRL is promising and we present the
challenges expected.

This work is primarily motivated by our believe that met-
rics of novelty, surprise and diversity are what truly identify
a good content generator. Thereafter, most of the discussion
presented in the paper revolve around these aspects. Through
our survey of previous work and investigations of current
PCG systems, we concluded that the proposed framework is
indeed promising and worth further research in this specific
domain.

Most of the points highlighted in this paper are milestones
for future work. We are currently working on investigating
the applicability of the framework for generating diverse, yet
playable content for a physics-based game and our ultimate
goal is to implement a system that improvises complete
games learning from the interaction with the player. The
purpose of this paper is to invite researchers in the field
to explore the potential of the framework for game content
generation as we believe it has many desirable characteristics
that motivate further investigations.
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Abstract—In the General Video Game Playing competitions of
the last years, Monte-Carlo tree search as well as Evolutionary
Algorithm based controllers have been successful. However, both
approaches have certain weaknesses, suggesting that certain
hybrids could outperform both. We envision and experimentally
compare several types of hybrids of two basic approaches, as
well as some possible extensions. In order to achieve a better
understanding of the games in the competition and the strength
and weaknesses of different controllers, we also propose and
apply a novel game difficulty estimation scheme based on several
observable game characteristics.

I. INTRODUCTION

The General Video Game AI (GVGAI) competition is an
attempt to create artificial intelligence that is not tailored
towards a specific game (akin to General Game Playing, GGP).
In contrast to GGP games, GVGAI games are modeled after
real, well known (albeit simple) video games and incorpo-
rate non-deterministic behavior of NPCs. Thus, learning to
play these games is not trivial, despite the forward model
offered by the GVGAI setup that can be used to explore
possible futures of the current game state. The inherent non-
determinism discourages plain game-tree search methods and
renders this environment suitable to non-deterministic learning
algorithms such as Monte-Carlo Tree Search (MCTS) and
Evolutionary Algorithms (EA). Both approaches have been
shown to work well, but MCTS based controllers tend to
exhibit the best overall performance [14]. Still, as of yet,
no submitted controller has been able to consistently be
successful on all games, showing that all controllers have their
weaknesses and strengths. A hybrid controller that combines
the strengths of both methods therefore seems promising. But,
to our knowledge, few combinations of the aforementioned al-
gorithms into a single GVGAI controller have been suggested
(cf. section III).

In this work, we therefore explore different hybridizations,
namely (1) integrating parts of the MCTS method into a rolling
horizon EA [7, 12], and (2) splitting the computation budget
between both methods. Both combinations are experimentally

shown to perform well, with the first hybrid possessing a small
advantage. Next to these two naı̈ve hybrids, we also try out
further modifications addressing weaknesses discovered during
the experiments. However, while improvements are visible in
one area, the variations introduced new weaknesses to the
controllers. For a more robust controller, further research is
needed on how to balance the different components.

As a first step in this direction, we analyze the charac-
teristics of different games and their correlation with the
overall winrates of the different controllers in an attempt
to uncover strengths and weaknesses. The analysis is based
on a difficulty estimation scheme that uses different models
to predict controller winrates as a proxy for difficulty from
several observable game characteristics.

In the following, we first introduce the GVGAI framework
(sect. II) and discuss related work in sect. III. The proposed
hybrid controllers are explained in sect. IV and experimentally
analyzed in sect. V. Section VI contains the analysis of the
difficulty of the games. The paper concludes with a brief
summary and outlook in sect. VII.

II. THE GVGAI FRAMEWORK AND COMPETITION

The General Video Game AI framework is an extension
of py-vgdl, a benchmark for planning and learning problems
implemented by Tom Schaul [15]. This environment proposes
a Video Game Description Language (VGDL) to describe two-
dimensional real-time games games in a very concise and
object oriented manner. GVGAI utilizes this implementation,
providing a responsive forward model to simulate actions
within the game and an interface for controllers to participate
in an open competition. The results and rules of this contest,
which was initiated in 2014, can be found in [14].

The GVGAI framework communicates information about
the game state to the controller via Java objects, although
information about the nature of the game, its rules, the type
of sprites present and the victory conditions are not provided.
Information received contains the game status (score, winner -
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if any -, and current time step), the available set of actions on
the game, the player’s state (position, resources collected) and
the position of the different sprites, identified by an integer id,
in the level.

Controllers can use 1s of CPU time for initialization, and
40ms at every game tick to return a valid action to play the
game. If these limits are not respected, the controller loses
the game automatically, with the exception of actions returned
between 40 and 50ms, in which case the action executed in
the game is NIL (no movement applied). During the allocated
time, the controller can employ a forward model to explore the
effects of actions, by rolling the current game state forward
and reaching potential future states. It is important to highlight
that most games have non-deterministic elements, so it is a
responsibility of the controller to deal with the distribution of
next states that the forward model provides from the same pair
of state and action.

At the time of writing, the framework contains 80 single-
player (some of them used in this research) and 10 two-
player games. The single-player planning track was run as
a competition in 2014 [14] and 2015, attracting more than 70
entries in total.

III. BACKGROUND

A. Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) [2] is a very popular
technique that iteratively builds an asymmetric tree by sam-
pling the search space. It builds estimates of the action-values
for the different states found during the search, by repeating
a sequence of 4 consecutive steps: Tree Selection, Expansion,
Monte Carlo Simulation and Back-propagation.

During the Tree Selection phase, the tree is navigated from
the root according to a Tree Policy, until a node with
actions not yet expanded is reached. A very common policy
is UCB1, described in equation 1 [8],

a∗ = argmax
a∈A(s)

{
Q(s, a) + C

√
lnN(s)

N(s, a)

}
(1)

where N(s) indicates the number of visits to state s, N(s, a)
the number of times an action a is taken from s, and Q(s, a)
the empirical average of the rewards obtained from s through
a. This policy balances between exploitation (first term of
equation 1) and exploration (second term), tempered with the
value of C.

During the Expansion phase, a new node is added to
the tree as a new child. Then, a Monte Carlo Simulation
starts from that point until reaching the end of the game
or a predetermined depth, selecting actions according to a
Default Policy, which typically selects moves uniformly
at random. Finally, the Back-propagation step updates the
Q(s, a) values of all nodes visited during the Tree Selection
step using the reward observed in the state reached at the end
of the Monte Carlo Simulation.

MCTS has been successfully used in General Game Playing
(GGP) [1], winning the 2007 and 2008 AAAI GGP com-
petitions, and it has been extensively used in the GVGAI
competitions up to date. The winner of the 2014 GVGAI
competition, Adrien Couëtoux, implemented OLETS (Open
Loop Expectimax Tree Search) [14], a variant of MCTS
without Monte Carlo simulations. The tree is navigated from
the root, using a variant of UCB1, until a new node is added,
which state is evaluated and the result Back-propagated to
the nodes of the tree. Also in the 2014 competition, the third
ranked entry was the provided sample MCTS controller. It’s
worth highlighting that this controller employed a very simple
state evaluation function, which used the game score plus a
high positive (negative) value if the game was won (resp. lost),
but it still performed well across several games.

B. Rolling Horizon Evolutionary Algorithms

Traditionally, in planning problems, evolutionary algorithms
(EA) are used offline to train a controller or solver that then
tackles the real problem [5]. A rolling (or receding) horizon
EA (RHEA) operates by evolving a sequence of actions online,
out of which only the first one of the best sequence or
individual is performed in the real game. A fast EA, executed
at every time step, tries to determine the best action sequence
from the current state, evaluating each individual with an
evaluation of the state reached at the end of such sequence.

This algorithm was first implemented for the Physical
Travelling Salesman Problem (PTSP) by Perez et al. [12],
showing a better performance than MCTS in the PTSP. More
recently, the work by Justesen et al. [7] shows that RHEA can
achieve high performance in Hero Academy, a game with a
very large branching factor.

The GVGAI framework includes a sample controller that
implements a steady state RHEA, known as microbial GA [6].
In this controller, individuals are compared in pairs, chosen
at random, and the one with the worst fitness is mutated
randomly, also taking parts from the other’s genome with a
small probability. Although this controller ranks worse than the
MCTS Sample controller in all game sets, many participants
have worked with different versions of this algorithm, and
about 50% of the top 10 entries in the final rankings of the
2015 competitions were RHEA based algorithms1.

C. Hybrids and Hyper-heuristics

The GVGAI Competition took place in three different legs
during 2015, with a different winner for each one of them. Al-
though the algorithms were different, all three had something
in common: they were a combination of techniques that were
selected depending on certain characteristics observed in the
games. The winner of the first leg (YOLOBOT; and overall
winner of the championship), employs Best First Search or
MCTS to reach a targeted sprite in the game, depending on the
game being identified as deterministic or not, respectively. The
winner of the second leg, Return42, differentiates the game

1Results available at www.gvgai.net
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according to the same concept, using A-Star for pathfinding in
deterministic games, and random walks for stochastic scenar-
ios. Finally, the winner of the last leg, YBCRIBER, combines
a danger prevention mechanism with iterative width (IW [9]),
using pruning and a dynamic look-ahead scheme to perform
statistical learning on the different sprites of the game [4].

A different approach, which the research expands on, is
the combination of several techniques into a hybrid algo-
rithm. Specifically, combinations of MCTS and EA in GVGAI
have been tried in previous works. For instance, Perez et
al. [11] combined Fast Evolution with MCTS for General
Video Game Playing. The objective was to evolve a set of
weights W = {w0, w1, . . . wn} to bias action selection during
the Monte Carlo simulations of the algorithm. In this work,
every MC simulation evaluates a single individual, providing
as fitness the reward calculated at the state reached at the
end. For each state, a set of features F = {f0, f1, . . . fn}
is extracted, and the relative strength of each action (ai) is
calculated as a linear combination of features and weights. On
each move during the simulation, actions are picked at random
with probabilities derived from applying a Softmax function
to the relative strengths of each action. For more information
about this algorithm, the reader is referred to [10].

In a different approach [13], a RHEA builds a tree search
while evaluating the different individuals. Every time a se-
quence of actions is executed from the current state, new
nodes will be added to this tree, one per action performed.
As some initial sequences are repeated during the evaluation
of the different individuals, most children of the root node
will be visited repeatedly, allowing it to calculate an average
of the rewards or fitness obtained by the different individuals.
Finally, the recommendation policy (that chooses which action
to take in the real game), can select the move based on
this value, rather than depending only on the best individual.
This helps reduce the effect of noise in the state evaluation
of stochastic games without the need of evaluating the best
individual multiple times.

IV. MCTS/EA HYBRIDIZATIONS FOR GVGAI

Of course, there are many ways to combine MCTS and
EAs within one controller, and some of these possibilities
have already been explored, as described in sect. III-C. When
envisioning more direct hybrids, it appears to be simpler to
augment a RHEA (see sect. III-B) with components taken from
MCTS than the other way around. Something we have to keep
in mind is that we are situated in a realtime environment. As
there is a constant limit (40 ms) of time that can be employed
for computing the next move, inserting a new mechanism into
an existing controller at the same time means to reduce the
available resources for the original algorithm.

Note that the parameter values employed for the different
controllers stem from manual testing limited by the runtime
of the experiments and could still be improved. Running a
controller on 10 games with 5 levels each and several repeats
can take several hours.

A. RHEA with rollouts: EAroll

This simple scheme takes over the RHEA algorithm and
extends it with rollouts: when the simulation of the moves
contained in the currently simulated individual/genome is
finished, a predefined number of rollouts of parametrized
length is performed from that point on, and the fitness of a
move combination is computed as the average of the EA part
and the MCTS part.

In order to characterize the type of hybridization, one could
say that a minimal MCTS is performed during the assessment
of move combinations within an EA. We therefore call this
an integrated hybrid. The expected benefit of adding rollouts
is that the algorithm can look into the future a bit further
and thus the chance of detecting a critical path (that would
with high probability lead to a loss) increases. It can therefore
avoid such paths much earlier. Just extending the length of the
genome (the number of consecutive moves evolved) would
not have the same effect as that would mean that only one
specific move combination (albeit a longer one than before)
is tried. Taking into account that GVGAI games are usually
non-deterministic, the chances of finding exactly that move
combination that leads into a critical path can be expected to be
much higher if we sparsely sample a game tree from a specific
starting point than if we try only one move combination.

However, this advantage comes at a cost: adding rollouts
of course uses up precious computation time, so that the
number of moves that can be evaluated within the time
constraints decreases. The results reported in this work have
been obtained with the following parameters: genome length: 8
steps, simulation depth 9 steps, population size 7, and number
of rollouts 300.

B. RHEA, then MCTS for alternative actions: EAaltActions

This alternative hybrid approach resembles an ensemble
approach: after running the RHEA for a predefined time, we
use MCTS for checking alternative solutions. That is, the
MCTS is allowed to compute a suitable move first, excluding
the one chosen by the RHEA. After finishing the MCTS run,
we compare the results of the best moves detected by both
algorithm and use the better one.

It is an open question how the available time (40 ms) should
be distributed between the two approaches. For reasons of
simplicity, we spend approximately the same amount of time
on both. Our results have been obtained with the following
parameters: genome length = simulation depth = 9 steps,
population size 5, and number of rollouts 20.

C. EAroll plus sequence planning: EAroll-seqPlan

The basic idea of this controller is to reuse a computed
sequence of moves (a plan). In keeping an existing plan, one
could just start the computation from the next planned move.
After every move, the first move is removed from the plan
and the whole plan is shifted upwards. In a deterministic
environment, this would make a lot of sense because in
GVGAI one-player games, we have no opponent, and the
NPCs are usually not very aggressive. Thus, continuing the
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plan at least a few steps could save computation time for
further exploration of future states. However, it is known that
the GVGAI games are often heavily non-deterministic, so that
it is not easy to predict how well our approach works. In
contrast all other controllers suggested here, we cannot react
quickly if something unforeseen happens.

We run this controller with the following parameters:
genome (plan) length 8 steps, simulation depth 9 steps, pop-
ulation size 5, and number of rollouts 20.

D. EAroll + occlusion detection: EAroll-occ
Looking at the behavior of the EAroll controller, from time

to time we observe that it stands still for some iterations
and then performs a sequence of moves it could have started
earlier. The reason for this is that an action sequence which
leads to a reward (as, e.g., moving onto a diamond in the game
boulder dash) has the same fitness if some inconsequential
actions are added to the beginning of the list. In the literature,
this problem is sometimes addressed with decaying rewards,
but this approach needs to be parameterized. Instead, we
want to completely remove any unnecessary actions from the
sequence to improve the overall performance of the controller.
In order to be able to detect the right position within the action
sequence to start the execution, we need to reserve some time
(5 ms) so that we can do a binary search for the starting
position from the middle of the sequence to the beginning,
watching out for the first occasion for which the reward stays
the same. We then remove all earlier moves from the sequence.

This controller is run with the following parameter values:
simulation depth 9 steps, population size 6, and number of
rollouts 100.

E. EAroll + NPC attitude check: Earoll-att
The last controller variant also employs EAroll as base

controller and tries to determine the attitude of the different
NPC characters in order to allow or forbid moves into their
neighborhood. As there is no information available at the
start of the game that allows us to infer the consequences
of collisions between the avatar and specific NPCs, this has
to be learned during runtime. Fortunately, while setting up
the next move, we simulate a lot of steps we do not actually
perform, but we obtain information about when the controller
would be rewarded or would lose a game. We assume that the
behavior of a specific NPC type does not change completely
over time (which is not always true, cf. Pac Man) and
memorize if the collision had a good, negative or no effect.
During the following game phases, we utilize this knowledge.
Whenever the avatar moves into the vicinity of an NPC (this is
parametrizable, we use a distance of 2 here), the corresponding
move gets an extra reward or penalty.

The parameter values employed for this controller are:
genome length 7 steps, simulation depth 8 steps, population
size 10, and number of rollouts 300.

V. EXPERIMENTAL ANALYSIS

The most promising hybridizations and corresponding
parametrizations as described in IV, as well as the original

MCTS and RHEA examples were tested and compared exten-
sively using the GVGAI framework (see II). Each of the 7
controllers was run 20 times on each of the 5 levels of every
game in game sets 1 and 2. This results in 100 playthroughs
per controller per game and thus in 14 000 runs total.

In this section, the generality of the controllers will be
examined based on their performances on all 20 games. In
contrast, in section VI, the results are inspected more closely in
terms of how certain aspects of a game affect the performance
of different controllers.

In order to obtain interpretable results that are comparable
across games, we use winrates as a measure of performance
since the scoring systems differ between games. However,
it has to be noted that the scores potentially contain more
information that could help distinguish different controllers
in a statistically significant manner. In terms of measuring
performance, we first compute the confidence intervals for
the true winrates π of a controller on a game based on its
measured winrate π̂ in the experiment with n = 100 samples
and α = 0.05 (see Figure 1), assuming a binomial distribution
and using the Pearson-Klopper method2. The experimental
winrates are each marked with a circle within the respective
interval.

From Figure 1 it is apparent that there are some games
where all controllers either perform similarly badly (Camel-
race, Dig Dug, Firecaster, Eggomania, Boulderdash) or well
(Aliens, Butterflies). In most other games, the controllers
EAaltActions, EAroll-seqPlan, EAroll-occ perform a little
worse than the rest. However, there does not seem to be a
clear pattern which of the other controllers is ahead of the
rest in all games. Even if just taking the experimental winrates
into account, there is no clear winner across all or most of the
games.

However, there are some obvious differences when analyz-
ing the controllers’ overall performance, for example using
the GVGAI rating system (see [14]). The GVGAI framework
determines the ranking of all competing controllers on each
game and rewards them according to the Formula 1 scoring
system with between 25 and 0 points. The rankings on each
game are determined using the winrate as a first criterion and
the obtained scores as a tiebreaker. Usually, the completion
time is used as a secondary tie breaker, which was dropped
for this paper as we were not looking at computational speed
in this context. The resulting ratings for all controllers on game
sets 1 and 2 are listed in table V.

According to the ratings, EAroll performs best on both game
sets, although its lead is bigger on game set 1. Overall, the
ratings are much more consistent in game set 1 with EAroll-
seqPlan and EAroll-occ constantly on the last two ranks while
sometimes placing 2nd and 3rd on game set 2. In contrast, the
rating of the MCTS controller is very robust and steady across
all games. This is reflected in the total rating: EAroll-seqPlan
and EAroll-occ are on the last two ranks regarding overall
performance and MCTS is on 2nd place, benefiting from its

2R package binom
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(a) (b)
Fig. 1. Confidence Intervals (α = 0.05) for the winrates of all tested controllers on game set 1 (fig. 1a) and 2 (fig. 1b)

consistent performance. The RHEA controller and EAroll-att
score similarly, with EAaltActions following behind.

However, as is apparent in figure 1, many confidence
intervals for the winrates overlap and are therefore not as
clear an indicator of controller performance as the resulting
difference in GVGAI scores might suggest. Therefore, in order
to obtain a better idea of significant differences between the
overall performances of the controllers, we compute the Elo-
ratings based on a pairwise comparison. The idea of the Elo-
rating is to estimate the skill of a player based on the outcomes
of past matches, taking into consideration the skill-level of the
opponents. For more details, refer to [3].

The pairwise-comparison is conducted based on the con-
fidence intervals for the winrates depicted in figure 1. The
performances of two controllers are incomparable if the cor-
responding confidence intervals overlap. If they do not, one
controller plays significantly better (α = 0.05) than the other.
In order to translate the comparisons to a format suitable
for the Elo-rating, a controller performing significantly better
than another wins a comparison, the other one loses. If the
controllers are incomparable, the result is a draw.

It is important to note that in the GVGAI context, there
is no performance development to be expected across games,

TABLE I
GVGAI-RATINGS FOR ALL TESTED CONTROLLERS FOR GAME SETS 1 & 2

Rank Player Rating Set 1 Rating Set 2 Total
1 EAroll 206 178 384
2 sampleMCTS 163 163 326
3 sampleRHEA 138 152 290
4 EAroll-att 175 110 285
5 EAaltActions 118 141 259
6 EAroll-seqPlan 80 113 193
7 EAroll-occ 62 86 148

since no data is transferred between games (or even runs).
Therefore, for the purpose of computing the Elo-rating, all
comparisons are considered to have occurred within the same
time period, to avoid a bias towards the last games played.
The resulting ratings and ranks are listed in table V. Both the
Elo as employed by FIDE and the Glicko rating systems result
in the same ranks for the controllers.

The GVGAI- and Elo-Ratings agree on placing EAroll-
seqPlan and EAroll-occ on the last two ranks, which is
unsurprising since they frequently seem to be performing
worse than the other controllers. The Elo-Rating indicates that
the first place for EAroll is due to statistically significant
performance differences as well. While EAaltActions is on
rank 5 in both rankings, the rest of the controllers EAroll-
att, MCTS and RHEA have different rankings which seem
to indicate that between those controllers, there is no clear
difference in terms of overall performance.

VI. GAME DIFFICULTY ESTIMATION

Even though some of the developed controllers are clearly
not performing as well as others across all games, it is
apparent from figure 1 that some games seem to be easier for
all controllers than others. Additionally, despite performing

TABLE II
ELO-RATINGS FOR ALL TESTED CONTROLLERS BASED ON PAIRWISE
PERFORMANCE COMPARISONS ON ALL GAMES IN GAME SETS 1 & 2

Rank Player Rating Win Draw. Loss
1 EAroll 2510 27 89 4
2 EAroll-att 2497 25 92 3
3 sampleRHEA 2443 20 98 2
4 sampleMCTS 2376 27 79 14
5 EAaltActions 2348 17 97 6
6 EAroll-seqPlan 1700 2 79 39
7 EAroll-occ 1525 0 70 50
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at a similar level for most games, in some games, certain
controllers perform significantly better or worse than the
others. The best example for this is Whack-A-Mole where
the standard MCTS performs significantly better than all other
controllers. In this section, we take a closer look at the games
in question to explain the discovered patterns.

As a preparation for a more detailed analysis we identified
10 characteristics of games that might impact the performance
of controllers, extending the characterization in [14]. In most
cases, the values assigned to the games per characteristic
correspond to the fragment of time that the game exhibits the
specific characteristic:
• enemies: Do opposing NPCs exist?
• puzzle: Does the game contain a puzzle element?
• indestructible: Are the NPCs indestructible?
• random: Is the NPCs’ behavior stochastic?
• stages: Are there multiple stages to a winning condition?
• pathfinding: Is finding a path through the level necessary?
• traps: Does the game contain traps or missiles?
• chase: Do NPCs chase the player with negative effects?

There are a few exceptions, however:
• actions: Number of actions allowed in the game divided

by number of actions a controller within the GVGAI
framework can access (5)

• NPCs: Normalized average number of NPCs
The evaluation of the respective characteristics is done man-

ually and may therefore contain a bias, but the characteristics
were chosen so that a minimal amount of personal judgment
is needed. The resulting difficulty estimation for all games in
game sets 1 and 2 is shown in figure 2a with table III as legend.
Considering the plot, the games seem to vary considerably in
terms of difficulty and the type and combination of challenges
a controller faces are diverse as well. Since the purpose of
the GVGAI competition is to determine general video game
players, this diversity between the games is expected and
advantageous.

However, only in some cases does the sum of the various
difficulty characteristic seem to correspond to the actual per-
formance of the controllers, even if the controllers all perform
on a similar level. For example, while Boulderdash is very
difficult according to figure 2a and seems to be problematic for
all controllers (cf. figure 1a), Camelrace and Firecaster result
in similarly low winrates (cf. 1b) despite being considered to
be much easier (cf. figure 2a). It is thus obvious, that even
if the identified characteristics can describe the difficulty of
a game appropriately, some factors are more important than
others, some even have a positive effect on controller winrates.

To analyze the importance of the characteristics, we estimate
the variable importance based on the R2 statistic of a non-
parametric regression model using only one predictor against
the intercept only null model as described in the minerva
R package documentation3. According to the Maximal In-
formation Coefficient (MIC) that estimates the relationship

3https://cran.r-project.org/web/packages/minerva/minerva.pdf

strength between a difficulty characteristic and the winrate
of each controller, none of the identified characteristics seem
to be irrelevant. However, with average MIC values across
controllers of between 0.18 and 0.41, it is clear that the rela-
tionship is more complex and can not be expressed with only
one predictor. Nevertheless, the characteristics pathfinding and
NPCs seem to have the highest linear relationship strength,
followed by indestructible and traps. The Total Information
Coefficient (TIC) reports high statistical dependence between
the aforementioned characteristics and the controller winrates
as well. With an average Maximum Asymmetry Score (MAS)
of 0.08, all relationships appear to be relatively monotonous.
Additionally, the Minimum Cell Number (MCN) is 2 for
almost all relationships, indicating simple functions that can
be covered with very few cells.

The various metrics mentioned indicate that it should be
possible to create relatively simple models to predict the win-
rates of the controllers based on the difficulty characteristics.
We will first learn a model that predicts controller performance
based on the performance data of all controllers on both game
sets. Naturally, the model in this case will only be able to
pick up on the general trend, not on individual strength and
weaknesses of single controllers. We used
• a regression (linear, logit and logistic),
• an artificial neural network (1 hidden layer, 10 nodes),
• a random tree and forest

model with 10-fold cross-validation and a randomly drawn
90%/10% split to predict the winrates.

The neural network had the lowest mean squared error
consistently (average of ≈ 0.02), but linear regression and both
the random tree and random forest have very acceptable error
rates as well (average MSE of 0.05, 0.03, 0.03, respectively).
Therefore, it can be seen that the identified difficulty character-
istics have an effect on the winrates throughout the controllers
and explain them decently. In order to analyze the influence of
the different characteristic in greater detail, regression models
are used for further analysis since they are easily interpretable
and comparable, while still making accurate predictions for
this problem. The result of a linear regression model trained
on all available data is shown in figure 2b along with the
predicted winrates.

The plot shows that, while most of the characteristics have
an adverse effect on the predicted winrates, higher NPC, stages
and action values actually seem to benefit the controllers.
For NPC and action, this can be explained by the fact that
all controllers are based on using the forward model in the
GVGAI framework to try out different actions. This strategy
works better, the earlier a sequence of actions can be evaluated
in terms of the expected outcome. Having more NPCs (i.e. a
high NPC value) and actions bound to every possible option
available to the controller (i.e. a high actions value) results
in more frequent events in the games and thus facilitates the
evaluation of an action sequence. It is not clear why more
complex winning conditions (as expressed by stages) improve
the winrates of a controller or if this behavior is the result of
having only 5 of the game with stacked winning conditions.
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(a) (b)
Fig. 2. Difficulty characteristics (see table III) of all games in game sets 1 and 2. Fig. 2a as estimated and fig. 2b as weighted by linear regression model.
Crosses in fig. 2b represent predicted winrates to be read with the right y-axis.

TABLE III
COLORS ASSIGNED TO DIFFERENT DIFFICULTY CHARACTERISTICS

actions enemies puzzle indestructible
random stages pathfinding traps
chase NPCs

The most important characteristics in terms of the collective
model are random, NPCs, chase, traps, pathfinding and stages.
This can also be explained by common traits of the controllers.
For example, non-deterministic games (with a high random
value) decrease the reliability of the forward model. If the
game involves the need to find paths and avoid traps, a general
video game player that is forced to rely on exploration is at a
disadvantage to strategically searching players.

However, while the collective model presented in figure 2b
explains the general difficulty of games well, it is not pos-
sible to ascertain the strengths and weaknesses of individual
controllers or explain the differences between controller per-
formances on a single game. For this reason, we also learned
linear regression models on all available data separately for
each controller, but across all games. The resulting model
coefficients are visualized in figure 3.

There are several clear differences between the controllers.
For example, for the MCTS controller, pathfinding seems to
be a much bigger problem than for the others, while a high
number of enemies has a positive influence on its winrate. The
number of actions also appears to be a much larger positive
influence when compared to the other controllers, whereas the
number of NPCs is less important. All these factors influence
the branching factor of the game-tree and/or the number of
viable options for the next action, thus indicating games where

Fig. 3. Linear regression model coefficients for difficulty characteristics (see
table III) visualized per controller

a Monte-Carlo approach is less likely to succeed. The MCTS
controller deals well with games where the NPCs exhibit
randomized behavior, probably for as long as it can execute
enough rollouts. The observations also explain why MCTS is
doing so well on the game Whack-a-Mole as it exhibits none
of the problematic characteristics.

For the RHEA controller, being able to distinguish action se-
quences quickly is very important, as is reflected by the stress
on the number of NPCs and events in the game. Interestingly,
EAroll seems to not be affected by this difficulty as much. It
seems to deal with almost all of the difficulty characteristics
equally well, which explains its robust performance across all
games. Its winrate seems to be almost independent from the
existence of indestructible NPCs, while the modifications of
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this controller have more trouble dealing with this. This is also
true for the MCTS controller, while the RHEA controller is
also not affected by this difficulty.

Generally, it does seem that the hybrid controllers have
inherited characteristics of both controllers, resulting in more
robust controllers (especially with controllers EAroll and
EAroll-att), thus leading to a better overall performance. The
modifications of the EAroll controller seem to fix some of its
weaknesses as intended, but at the same time opening up new
problems. EAroll-seqPlan, for example, is much less affected
by the unpredictability of some games, possibly because it
is able to save and propagate a lot more information. On
the flipside, the controller is much more susceptible to inde-
structible enemies. However, it could very well be that these
modifications and the hybridzation in general could achieve
better spread of strengths and weaknesses, even eliminating
some, if tuned more thoroughly.

VII. CONCLUSION AND OUTLOOK

Although not all of the presented hybrid RHEA/MCTS
controller variants play better than the original sample con-
trollers, we can state that there is obviously some potential in
putting these two base algorithms together in order to obtain
better GVGAI controllers. Judging from the difficulty analysis,
the hybridization made the resulting controllers more robust.
We intend to continue this line of research in (at least) two
directions: a) the parametrization of our controllers has not
been analyzed systematically, performance may deviate largely
from our results with different parameter values, and b) it may
be good to dynamically switch on/off the single modules we
suggested (sequence planning, occlusion detection and NPC
attitude check) as they fit for a given game. The same could
also be envisioned on a larger scale for the base algorithms.

However, this requires a clear understanding of and the
reasons for the effects of different modifications as well as
a way to detect the difficulty characteristics of a game in real-
time. A feature based difficulty rating as utilized here can be a
step into that direction. Feature-based surrogate models could
be employed for predicting which controller should be used
for an unknown game after testing a number of actions and
events. An interesting further use of the difficulty rating could
be to support the selection of a set of games with balanced
and distinct challenges for the GVGAI competition.
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Abstract—Arguably the grand goal of artificial intelligence
research is to produce machines with general intelligence: the
capacity to solve multiple problems, not just one. Artificial
intelligence (AI) has investigated the general intelligence capacity
of machines within the domain of games more than any other
domain given the ideal properties of games for that purpose:
controlled yet interesting and computationally hard problems.
This line of research, however, has so far focused solely on
one specific way of which intelligence can be applied to games:
playing them. In this paper, we build on the general game-playing
paradigm and expand it to cater for all core AI tasks within a
game design process. That includes general player experience
and behavior modeling, general non-player character behavior,
general AI-assisted tools, general level generation and complete
game generation. The new scope for general general game AI
beyond game-playing broadens the applicability and capacity of
AI algorithms and our understanding of intelligence as tested
in a creative domain that interweaves problem solving, art, and
engineering.

I. INTRODUCTION

By now, an active and healthy research community around
computational and artificial intelligence (AI)1 in games has
existed for more than a decade — at least since the start
of the IEEE Conference on Computational Intelligence and
Games (CIG) and the Artificial Intelligence and Interactive
Digital Entertainment (AIIDE) conference series in 2005.
Before then, research has been ongoing about AI in board
games since the dawn of automatic computing. Initially, most
of the work published at IEEE CIG or AIIDE was concerned
with learning to play a particular game as well as possible,
or using search/planning algorithms to play a game as well
as possible without learning. Gradually, a number of new
applications for AI in games and for games in AI have come
to complement the original focus on AI for playing games
[1]. Papers on procedural content generation, player modeling,
game data mining, human-like playing behavior, automatic
game testing and so on have become commonplace within the
community. There is also a recognition that all these research
endeavors depend on each other [2]. Games appear to be an
ideal domain for realizing several long-standing goals of AI

Authors contributed equally to this paper and are listed in alphabetical order.
1In the article, we will mostly use the terms “AI in games” or “game AI” to

refer to the whole research field, including the various techniques commonly
thought of as computational intelligence, machine learning, deep learning etc.
“AI” just rolls off the tongue more easily.

including affective computing [3], computational creativity [4]
and ultimately general intelligence [5], [6].

However, almost all research projects in the game AI field
are very specific. Most published papers describe a particular
method — or a comparison of two or more methods — for
performing a single task (playing, modeling, generating etc.)
in a single game. This is problematic in several ways, both
for the scientific value and for the practical applicability of
the methods developed and studies made in the field. If an AI
approach is only tested on a single task for a single game,
how can we argue that is an advance in the scientific study
of artificial intelligence? And how can we argue that it is a
useful method for a game designer or developer, who is likely
working on a completely different game than the method was
tested on?

Within AI focused on playing games, we have seen the
beginnings of a trend towards generality. The study of general
artificial intelligence through games — general game playing
— has seen a number of advancements in the last few years.
Starting with the General Game Playing Competition, focus-
ing on board games and similar discrete perfect information
games, we now also have the Arcade Learning Environment
and General Video Game AI Competition, which offer rad-
ically different takes on arcade video games. Advancements
vary from the efforts to create game description languages
suitable for describing games used for general game playing
[7], [8], [9], [10] to the establishment of a set of general video
game AI benchmarks [7], [11], [12] to the recent success of
deep Q-learning in playing arcade games with human-level
performance just by processing the screen’s pixels [13].

While the general game playing is studied extensively and
constitutes one of the key areas of game AI [2] we argue that
the focus of generality solely with regards to the performance
of game-playing agents is very narrow with respect to the
spectrum of roles for general intelligence in games. The types
of general intelligence required within game development
include game and level design as well as player and experience
modeling. Such skills touch upon a diverse set of cognitive
and affective processes which have until now been ignored by
general AI in games. For general game AI to be truly general,
it needs to go beyond game playing while retaining the focus
on addressing more than a single game or player.

In other words, we are arguing that we need to extend the
generality of general game playing to all other ways in which
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AI is (or can be) applied to games. More specifically we are
arguing that the field should move towards methods, systems
and studies that incorporate three different types of generality:

1) Game generality. We should develop AI methods that
work with not just one game, but with any game (within
a given range) that the method is applied to.

2) Task generality. We should develop methods that can do
not only one task (playing, modeling, testing etc) but a
number of different, related tasks.

3) User/designer/player generality. We should develop
methods that can model, respond to and/or reproduce
the very large variability among humans in design style,
playing style, preferences and abilities.

We further argue that all of this generality can be embodied
into the concept of general game design, which can be
thought of as a final frontier of AI research within games.
We assume that the challenge of bringing together different
types of skillsets and forms of intelligence within autonomous
designers of games not only can advance our knowledge about
human intelligence but also advance the capacity of general
artificial intelligence. The paper briefly reviews the state of
the art within each of the major roles an AI can take within
game development, broadly following the classification of [2].
In particular AI can (1) take a non-human-player (non-player)
role and either play games (in lieu of a human) or control the
behavior of non-player characters (see Section II), (2) model
player behavior and experience (see Section III), (3) generate
content such as levels or complete games (see Section IV),
or 4) assist in the design process through both the modeling
of users (designers) and the generation of appropriate content
(see Section V). For each of these roles we argue for the need
of generality and we propose ways that this can be achieved.
We conclude with a discussion on how to nudge the research
field towards addressing general problems and methods.

It is important to note that we are not arguing that more
focused investigations into methods for single tasks in single
games are useless; these are often important as proofs-of-
concept or industrial applications and they will continue to
be important in the future, but there will be increasing need to
validate such case studies in a more general context. We are
also not envisioning that everyone will suddenly start working
on general methods. Rather, we are positing generalizations as
a long-term goal for our entire research community.

II. GENERAL NON-PLAYERS

A large part of the research on AI for games is concerned
with building AI (i.e a non-(human)player) for playing games,
with or without a learning component. Historically, this has
been the first and for a long time only approach to using AI in
games. Even before the beginning of AI as a research field, al-
gorithms were devised to play games effectively. For instance,
Turing himself (re)invented the Minimax algorithm to play
Chess even before he had a working digital computer [14].

For a long time, research on game-playing AI was focused
on classic board games, and Chess was even seen as “the
drosophila of AI” [15] — at least until we developed software

capable of playing Chess better than humans, at which point
Chess-playing AI somehow seemed a less urgent problem. The
fact that Chess became a less relevant problem once humans
had been beaten itself points to the need for focusing on more
general problems. The software that first exhibited superhuman
Chess capability, Deep Blue, consisted of a Minimax algorithm
with numerous Chess-specific modifications and a very highly
tuned board evaluation function; the software was useless for
anything else than playing Chess [16]. This led commentators
at the time to argue that Deep Blue was “not really AI” after
all [17]. The same argument could be made about AlphaGo,
the AI that finally conquered the classic board game Go [18].

Even nowadays a large part of game AI research focuses
on developing AI for playing games — either as effectively as
possible, or in the style of humans (or a particular human), or
with some other property [2]. Much of the research on playing
videogames is organized around a number of competitions or
common benchmarks. In particular, the IEEE CIG conference
series hosts a respectable number of competitions, the ma-
jority of which focus on playing a particular game; popular
competitions are built around games such as TORCS (a car
racing game), Super Mario Bros (Nintendo, 1985), Ms. Pac-
Man (Namco, 1982), Unreal Tournament 2004 (Epic Games,
2004) and StarCraft (Blizzard Entertainment, 1998). These
competitions are typically won by the submitted AI agent
that plays the game best. What can be observed in several of
these competitions, is that when the same competition is run
multiple years there is indeed an improvement in performance,
but not necessarily an improvement in the sophistication of the
AI algorithms or their centrality to the submitted agent. In fact,
the opposite trend can sometimes be discerned. For example,
the simulated car racing competition started out with several
competitors submitting car-driving agents which were to a
large extent based on machine learning (e.g. neuroevolution).
In subsequent years, however, these were outperformed by
agents consisting of a large amount of hand-coded domain-
specific rules, with any learning relegated to a supporting
role [19], [20]. Similarly, the StarCraft competition has seen
a number of AI-based agents performing moderately well, but
the winner in several rounds of the competition consists almost
entirely of hand-crafted strategies with almost no presence
of what would normally be considered AI algorithms, and
certainly no applicability outside StarCraft [21].

A. Gameplaying

Interestingly, the problem of playing games is the one that
has been most generalized so far. There already exist at least
three serious benchmarks or competitions attempting to pose
the problem of playing games in general, each in its own
imperfect way. The first of these is the General Game Playing
Competition, often abbreviated GGP [7]. This competition has
been running for more than ten years, and is based on a
special-purpose game description language useful for encoding
board game-like games, with discrete world state and in most
cases perfect information. The submitted agents get access to
the complete source code of the games they are tested on.
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Every time the competition is run a few games are hand-crafted
for testing new games. The Arcade Learning Environment
(ALE) is instead built on an emulator of the Atari 2600 game
console and includes a library of classic games [12]. Agents
are only given a feed of the raw screen output. Compared to
GGP, ALE has the advantage of using real video games, but
the disadvantage that all games are known and creating new
games requires very considerable effort. The General Video
Game AI Competition (GVGAI) combines the focus on video
games (from ALE) with the approach to build the competition
games in a description language which allows new games to be
created for each competition [9], [8], [11]. Currently, around
80 games are implemented, and for every competition 10 new
games are implemented. Most games are adaptations of classic
80’s arcade games, but the long-term goal is for new games to
be generated automatically [22]. Agents are given access to a
partial game state observation and a complete forward model.

The results from these competitions so far indicate that gen-
eral purpose search and learning algorithms by far outperform
more domain-specific solutions and “clever hacks”. Somewhat
simplified, we can say that variations of Monte Carlo Tree
Search perform best on GVGAI and GGP, and for ALE (where
no forward model is available so learning a policy for each
game is necessary) reinforcement learning with deep networks
performs best [13]. This is a very marked difference to the
results of the game-specific competitions, which as discussed
above tend to favor domain-specific solutions.

While these are each laudable initiatives and currently the
focus of much research, in the future we will need to expand
the scope of these competitions and benchmarks considerably,
including expanding the range of games available to play and
the conditions under which gameplay happens. We need game
playing benchmarks and competitions capable of expressing
any kind of game, including puzzle games, 2D arcade games,
text adventures, 3D action-adventures and so on; this is the
best way to test general AI capacities and reasoning skills.
We also need a number of different ways of interfacing with
these games — there is room both for benchmarks that give
agents no information beyond the raw screen data but give
them hours to learn how to play the game, and those that give
agents access to a forward model and perhaps the game code
itself, but expects them to play any game presented to them
with no time to learn. These different modes test different AI
capabilities and tend to privilege different types of algorithms.
It is worth noting that the GVGAI competition is currently
expanding to different types of playing modes, and has a long-
term goal to include many more types of games [22].

We also need to differentiate away from just measuring how
to play games optimally. In the past, several competitions
have focused on agents that play games in a human-like
manner; these competitions have been organized similarly to
the classic Turing test [23], [24]. Playing games in a human-
like manner is important for a number of reasons, such as
being able to test levels and other game content as part of
search-based generation, and to demonstrate new content to
players. So far, the question of how to play games in a

human-like manner in general is mostly unexplored; some
preliminary work is reported in [25]. Making progress here
will likely involve modeling how humans play games in
general, including characteristics such as short-term memory,
reaction time and perceptual capabilities, and then translating
these characteristics to playing style in individual games.

B. Non-player Behavior

Many games have non-player characters (NPCs), and AI can
help in making NPCs believable, human-like, social and ex-
pressive. Years of active research have been dedicated on this
task within the fields of affective computing and virtual agents.
The usual approach followed is the construction of top-down
agent architectures that represent various cognitive, social,
emotive and behavioral abilities. The focus has traditionally
being on both the modeling of the agents behavior but also on
its appropriate expression under particular contexts. A popular
way for constructing a computational model of agent behavior
is to base it on a theoretical cognitive model such as the
Belief-Desire-Intention agent model [26] and the OCC model
[27], [28], [29] which attempts to effect human-like decision
making, appraisal and coping mechanisms dependent on a set
of perceived stimuli. The use of such character models has
been dominant in the domains of intelligent tutoring systems
[30], embodied conversational agents [29], and affective agents
[31] for educational and health purposes. Similar types of
architectures for believable and social agents exist in games
such as Facade [32], Prom Week [33], World of Minds [34]
and Crystal Island [35]. Research in non-player character
behavior in games is naturally interwoven with research in
computational and interactive narrative [36], [32], [37], [38]
and virtual cinematography [39], [40], [41].

One would expect that characters in games would be able
to perform well under any context and game (seen or unseen)
in similar ways humans do. Not only would that be a far
more effective approach for agent modeling but it would also
advance our understanding about general emotive, social and
behavioral patterns. However, as with the other uses of AI
in games, the construction of agent architectures for behavior
modeling and expression is heavily dependent on particular
game contexts and specific to (and optimized for) a particular
game. While a number of studies within affective agents
focus on domain-independent (general) emotive models [31]
we are far from obtaining general, context-free, “plug-n-play”
computational models for agents that are applicable across
games, game genres and players. The vision here is that we
could create general NPCs, that could easily be dropped into
any given game and adapt (autonomously and/or with designer
guidance) to the requirements of a particular game, so that they
can behave believably and effectively in their new context.

Clearly there are general patterns of rational and (socially)
believable behavior that can be detected across games and
players. An NPC in Prom Week, for instance, should be able
to transfer aspects of its social intelligence to e.g Facade;
but how much of such patterns are relevant for a platformer
of a first-person shooter NPC? This is an open research
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question. To make a paradigm shift towards generality we
argue that we need to focus on aspects of a top-down agent
architecture that, by nature, are more general than others.
Personality, for instance, can be modeled in an abstract,
domain-independent way [42] while moods — compared to
emotions — define longer lasting and less specific notions
[43] that could be modeled in a context-independent way [28].
Emotions are more specific and domain-dependent aspects of a
computational agent architecture, as they are heavily context-
dependent. It has been suggested, however, that personality
and emotion are heavily interlinked and only differentiated
by time and duration since personality can be viewed as the
seamless expression of emotion [44]. In that regard general
emotive patterns across games and players can be identified if
general context-independent features that characterize general
behavior can be extracted and used for modeling NPC behav-
ior; these include generic features such as winning, loosing,
achieving rewards as well as progression or tension curves
across games. These features can be either manually designed
or machined learned from annotated player data.

III. GENERAL PLAYER EXPERIENCE MODELING

It stands to reason that general intelligence implies (and is
tightly coupled with) general emotional intelligence [45]. The
ability to recognize human behavior and emotion is a com-
plex yet critical task for human communication. Throughout
evolution, we have developed particular forms of advanced
cognitive, emotive and social skills to address this challenge.
Beyond these skills, we also have the capacity to detect
affective patterns across people with different moods, cultural
backgrounds and personalities. This generalization ability also
extends, to a degree, across contexts and social settings.

Despite their importance, the characteristics of social intel-
ligence have not yet been transferred to AI in the form of gen-
eral emotive, cognitive or behavioral models. While research
in affective computing [3] has reached important milestones
such as the capacity for real-time emotion recognition [46] —
which can be faster than humans under particular conditions —
all key findings suggest that any success of affective computing
is heavily dependent on the domain, the task at hand and the
context in general. This specificity limitation is particularly
evident in the domain of games [47] as most of work in
modeling player experience focuses on particular games, under
particular and controlled conditions within particular small sets
of players (see [48], [49], [50], [51] among many).

For AI in games to be general beyond game-playing it
needs to be able to recognize general emotional and cognitive-
behavioral patterns. This is essentially AI that can detect
context-free emotive and cognitive reactions and expressions
across context and builds general computational models of hu-
man behavior and experience which are grounded in a general
golden standard of human behavior. So far we have only seen
a few proof-of-concept studies in this direction. Early work
in the game AI field focused on the ad-hoc design of general
metrics of player interest that were tested across different prey-
predator games [52], [53]. A more recent example is the work

of Martinez et al. [54] in which physiological predictors of
player experience were tested for their ability to capture player
experience across two dissimilar games: a predator-prey game
and a racing game. The findings of that study suggest that
such features do exist. Shaker et al. [55] later used the same
approach with different games.

Another study by Martinez et al. on deep multimodal fusion
can be seen as an embryo for further research in this direction
[51]. Various modalities of player input such as player metrics,
skin conductance and heart activity, have been fused using
deep architectures which were pretrained using autoencoders.
Even though that study was rather specific to a particular game,
its deep fusion methodology can be expanded across variant
data corpora — such as the DEAP [56] and the platformer
experience [57] datasets — and player metrics datasets that
are openly available such as the game trace archive [58].
Discovering entirely new representations of player behavior
and emotive manifestations across games, modalities of data,
and player types is a first step towards achieving general player
modeling. Such representations can, in turn, be used as the
basis for deriving the ground truth of user experience in games.

IV. GENERAL CONTENT GENERATION

The study of procedural content generation (PCG) [59] for
the design of game levels has reached a certain extent of matu-
rity and is, by far, the most popular domain for the application
of PCG algorithms and approaches (e.g. see [60], [2], [48]
among many). In this section we first discuss this popular
facet of computational game creativity and then connect it to
the overall aim of general complete game generation.

A. Level Generation

Levels have been generated for various game genres such
as dungeon-crawlers [61], [62], horror games [63], space-
shooters [64], first-person shooters [65], [66], and platformers
[49]. Arguably the platformer genre — through the Mario
AI Framework, which builds on a clone of Super Mario
Bros [67], [68] — can be characterized as the “drosophila of
PCG research”. A number of approaches such as constructive
methods, search-based PCG [60], experience-driven PCG [48],
solver-based PCG [69], data-driven PCG [70], [71], [72]
or mixed-initiative PCG [73], [74] have been used for the
creation of platformer levels in the Mario AI Framework with
algorithms varying from simple multi-pass processes [75] to
evolving grammars [76], exhaustive search on crowdsourced
models of experience [77], and constraint solvers such as
answer set programming [73]. What is common in all of the
above studies is their specificity and strong dependency of
the representation chosen onto the game genre examined. In
particular for the Mario AI Framework, the focus on a single
level generation problem has been very much a mixed bless-
ing: it has allowed for the proliferation and simple comparison
of multiple approaches to solving the same problem, but has
also led to a clear overfitting of methods. Even though some
limited generalization is expected within game levels of the
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same genre the level generators that have been explored so far
clearly do not have the capacity of general level design.

As with the other sub-tasks of game design discussed in
this paper we argue that there needs to be a shift in how level
generation is viewed. The obvious change of perspective is
to create general level generators — level generators with
general intelligence that can generate levels for any game
(within a specified range). That would mean that levels are
generated successfully across game genres and players and that
the output of the generation process is a that is meaningful and
playable well as entertaining for the player. Further, a general
level generator should be able to coordinate the generative
process with the other computational game designers who are
responsible for the other parts of the game design.

To achieve general level design intelligence algorithms are
required to capture as much of the level design space as
possible at different representation resolutions. We can think of
representation learning approaches such as deep autoencoders
[78] capturing core elements of the level design space and
fusing variant game genres within a sole representation — as
already showcased by a few studies in the PCG area e.g.in
[79]. A related effort is the Video Game Level Corpus [80]
which aims to provide a set of game levels across multiple
games and genres which can be used for training level gener-
ators for data-driven procedural content generation.

The first attempt to create a benchmark for general level
generation has recently been launched in the form of the
Level Generation Track of the GVGAI competition. In this
competition track, competitors submit level generators capable
of generating levels for unseen games. The generators are then
supplied with the description of several games, and produce
levels which are judged by human judges [81]. Initial results
suggest that constructing competent level generators that can
produce levels for any game is much more challenging than
constructing competent level generators for a single game.

B. Game Generation

While level generation, as discussed above, is one of the
main examples of procedural content generation, there are
many other aspects (or “facets”) of games that can be gen-
erated. These include visuals, such as textures and images;
narrative, such as quests and backstories; audio, such as sound
effects and music; and of course the generation of all kinds
of things that go into game levels, such as items, weapons,
enemies and personalities [82], [59]. However, an even greater
challenge is the generation of complete games, including some
or all of these facets together with the rules of the game.

There have been several attempts to generate games, includ-
ing their rules. These include approaches based on artificial
evolution [83], [84], [85], [86], [87], [88], attempts based on
constraint satisfaction [89], [69], [90] and attempts based on
matching pattern databases [91], [92]. Some of these attempts
have “only” generated the game rules, whereas others have
included some aspects of graphics or theming of the game.
We are not aware of any approach to generating games that
tries to generate more than two of the facets of games listed

above. We are also not aware of any game generation system
that even tries to generate games of more than one genre.
Multi-faceted generation systems like Sonancia [63], [93] co-
generate horror game levels with corresponding soundscapes
but do not cater for the generation of rules.

It is clear that the very domain-limited and facet-limited
aspects of current game generation systems result from in-
tentionally limiting design choices in order to make the very
difficult problem of generating complete games tractable. Yet,
in order to move beyond what could be argued to be toy
domains and start to fulfill the promise of game generation,
we need systems that can generate multiple facets of games at
the same time, and that can generate games of different kinds.

A few years ago, something very much like general game
generation was outlined as the challenges of “multi-content,
multi-domain PCG” and “generating complete games” in
another vision paper co-authored by a number of researchers
active in the game AI and PCG communities [94]. It is
interesting to note that there has not seemingly been any
attempt to create more general game generators since then,
perhaps due to the complexity of the task. Currently the only
genre for which generators have been built that can generate
high-quality games is abstract board games; once more genres
have been “conquered”, we hope that the task of building more
general level generators can begin.

V. GENERAL AI-ASSISTED GAME DESIGN TOOLS

The area of AI-assisted game design tools has seen sig-
nificant research interest in recent years [2] with contributions
mainly on the level design task [74], [73], [95], [96], [97], [98],
[99]. All tools however remain specific to the task they were
designed for and their underlying AI focuses on understanding
the design process [74], on the generation of a specific facet
(or domain) within a game [73] or on both [95].

To illustrate the problems with game-specificity: The au-
thors have demonstrated AI-assisted game design tools to
game developers outside academia numerous times, and the
feedback have often been that the developers would want
something like the demonstrated tools—for their own games.
For example, Ropossum [96], [100] can greatly assist in
designing levels for Cut the Rope, but that game is already re-
leased and has plenty of levels. Meanwhile, a game developer
working on another game, even another physics puzzler, is not
helped by Ropossum and might not have the time or knowledge
to implement the ideas behind it for their own game.

General intelligence is required for tools as much it is
required for the other areas of game artificial intelligence.
Tools equipped with general capacities to assist humans across
game tasks (such as level and audio design) and games
genres but also learn to be general across design styles and
preferences can only empower the creative process of game
development at large. To be general a tool needs to be able to
recognize general tasks and procedures during the game design
process. An obvious direction towards designer-general tools
is through the computational modeling of designers [95] across
differebt tasks for identifying general design patterns as well
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as personal aesthetic values, styles and procedures. That can be
achieved to a degree through imitation learning and sequence
mining [101] techniques resulting in designer models that are
general across users of the tool. Tools can be general across
games too. A level design assistive tool, for instance, can be
trained to identify common successful design patterns across
game levels of variant genres; in this case levels can to be
represented as 2D or 3D maps enriched with item placement
and playtrace information that can be fused using e.g. deep
autoencoders which has been proved a successful method to
combine modalities of different resolution and type (such as
time series vs. discrete events) [102], [51]. Finally tools can
be general across game design tasks. For instance, a level tool
would be able to recommend good sound effects for the level
it just co-designed with a human designer if it is equipped with
a transmedia (level to audio) representation as e.g. in the work
of Horn et al. [103]. Such representations could potentially be
machine-learned from existing level-audio patterns.

One path towards building general AI-assisted game design
tools is to build a tool that works with a general framework,
being able to work on any game expressed in that framework.
Such an effort is currently underway for the General Video
Game AI framework, for games expressed in VGDL; early
work on this project explores how design patterns can be
recommended between games [104].

VI. THE ROAD AHEAD AND HOW TO STAY ON PATH

In this paper we have argued that the general intelligence
capacity of machines needs to be both explored and exploited
in its full potential (1) across the different tasks that exist
within the game design and development process, including
but absolutely no longer limited game playing; (2) across
different games within the game design space and; (3) across
different users (players or designers) of AI. We claim that, thus
far, we have underestimated the potential for general AI within
games. We also claim that the currently dominant practice
of only designing AI for a specific task within a specific
domain will eventually be detrimental to game AI research
as algorithms, methods and epistemological procedures will
remain specific to the task at hand. As a result, we will
not be manage to push the boundaries of AI and exploit
its full capacity for game design. We are inspired by the
general game-playing paradigm and the recent successes of
AI algorithms in that domain and suggest that we become
less specific about all subareas of the game AI field including
player modeling, emotive expression, game generation and AI-
assisted design tools. Doing so would allow us to detect and
mimic different general cognitive and emotive skills of humans
when designing games — a creative task that fuses problem
solving, artwork and engineering skills.

It might be worth noting that we are not alone in seeing this
need. For example, Zook argues for the use of various game-
related tasks (not just game playing) to be used in artificial
general intelligence research [105]. It also worth noting, again,
that we are not advocating that all research within the CI/AI
in games field focuses on generality right now; studies on

particular games and particular tasks are still valuable, given
how little we still understand and can do. But over time, we
predict that more and more research will focus on generality
across tasks, games and users, because it is in the general
problems the interesting research questions of the future lay.

The path towards achieving general game artificial intel-
ligence is still largely unexplored. For AI to become less
specific — yet remain relevant and useful for game design
— we envision a number of immediate steps that could be
taken: first, and foremost the game AI community needs to
adopt an open-source accessible strategy so that methods and
algorithms developed across the different tasks are shared
among researchers for the advancement of this research area.
Venues such as the current game AI research portal2 could be
expanded and used to host successful methods and algorithms.
For the algorithms and methods to be of direct use particular
technical specifications need to be established — e.g. such
as those established within game-based AI benchmarks —
which will maximize the interoperability among the various
tools and elements submitted. Examples of benchmarked
specifications for the purpose of general game AI research
include the general video game description language (VGDL)
and the puzzle game engine PuzzleScript3. Finally, following
the GVGAI competition paradigm, we envision a new set of
competitions rewarding general player models, NPC models,
AI-assisted tools and game generation techniques. These com-
petitions would further motivate researchers to work in this
exciting research area and enrich the database of open-access
interoperable methods and algorithms directly contributing to
the state of the art in computational general game design.
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Abstract—The Web contains vast sources of content that could
be reused to reduce the development time and effort to create
games. However, most Web content is unstructured and lacks
meaning for machines to be able to process and infer new
knowledge. The Web of Data is a term used to describe a trend
for publishing and interlinking previously disconnected datasets
on the Web in order to make them more valuable and useful as
a whole. In this paper, we describe an innovative approach that
exploits Semantic Web technologies to automatically generate
games by reusing Web content. Existing work on automatic game
content generation through algorithmic means focuses primarily
on a set of parameters within constrained game design spaces
such as terrains or game levels, but does not harness the potential
of already existing content on the Web for game generation. We
instead propose a holistic and more generally-applicable game
generation solution that would identify suitable Web information
sources and enrich game content with semantic meta-structures.

I. INTRODUCTION

Creating deep and largely non-linear games that are market-
competent costs in time, effort and resources which often
cannot be afforded by small-medium enterprises, especially
by independent game development studios. As most of the
tasks involved in developing games are labour- and creativity-
intensive, our vision is to reduce software development effort
and enhance design creativity by automatically generating
novel and semantically-enriched content for games from Web
sources. In this paper we envision a game generator that
extracts information directly from the Web such as from
wiki articles or images that are freely available. Following a
semantic-based game generation approach not only can reduce
the time and cost of game content creation but also directly
contribute to web-informed yet unconventional game design.

Suppose a system where a user enters a description of a
video game that s/he desires. The description could contain
some keywords such as “action adventure video game”, or
could contain a complete narrative that describes the whole
plot of the game. The system would then generate a video
game based on the user’s input by reusing Web content.
Advanced features would be provided such as properties that
the user can select prior to the system generating the game.
An editor would also be provided for modifying the video
game prototype after it is generated. All content generated
from this system would be semantically enriched described

using standard structured meta-formats that would enable the
content to be re-publishable on the Web for easy interlinking
and consumption. This system would be beneficial for non-
technical users without any background in developing digital
games. For example by using this system, educators can
generate educational games for their students about a particular
subject without having to develop the game. Another example,
health practitioners can generate a game by using this system
for their patients to treat a particular disease. Moreover, this
system would also be beneficial for experienced developers
since it would reduce the time and effort for them to develop
games by generating an unconventional set of playable game
prototypes. Furthermore, our approach would publish seman-
tically enriched game information that can be reused in other
games.

Games are composed of different domains (or facets) that
contribute to the game’s look, feel and experience [24]. These
facets include visuals, audio, narrative, gameplay, game design
and level design. Each facet can be regarded as an independent
model containing specific content, and a game is created when
each of these models are interlinked together based on the
game’s requirements. Current work on automatic generation
of content comprise of algorithms that generate limited in-
game entities, such as SpeedTree [39] that generates trees and
vegetation as part of the visuals facet, or the Ludi system [7]
which generates game rules for two-player board games as
part of the game design facet. Although such algorithms are
beneficial for automatic generation of content, it is still rare
that more than one domain is considered — e.g. in the work of
Cook [10], Lopes et al. [26] and Riedl et al. [18] — requiring
a substantial amount of manual effort by game developers to
create content.

Inclusion of digital real-world data (e.g. recent news, real
landscapes or historical events) in game environment is a
practice used to increase the reality of scenarios and game play.
Many flight simulators (e.g. Flight Simulator X (Microsoft
Game Studios, 2006) or Flight Pro Sim1) include digital
models of objects such as actual landscapes or airports and
combine them with multiplayer mode to provide more realistic
experiences. This trend is also visible in some of the sports

1Flight Pro Sim — http://flightprosim.com
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games, such as the SSX series of games (EA Sports, 2000)
where the NASA topography was used for the creation of
snowboarding trails [30]. The inclusion of historical events is
especially visible in strategic games where players can partic-
ipate in scenarios resembling actual campaigns and immerse
in history such as the Call of Duty (Activision, 2003) or
the Medal of Honor (Electronic Arts, 1999) series. Moreover,
games often include historic information within the plot that
gamers can interact with, such as in the Assassin’s Creed
(Ubisoft, 2007) series, which contributes to a more immersive
gaming experience. However, most of this content is currently
created manually even though such information is widely
available on the Web.

Web content is dispersed over the Internet in the form
of blogs, microblogs, forums, wikis, social networks, review
sites, and other Web applications which are currently dis-
connected from one another. The datasets created by these
communities all contain information which can be used to
generate or reuse content in games, but are not easily discov-
erable. The emerging Web of Data trend [6], where datasets
are published in a standard form for easy interlinking, enables
to essentially view the whole Web as one massive integrated
database. Nevertheless, game information is still not enriched
with meta-structures that could be used both on the Web and
also in games. With such rich meta-structures that add more
meaning to content, this would enable Web content to be
reused in games. Moreover, the representation of semantically-
enriched and semantically-interlinked content would enable
game generators to infer how content can be interacted within
the game world without having to rely on software develop-
ment procedures that require laborious annotation of how each
entity can be interacted within the game.

In this paper, we introduce an approach that automatically
generates games from Web content through the use of rich-
meta structures to describe game content. This research di-
rection would provide a standard format for structuring and
describing content for each game facet that would in turn
be interlinked to automatically generate games. Our approach
uses content from review gaming sites, game ranking sites and
walkthroughs to generate games. This enriched content would
be represented as interlinked game facet graphs containing
information including visuals, audio, gameplay, rules, levels,
user profiles, character information, and other relevant game
information that could be extracted from diverse Web sources.
The content is extracted and semantically enriched with meta-
structures using new and/or already existing Semantic Web
ontologies. Among other applications, our model could be
used: (1) to define meta-structures for characterising and
representing game data abstractly that could then be re-used
on the Web from games; and (2) to integrate game content
from the Web within games. This innovative way of game
creation could lead to a new kind of real-time game experience
which also implies the design of new game play and rules
based on semantic information. The game generation approach
envisaged is ambitious but nevertheless feasible with current
technology as discussed in the remaining sections of this paper.

The remainder of this paper is as follows. Section II reviews
current work on procedural game generation and semantics
in games and Section III offers core background information
about the Web of data. In Section IV we detail our approach of
generating games using semantic data and Section V concludes
the paper by providing an overall discussion about the future
steps of this work.

II. PROCEDURAL CONTENT GENERATION AND
SEMANTICS

Development and research on automatic content generation
mainly focuses on procedural content generation (PCG) that
refers to the creation of game content automatically via
algorithmic means [35]. Game content, primarily levels and
visual assets, have been generated algorithmically in the game
industry for decades. From the dungeons of Rogue (Toy and
Wichman, 1980) to the universe of Elite (Acornsoft, 1984),
procedural content generator has largely focused on the spatial
structures of a specific game (with a specific, human authored
ruleset and narrative). However, recent advances in PCG in
academia has targeted a broader range of game facets: from
the game rules [7] to soundscapes [27], and from the story
[32] to the game’s shaders [20], there is significant potential
in computational creativity [24] in game design that has not
been considered previously. Even though some generators have
used real-world information as a starting point (seed) or a post-
processing step (decoration) of their generative process most
types of game content are not generated based on real-world
information — or more appropriately, the human engineers
insert their real-world assumptions (e.g. on what constitutes a
“valid” castle) into the generator.

Angelina [11] uses Guardian articles as a seed for a
platformer level: the textual information is parsed (extracting
nouns) and using sentiment word analysis the “tone” of the
article is computed (positive or negative). The platformer level
is then decorated (i.e. colors, backgrounds, sound effects)
based on the topics and tone, via Google search. Game-
O-Matic [36] on the other hand relies on human-provided
entities and their interactions (ways in which an entity affects
another, such as “Hunger harms man”) to generate simple
games. On the other hand, the games’ mechanics are based
on combined game behaviours which are provided by the
generator’s designers to simulate the interactions. The in-game
entities’ appearance are found via Google image search, and
rendered as such in-game. It is obvious that in these examples,
the real-world information provided by the Web mostly act as
decoration to generated content (platformer levels or arcade
games) which are created without influence from real-world
data. Instead, the proposed approach goes beyond merely
decorating known good generated results but instead integrates
the real-world data more in all facets of generation. Another
approach is A Rogue Dream [9], which uses a single word
from the user (acting as the identity of the player’s avatar,
such as cat) and uses the auto-complete function of Google
queries (e.g. “why do cats hate...”) to find the semantic identity
of enemies, goals and special abilities of the player avatar.
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The semantic identity (e.g. “dogs” in the above example) is
depicted visually via Google image search. A Rogue Dream
uses the associations existent in the communal knowledge pool
(as popular search topics) but does not rely on structured data,
as the current paper proposes; instead, it directly parses the
text of autocompleted Google queries without, for instance,
checking whether the potential enemy is indeed of type “living
creature” or “person”.

Perhaps the closest attempt at using structured real-world
data is the Data Adventures project [2], [3] which uses
SPARQL queries (see Section III for a detailed description
of SPARQL) on DBpedia to discover links between two or
more individuals: the discovered links are transformed into
adventure games, with entities of type “Person” becoming
Non-Player Characters (NPCs) that the player can converse
with, entities of type “City” becoming cities that the player
can visit, and entities of type “Category” becoming books
that the player can read. The proposed approach enhances
the concepts explored in Data Adventures by using game
information (from real-world games such as those found in
Metacritic) in order to discover possible new mechanics: Data
Adventures instead relies on hand-authored mechanics existent
in traditional adventure games of the 1980s.

Most of these methods do not reuse already generated
content from the Web and do not add semantics to the
generated content which could be used by the game engine
to infer (new) knowledge. Games could take any form in real-
time based on semantic information, and semantic structures
for game information create standard ways for publishing and
reusing content in many games.

The advantages of using rich semantic information to auto-
matically generate games are numerous [37] as more complex,
open-world, non-linear, games incorporating very rich forms
of interaction are possible (i.e. authentic sandbox games).
Current work in using semantics in games focuses on the
use of semantic information to generate game worlds or to
describe interactions with game worlds such as the work in
[21], [28], [38]. Although these provide useful insights in
generic semantic models that describe interactions with game
worlds, they do not offer vocabularies for describing game
content and they neither provide a generic approach for reusing
Web content to generate games.

Attempts in game ontology creation are relevant to our
approach, hence, we outline the four key game-based ontolo-
gies existent currently. The Game Ontology Project [43] is a
wiki-based knowledge-base that aims to provide elements of
gameplay. However, this project does not take into considera-
tion game content and does not provide fine-grained concepts
that cover different aspects of information within the different
game facets. Moreover, it does not provide a vocabulary to
be consumed by data described in RDF which could make
it potentially useful for game generation. The Digital Game
Ontology [8] provides an ontology by aligning with the Music
Ontology, and the Event and Timeline ontology, to provide
concepts that describe digital games. However, the vocabulary
is not available and in this regard, it is unclear what game

concepts this vocabulary provides. Finally, the Video Game
Ontology [31] provides concepts for defining interoperability
amongst video games and the Game2Web ontology [33]
focuses on linking game events and entities to social data.
Although these vocabularies are useful for describing several
aspects of game information the ontologies are still limited to
specific features of particular facets of game generation.

III. BACKGROUND: THE WEB OF DATA

The Web of Data is evolving the Web to be consumed
both by machines and humans whereas the traditional Web
resulted to be for human consumption only. Indeed, machines
cannot process additional meaning from the content found in
Web pages since they are simply text and similarly from the
non-typed links which do not contain any additional meaning
about the relationships amongst the linked pages. Therefore,
the Web of Data provides various open data formats which
have emerged from the Semantic Web.

A. The Semantic Web

The Semantic Web [5] provides approaches for structuring
information on the Web by using metadata to describe Web
data. The advantage of using metadata is that information is
added with meaning whereby Web agents or Web enabled
devices can process such meaning to carryout complex tasks
automatically on behalf of users. Another advantage is that
the semantics in metadata improved the way information is
presented, for instance merging information from heteroge-
neous sources on the basis of the relationships amongst data,
even if the underlying data schemata differ. Therefore, the
Semantic Web encouraged the creation of meta-formats to
describe metadata that can be processed by machines to infer
additional information, to allow for data sharing and to allow
for interoperability amongst Web pages. The common format
and recommended by W3C for Semantic data representation
[4] is the Resource Description Framework (RDF)2.

B. Resource Description Framework (RDF)

RDF is a framework that describes resources on the World
Wide Web. Resources can be anything that can be described on
the Web; being real-world entities such as a person, real-world
objects such as a car and abstract concepts such as defining
the concept of game review scores. RDF provides a framework
for representing data that can be exchanged without loss of
meaning. RDF uniquely identifies resources on the Web by
means of Uniform Resource Identifiers (URIs). Resources are
described in RDF in the form of triple statements. A triple
statement consists of a subject, a predicate and an object.
A subject consists of the unique identifier that identifies the
resource. A predicate represents the property characteristics
of the subject that the resource specifies. An object consists
of the property value of that statement. Values can be either
literals or other resources. Therefore, the predicate of the RDF
statement describes relationships between the subject and the
object. If a triple had to be depicted as a graph, the subject

2RDF — http://www.w3.org/TR/REC-rdf-syntax/

2016 IEEE Conference on Computational Intelligence and Games (CIG’16) 478



Fig. 1. Examples of graphs that interlink variant resources

and object are the nodes and the predicate connects the subject
to the object node. The set of triples describing a particular
resource form an RDF graph (Fig. 1).

RDF data can be queried by using an RDF query language
called SPARQL3. SPARQL queries take the form of a set of
triple patterns called a basic graph pattern. SPARQL triple
patterns are similar to RDF triples with the difference that in
a SPARQL triple, each subject, predicate and object can be
bound to a variable; the variable’s value to be found in the
original data graph. When executing a SPARQL query, the
resulting RDF data matches to the SPARQL graph pattern.

Moreover, the RDF data may require more meaning to de-
scribe its structure and therefore, an RDF vocabulary modelled
using the RDF Schema (RDFS)4 can be used to describe the
RDF data’s structure. Apart from vocabularies, RDF data may
pertain to a specific domain which its structure needs to be
explicitly defined using ontologies modelled by RDFS and/or
OWL 25. For example, ontologies may describe people such
as the Friend of a Friend (FOAF)6 ontology or may describe
information from gaming communities to interlink different
online communities such as the Semantically-Interlinked On-
line Communities (SIOC)7 ontology.

C. Linked Data

As mentioned previously, when describing a particular re-
source within a graph, a URI is assigned to that resource which
can be referred to in other graphs using that particular URI.
For instance, if a particular resource represents a person within
another graph that describes information about that person,
the person’s (resource) URI can be used for example when
describing that s/he is the creator of a game review which
is described in another graph; as illustrated in Fig. 1. Hence
this makes it easy to link data together from different datasets
and thus creating Linked Data8. Datasets which are easily
accessible are linked forming the Linking Open Data (LOD)
cloud9 which forms part of the Web of Data. In order to publish

3SPARQL — http://www.w3.org/TR/rdf-sparql-query/
4RDFS — http://www.w3.org/TR/rdf-schema/
5OWL 2 — http://www.w3.org/TR/owl2-overview/
6FOAF — http://www.foaf-project.org/
7SIOC — http://sioc-project.org/
8Linked Data — http://linkeddata.org/
9Linking Open Data (LOD) cloud — http://lod-cloud.net

data in the LOD cloud, it must be structured adhering to the
Linked Data principles as stated in [19] and the Data on the
Web best practices as stated in [14].

The benefit of linking data is that links amongst data
are explicit and try to minimise redundant data as much as
possible. Therefore, similar to hyperlinks in the conventional
Web that connect documents in a single global information
space, Linked Data enables data to be linked from different
datasources to form a single global data space [19].

IV. APPROACH

Given the core aims of this work our approach for semantic-
based game generation is operationalised via the following
sequence of key processes (as illustrated in Fig. 2): (1) the
user inputs keywords or a narrative of the game s/he desires;
(2) a list of game genres are extracted from the user’s input;
(3) rankings for each game are extracted from different game
review and scoring sites, and the games are ranked according
to the aggregate score; (4) game content, such as game plot and
game walkthroughs are extracted from diverse Web sources for
each of the high ranked games; (5) game information related to
the different game facets (for example entities, actions etc.) is
extracted from the game content and game facets RDF graphs
are created; (6) the new game is generated by merging the
game facets RDF graphs of the different games.

In the following subsections we detail the processes listed
above and suggest ways to realise them.

A. Extracting Game Genres and Game Lists

Video game genres and lists of games for particular gen-
res can easily be extracted from Wikidata10 and DBpedia11

through their SPARQL endpoints. Wikidata consists of a
collaborative editing knowledge base that provides common
source of data for Wikipedia12 and it collects data in a struc-
tured form allowing data to be easily reused. DBpedia also
extracts structured information from Wikipedia and publishes
this structured information on the Web. Hence, both Wikidata
and DBpedia are good sources of structured knowledge to
extract game information already enriched in semantic meta-
formats.

In our approach, a user enters some keywords that describe
the game to be generated. Keyphrase extraction techniques,
such as those described in [40], can be used to identify game
genres from the user’s input. A graph of game genres can
be constructed from e.g. Wikidata, DBpedia and WordNet
[15] that will be used as a reference video game genre
vocabulary whilst extracting keyphrases. Once the game genre
is identified, a list of games for that particular genre can be
extracted from Wikidata and DBpedia. For example, the query
in Fig. 3 extracts the list of action-adventure video games
from Wikidata as illustrated in Fig. 2, where the property
P136 refers to the property genre and the item Q343568
represents the action-adventure game genre.

10Wikidata — https://www.wikidata.org
11DBpedia — http://wiki.dbpedia.org
12Wikipedia — https://www.wikipedia.org
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Fig. 2. An semantic approach for game generation
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SELECT ?game ?gameLabel
WHERE
{

?game ?p ?o .
?o ps:P136 wd:Q343568.
SERVICE wikibase:label {
bd:serviceParam wikibase:language "en".
}

}
ORDER BY ?gameLabel

Fig. 3. A SPARQL query that extracts a list of action adventure video games
from Wikidata

We envisage to extend our approach by allowing the user to
input a full narrative or a detailed description of the new game.
The text is then parsed to understand the narrative (relating
words to their semantic meaning) by using knowledge-bases
such as GluNet [23], that provide a semantically rich lexical
commonsense vocabulary intended to assist computational sto-
rytelling in computer games. GluNet maps existing resources
together from WordNet — a lexical database of words [15] —
VerbNet — a lexical database of verb semantics and syntax
[22] — FrameNet — a lexical database of frame semantics
[1] — and ConceptNet — a commonsense knowledge-base for
relating narrative concepts to games [25]. Moreover, an RDF
graph can be constructed out of the semantic relationships
amongst the words in the narrative, and DBpedia Spotlight
[12] will be used to automatically annotate the words to their
semantic representations so that they are included in the RDF
graph. This RDF graph can be used when generating the new
game as a reference to what the user desires.

B. Extracting Game Rankings

Game rankings can be extracted from various review sites
in order to rank each game in the list extracted during the
previous stage. Metacritic13 and GameRankings14 are two sites
that provide weighted scores for games which can be used for
this step of the game generation process.

Metacritic’s metascores, for instance, are weighted average
scores aggregated from the reviews created within the site.
Metacritic game pages can easily be accessed by following the
link provided in the page about the same game in Wikidata.
Metacritic uses microdata to markup its pages. Microdata is a
standard specification to add metadata within existing content
on web pages by annotating HTML elements with machine-
readable tags. The most popular vocabulary used to markup
microdata content currently is Schema.org15 that provides a
collection of commonly used markup vocabularies. Therefore,
the scores can easily be extracted from Metacritic by using a
microdata parser to retrieve values annotated with the prop-
erty ratingValue. Apart from scores, more semantically
annotated game content can be parsed for later consumption.
DBpedia also provides semantically annotated weighted scores

13Metacritic – http://www.metacritic.com
14Game Rankings — http://www.gamerankings.com/
15Schema.org — http://schema.org/

from various review sites such as from GameSpot16, IGN17,
GamesRadar18, amongst others. While the GameRankings
scores are weighted average ratings from various offline and
online sources currently no direct link exists to the specific
GameRankings page for a particular game and a crawler would
be required to find the specific page. Moreover, GameRankings
does not markup its content and a scrapper would be required
to extract rankings and game information.

All aforementioned scores extracted from the various sites
can be defined in RDF using vocabularies such as Schema.org,
and the RDF graphs would be stored in a public-accessible
RDF store. These scores can, in turn, be used to rank the
games in the list extracted during the previous phase.

C. Extracting Game Information

Game content, such as game plot, gameplay, game character
information etc. can be found in various sources scattered
around the Web, and when aggregated together, can provide in-
depth details about the game mechanics. For instance Wikia19

consists of encyclopaedias, each one specialised in a particular
topic that covers much greater information and more com-
prehensible detail than Wikipedia. Wikia provides a detailed
API that allows easy access to searching and extracting most
of the content. GameFaqs20 is another source that provides
game content such as walkthroughs from which in-depth detail
about level design, game design and gameplay for a particular
game could be extracted. Unlike Wikia, GameFaq does not
provide an API and requires Web scrapping in order to extract
the content. Other sources of game information from which
game mechanics could be derived from include user review
sites. Most of these sources contain unstructured information
and require natural language processing techniques in order to
parse and process the text meaningfully.

The challenges that game information extraction brings
about include: (1) how to parse and understand which text
is suitable to model visual information, audio information,
narrative, level design, game design or gameplay; and (2) how
to semantically represent each different game facet as RDF
graphs. Entity recognition techniques could be used to identify
and classify entities such as persons or locations in the text.
The Stanford Named Entity Recogniser (NER) [16] tool could
be used to extract entities and DBpedia spotlight would be
used to match these entities to DBpedia resources described in
RDF. Extracting entities and relevant information about these
entities could be used to describe the visual aspects of the
game, game character information, or other game entities. Part-
of-speech tagging could then be used to identify which words
are nouns or verbs where verbs could identify what actions can
be performed in a game or the rules the game would have.
As explained previously, GluNet, that contains VerbNet the
lexical database of verb semantics, could be used to identify

16GameSpot — http://www.gamespot.com
17IGN — http://www.ign.com
18GamesRadar — http://www.gamesradar.com/
19Wikia — http://www.wikia.com
20http://www.gamefaqs.com/
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the verbs in the text. Moreover, ConceptNet could be used to
identify gameplay rules; for instance in [29], the authors used
both ConceptNet and WordNet to generate and define game
rules. However, in [29] game rules are generated from a set
of predefined verbs for a particular type of game, whereas
in our work we propose that rules are generated from verbs
extracted from Web content of different games (and based
on common-sense reasoning using ConceptNet), creating new
unconventional and unexpected game rules.

Once all game content has been parsed and classified,
gaming information can be structured in RDF using common
vocabularies such as SKOS21 for describing knowledge or-
ganization systems (such as thesauri) concepts, Dublin Core22

for describing provenance information, FOAF23 for describing
information about people, SIOC24 for interlinking different
online communities together, and Review vocabulary25 for
describing review information, amongst other vocabularies.
However, new ontologies, that describe game levels or game
design would be required to define new concepts which are
not found in current semantic vocabularies. Game rules can
be defined using the Semantic Web Rule Language (SWRL)26

that enables Horn-like rules to be combined with an OWL
knowledge-base. Ultimately, a number of RDF graphs rep-
resenting various game content types can be created for
each game creating an RDF store which yields a semantic
knowledge-base of game information.

D. Generating Games from Semantic Information

In the final phase of the envisaged process the new game
is generated by combing the several RDF graphs together, or
even with other RDF graphs that are already stored in the
knowledge base and that relate to the user’s requirements.
Ontology alignment and semantic matching techniques are
used to find semantic relationships amongst ontologies [13]
and to identify whether graph structures are semantically
related [17] — to find the correspondences and mappings
amongst the RDF graphs describing the game information.
Through these correspondences, the RDF graphs are merged
to form the new game graph. This new game could result to an
entirely new and unconventional game genre. A semantic game
engine, based on RDF and SWRL reasoners, would then be
required to parse the merged RDF graphs in order to transform
the semantic information into a playable game.

In its simplest instance, the ontology can directly guide the
generative process — for instance an entity of type Person
can instantiate an NPC (with details or visual appearance
of the NPC provided within the ontology) — similar to the
work in [2]. Moreover, the ontology can indirectly specify the
parameter vector of the generator: for instance a level with the

21Simple Knowledge Organization System (SKOS) — http://www.w3.org/
2004/02/skos/core#

22Dublin Core — http://dublincore.org/documents/dcmi-terms/
23FOAF — http://xmlns.com/foaf/0.1/
24SIOC — http://rdfs.org/sioc/ns#
25Review vocabulary — http://purl.org/stuff/rev#
26SWRL — https://www.w3.org/Submission/SWRL/

type of “dungeon” can adjust the parameters of the generator
to create levels with low linearity [34], due to the relationship
between “dungeon” and “maze”. A more ambitious target
for semantic game generation is to use machine learning to
identify patterns (e.g. visual patterns of textures, playtrace
patterns in levels) of content in existing game within the
ontology; the learned model of content quality and semantic
information can then be used as an objective for a search-based
content generator, targeting content with similar patterns as to
those in existing games.

V. CONCLUSION

In this paper we presented our envisaged approach for gen-
erating games via semantic information extracted from diverse
Web content. We have provided some first insights on what
game content could be extracted to generate unconventional
games, how to semantically enrich such content, and how
games can be generated from these semantic representations.
Apart from generating games, the benefit of adding semantic
information to game content is many-fold: enriched game
information can be published on the Web for interlinking and
consumption, enriched game content can easily be reused in
games without requiring any effort to modify game artefacts,
and real-time interactions amongst objects in games could
easily be achieved.

In contrast to current automated game generation processes
such as traditional procedural content generation practices, our
approach enables the use of massive amounts and dissimilar
types of content from online sources. This allows content to be
automatically generated whilst taking into consideration player
models derived from user information stored across various
online datasets [41] thereby realising a semantically-enriched
version of the experience-driven PCG framework [42]. For
example, Metacritic contains user reviews which can provide
a quantifiable (based on the user scores) or qualitative (based
on sentiment-word analysis of the textual review) model of
the contributing user base. This model can be used to create
game content or complete games, which are expected to
appeal to the entire community or to specific parts of the
community, based for instance on demographics or skill or
interests collected from user’s steam achievements or favoured
games, respectively. On the other hand, an indirect model
of player engagement with specific types of content can be
gleaned from the mostly user-generated wikia pages. Pages
with popular characters and locations or challenging game
levels are expected to have more textual contributions (due to
being updated more often by more people). This can be used
to create content similar to existing game content popular in
one or more wikia user communities.

With the novel approach proposed in this paper we en-
visage not only the generation of personalised digital games
autonomously but also the creation of games that are perceived
as being unconventional and unexpected, yet engaging and
playable.
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Abstract— Recently, there is a growing interest in applying 

deep learning in game AI domain. Among them, deep 

reinforcement learning is the most famous in game AI 

communities. In this paper, we propose to use redundant outputs 

in order to adapt training progress in deep reinforcement 

learning. We compare our method with general ε-greedy in 

ViZDoom platform. Since AI player should select an action only 

based on visual input in the platform, it is suitable for deep 

reinforcement learning research. Experimental results show that 

our proposed method archives competitive performance to ε-

greedy without parameter tuning. 

Keywords—deep reinforcement learning; reinforcement 

learning; vizdoom; first-person perspective game; 

I. INTRODUCTION 

In recent years, the deep learning has become famous in 
various domains. Especially, it shows better performance than 
conventional methods in handling high dimensional data such 
as visual inputs. Deep reinforcement learning (Deep Q-
Learning; DQL) is the one of representative works in the game 
AI domain. Basically, it is a combination of deep learning with 
Q-learning and can learn an AI game player handles raw pixel 
or text inputs.  

Fig. 1. ViZDoom platform (basic example) 

 

Visual Doom (ViZDoom) is the one of AI competition 
platforms opened recently [1], also OpenAI Gym [2] includes 
it. It is based on the Doom, the famous classic first person 
shooter game (Fig. 1). AI players on this platform can only 
obtain visual input and some variables (eg. Health and armor). 
The platform does not  provide more detailed structured data 
like map data for navigation or forward models for simulations. 
It opens new challenge for traditional game AI methods. 

The DQL is one of promising solutions to make an AI for 
ViZDoom. The DQL is one of representative deep learning 
works in game AI domain. Mnih et al. introduce DQL in 2013 
[3]. They show DQN can learn how to play various Atari 2600 
games. After success of DQL, there have been a lot of works 
about deep learning in game AI. However, many DQL studies 
focused on 2-D games unlike ViZDoom. Since ViZDoom 
provides only first-person view, the player cannot see whole 
environment (obtains limited information). Furthermore, view 
angle change makes different visual inputs for the same object.  

Exploration and exploitation dilemma is one of important 
problems in reinforcement learning. It’s dilemma between 
trying new situation in order to get information about 
environment (exploration) or pursues rewards based on the 
current knowledge (exploitation). If the player tries the 
exploration too much or pursues rewards too much, it is 
possible to reduce total rewards. Because of this reason, the 
mechanism of how to deal with this dilemma is important. 

In many DQL studies, they use ε-greedy algorithm to 
handle this dilemma. Simply, the ε-greedy selects a random 
action with ε probability (ε belongs to [0, 1]). Otherwise, it 
selects the action with the highest rewards based on the current 
knowledge. Generally, ε value is initially set as high value and 
gradually reduced at each learning iteration. The ε-greedy is 
easy to use and shows good performance. But it is not a kind of 
adaptive learning process and there are some parameters 
should be determined properly. 

In this paper, we propose an algorithm to balance 
exploration and exploitation. Generally, the number of output 
nodes in neural network of DQL is the same to the actions that 
a player can perform. The output of each node is interpreted as 
an expected Q-value of each action. In our proposed method, 
we add multiple pair of nodes into the output layer. For 
instance, if there are two possible actions, then total number of 
output nodes is 2×10=20. We use these redundant outputs to 
measure uncertainty of each action’s Q-value in the current 
state. Using this information, proposed method could estimate 
the progress of learning and use it to balance exploration and 
exploitation. Osband et al. also use redundant output to boost 
training efficiency [4]. However, our proposed methods are 
simpler than the previous work. 
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In order to compare performance of our proposed method 
and ε-greedy, we use ViZDoom’s basic example environments. 
In the experimental result, our proposed method gets similar 
total rewards eventually without parameter tuning. 

II. PROPOSED METHOD 

Fig. 2. shows an architecture of neural networks in our 
experiments. There are six layers including input and output 
layers. In the input layer, we provide input data as gray scale 
60×40 image at each game tick. Next, there are three 
convolution layer with ReLU activation function. First 
convolution layer has 32 filters (size: 8×8), second convolution 
layer has 64 filters (size: 4×4), third convolution layer has 64 
filters (3×3). Also, each convolution layer is with max pooling 
layer (2×2). The next layer is a fully connected layer with 
ReLU activation function (512 nodes). The final layer is an 
output layer. In ε-greedy, the number of nodes is equal to the 
number of actions. But, our proposed method needs 10 times 
more output nodes than normal. We choose 10 empirically 
considering diversity of outputs and computation time. Our 
proposed method needs more computation time then ε-greedy, 
but it’s not significant. 

Fig. 2. Neural network architecture 
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The ViZDoom’s basic example environment allows three 
buttons (Left (L), Right (R) and Shoot (S)). We define 7 
possible actions (press L, R, S, L+S, R+S, L+R and nothing). If 
press two keys in same time, like move (L and R) and S, AI 
perform two behavior at same time (fire pistol while moving), 
except press L+R. In this case, AI do nothing. Therefore, the 
number of output nodes is set as 7×10=70. It has 10 redundant 
sets, and each set has 7 outputs. 

For the balance of exploration and exploitation, this method 
chooses one set randomly and selects an action with the highest 
Q-value from the set. As a result, the AI chooses from random 
actions (exploration) when there are disagreement on the 
highest Q-value action among the redundant sets. If Q-value 
across the sets are similar each other, it chooses the best action 
(exploitation). We update neural net’s weights of the action 
over sets at once. In a testing mode, our method selects an 
action from the voting of all sets. 

III. EXPERIMENTS 

We use ViZDoom’s basic example for our experiments 
(Fig. 1). When starts a new game, there is a small room and a 
target on random position of opposite side of the room. The 
goal of this environment is to hit the target as soon as possible. 

AI player gets 100 points when hits the target, -6 points when 
misses the target, and -1 point each time nothing happened. 

Our proposed method and ε-greedy use the same neural 
network architecture except the number of output nodes. We 
use mean squared error as an objective function and RMSProp 
as an optimizer (learning rate: 10-5). We use replay memory 
size 10,000 and batch size 32, The e value of ε-greedy starts 
with 1.0 and gradually reduces during 20,000 training 
iterations to 0.1 after then it holds 0.1. We test model at each 
5,000 iterations. In this time, we run 100 episodes with test 
mode action selection method.  

Fig. 3. Total rewards in training and testing 

 

Fig. 3. shows experimental results. It shows total rewards 
change in training and testing (average of five experiments). 
According to experimental results, the proposed method gets 
total rewards similar to ε-greedy’s one after enough training. 
Usually, final trained models of both models perform optimal 
behavior (move to proper position and shoot accurately). 
Although it takes more iterations, there are only one parameter 
(the size of redundancy in output nodes), but ε-greedy needs 
more (eg. ε’s upper/lower bound, and update) parameters. 

IV. CONCLUSION AND FUTURE WORKS 

In this paper, we propose using redundant output to explore 
game environments in DQL. The most general method that can 
handle exploration and exploitation dilemma in reinforcement 
learning is the ε-greedy. Our proposed method can archive 
similar results with enough training iterations. It can adapt 
training progress with redundant output nodes. 
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Abstract—In this paper, we present the idea that game design,
player modeling, and procedural content generation may offer
new methods for modern psychological assessment, allowing
for daily cognitive assessment in ways previously unseen. We
suggest that games often share properties with psychological
tests and that the overlap between the two domains might
allow for creating games that contain assessment elements and
provide examples from the literature that already show this.
While approaches like these are typically seen as adding noise
to a particular instrument in a psychometric context, research
in player modeling demonstrates that it is possible to extract
reliable measures corresponding to psychological constructs from
in-game behavior and performance. Given these observations, we
suggest that the combination of game design, player modeling,
and procedural content generation offers new opportunities for
conducting psychometric testing with a higher frequency and
a higher degree of personalization than has previously been
possible. Finally, we describe how we are currently implementing
the first version of this vision in the form of an application for
mobile devices that will soon be used in upcoming user studies.

I. INTRODUCTION

Psychological testing and assessment has been practiced
since at least 2200 B.C. in China [1], while its modern Western
form can trace its roots to the end of the 19th century [2].
Since then, the basic practice of testing has followed roughly
the same template: individuals are tested before some liminal
decision point, e.g. when a person is eligible for moving into
a different grade in school, is applying for a new position, or
when the effects of a training program need to be assessed.
However, we believe that psychological assessment could be
used to greater effect it were possibly to apply it not only at
these liminal points, but more often, for instance on a daily
basis. Based on the existing literature which shows that games,
digital or otherwise, share many properties with psychological
tests and may be capable of capturing much of the same
information about their users, we intuit that games could be
useful enablers for this vision.

If games can be used for psychological assessment, this
may open up for new application areas where games or game-
like systems can contribute with novel properties - for instance
their ability to sustain user engagement and motivate recurrent
use through intrinsically and extrinsically motivating features
[3], [4].

One example of a novel use case could be for workers who
currently undergo uncomfortable drug screening tests based
on e.g. biological samples. Workers could avoid these, instead
documenting their readiness for work simply by performing a
short, daily cognitive test. In effect, a daily cognitive test could
be a “breathalyzer for the brain”, testing a person’s fitness for a
particular job or function immediately before starting it. Here,
we suggest a number of principles to enable this, centered
around using digital games to enable longitudinal, frequent,
within-subject measurement of cognitive performance charac-
teristics.

The field of psychometrics has, over the course of more
than a century, developed practices for dealing with the
specific challenges of testing human skills and capabilities at
specific points in time. When developing new instruments and
protocols for applying them, three challenges tend to recur
in psychometrics: ensuring that the subjects taking tests are
motivated and performing at a level representative of their best
or typical behavior or abilities, ensuring that tests are valid,
and ensuring that they are reliable [1].

Psychometrics already has a number of established and
documented approaches to address these challenges, including
different conceptions of validity, different ways of measuring
reliability, and approaches that attempt to attune themselves to
extract the maximal amount of information about the subject
from a single test, such as Item Response Theory [5] based
tests and Computerized Adaptive Testing [6].

In this paper, we argue that digital game design coupled
with player modeling and procedural content generation can
offer psychometrics a new set of approaches that may lead
to new testing paradigms. Some of these ideas have already
been explored in the games literature, extensively even, while
others, to the best of our knowledge, are novel and so far
unexplored.

We suggest three main design principles drawn from game
design and computational intelligence for games and proceed
to describe a currently ongoing research project that attempts
to realize these ideas, including a description of the current
prototype and planned user study. The three approaches from
games and computational intelligence we believe could enable
longitudinal, frequent, within-subject measurement of psy-
chological performance characteristics are: 1) Using (digital)
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game design to motivate subjects to participate in frequent
testing. 2) Using player modeling to ensure that the maximal
amount of information is learned about the subject from
each play through. 3) Using personalized procedural content
generation to mitigate and control learning effects, also known
as test-retest effects [1], ensuring that tests remain valid and
reliable in spite of frequent test administration.

The rest of this paper is structured into four main parts. First,
we visit the state-of-the-art in cognitive assessment identifying
where games or game-like applications may provide value and
novelty. Second, we describe related work in using games to
measure psychological characteristics. Third, we describe in
detail how the three approaches listed above could be used
to realize a specific, novel form of psychological assessment.
Fourth, we describe how these ideas drive the design, imple-
mentation, and refinement of a prototype application called
SkillShow. The purpose of SkillShow is to provide a platform
for daily testing of performance indicators for simultaneous
capacity [7], [8] and inductive reasoning intelligence [9].

II. RELATED WORK

In this section, we start by describing the use of compu-
tational intelligence in Work and Organizational Psychology
(WOP), with a focus on identifying challenges in assessment
and selection. We then move on to describing related work in
the use of games for identifying psychological characteristics
and individual differences in players.

A. Work and Organizational Psychology

The field of WOP has been engaged in addressing the
problem of personnel selection and training for more than
a century. A typical approach has been to combine funda-
mental psychometric measurements such as cognitive tests
and personality tests with samples of work and interviews for
assessment [10]. The use of computerized adaptive testing is
also well known in psychology and psychometrics [6], but
WOP has only recently started to apply methods from the
field of computational intelligence. A nascent movement in
WOP is poised to embrace the applications of methods from
the artificial and computational intelligence communities [11].
This may bring new levels of specificity and falsifiability to
sub-disciplines such as job and task analysis, work behav-
ior measurement, motivation modeling, performance manage-
ment, personnel assessment and selection, and the modeling
of individual differences [11]. The purpose of the research
described here is to leverage computational game intelligence
to embrace this opportunity.

B. Games for Assessment and Measuring Psychological Char-
acteristics

Often, training simulations/games (such as those used in
military or corporate settings) and educational games (such
as those used in schools) have been used as measures of the
learners’/players’ abilities in the subject matter, providing a
form of assessment. Sometimes, these assessments have been
focused on documenting performance in a narrow field or

curriculum or they have been focused on assessing not the
students, but the transfer capability of the simulation or game
[12].

However, games and assessment at the more general level
have been related within the field of simulation and gaming
for decades. As early as 1978, Spitz argued that performance
in games such as Mancala and Three-in-a-row are related to
intelligence [13]. Jones at al. [14] and Jones [15] described
how video games might be used for performance assessment.
Work in this vein continued throughout the 1980’s and 1990’s
with a focus on assessing intelligence through video games
[16], [17].

Using commercial games to quantitatively assess other psy-
chological characteristics and individual differences is a newer
idea. Recently, significant work has been done in measuring
personality, such as the work by Van Lankveld et al. [18], [19]
who specifically suggested games as personality profiling tools
[20]. Yee et al. [21] have conducted work in the same vein
while Canossa et al. [22] focused on assessing differences in
life motivations and later also personality [23]. Tekofsky et al.
have shown how play style varies with age [24] in Battlefield 3
[25] and how performance and speed in the game decrease
with age [26]. Finally, Boot el al. recently released an overview
of the use of video games as tool for investigating cognitive
processes [27].

Meanwhile, the notion of modeling the player for reasons
directed at the game experience itself or for impacting the
player, such as adaptively changing game difficulty or other
parameters to control e.g. player engagement, has been ex-
plored for a number of years [28]–[31]. Particularly within
applied games, such as educational games or games for health
treatment, this has been a focus of significant research into
both affective responses and in-game behavior [32]–[34]. Work
by Schute et al. [35], [36] has shown how assessment can
be built into (educational) games in a way that allows for
automatic assessment of student mastery of curricular topics.

Neuroscientifically derived tasks have started appearing in
gamification-based frameworks targeting talent identification
for recruitment and organizational placement purposes [37].
These approaches to characterizing individuals through games
and gamified activities make their way into the general field
of WOP, as exemplified by companies such as Knelf, Knack,
pymetrics, and owiwi1, contributing to a general change toward
a higher reliance on objective data, in the sense of Yannakakis
et al. [31]2, and computational intelligence, supporting or
supplanting traditional expert-based assessment practices [11].

Altogether, this growing body of research and products
shows that activities that take place in games share charac-
teristics with activities included in psychological assessment
instruments, from small arcade games to expansive role play-
ing games: The interactions with NPCs and the environment
in a game like Fallout 3 [38] may provide information about

1qa.knelf.com; knack.it; pymetrics.com, owiwi.gr
2We still consider models built on objective data subjective in the sense

that any model’s methods and data set are designed, selected, and deployed
by individuals or groups thereof.
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the same characteristics as the verbal indications given in
response to a personality test [23]. Or the performance in
a real time strategy game such as StarCraft 2 [39] may
be indicative of cognitive motor performance, a cognitive
characteristic normally measured with a specialized test [40].
At the other end of this spectrum, simple tasks drawn from
neuroscience, such as the Go/No-Go task, a task developed for
assessing attention and inhibitory control/disinhibition, may
be put in a gamified context [37] and can be perceived as
a game activity by the test subject [41]. This shows that
the lines between psychological assessment instruments and
games in some instances can be blurry and that the two might
be combined for some purposes. In the next section, we show
why we believe daily cognitive assessment would be a suitable
use case for such a combination.

III. CHALLENGES FOR DAILY COGNITIVE ASSESSMENT

In this section, we identify some of the specific chal-
lenges that prevent the use of daily cognitive assessment in
WOP today and suggest how game design, computational
intelligence, and procedural content generation together might
address these. We start by reviewing how game design may
alleviate typical issues in test fatigue and retain motivation
for daily testing. Afterwards, we suggest that player modeling
may drive personalized procedural content generation which
in turn can support test-retest reliability while improving the
subject/player experience. Building on this idea, we propose
that existing research in active player modeling might be
used to configure assessment tasks to gather more relevant
information about individual players. Then, we propose that
assessment games may also provide logistical benefits to
frequent cognitive assessment by leveraging existing technolo-
gies and principles from game telemetry and game analytics.
Finally, we expand upon what we believe is the potential of
procedural content generation for psychological assessment.

A. Motivation for Tests

When candidates take psychological assessment tests today,
we typically assume that they will be performing at the best
possible level they are capable of at that specific moment
in time. One reason for this could be that the test is acting
as a gatekeeper between the individual and some desired
outcome, so we assume the candidate is striving to perform
well. Another reason could be that the test is assessing a
person’s performance levels as part of monitoring during e.g.
rehabilitation, where we assume that the patient’s goals are
aligned with yielding an indicative assessment. However, we
could risk that subjects were nervous test takers or under the
influence of stereotype threat [42] and therefore performing
below their actual optimum. In some instances we may suspect
that individuals’ goals are not aligned with identifying their
maximal performance, such as when insurance claims are
involved or e.g. during evaluation for conscription into armed
forces. Still, even if subjects might be stressed or malinger
we would assume that they took an active and engaged
stance toward the test and we are less concerned about the

subject’s engagement with the test. Extrinsic motivation, other
contextual factors, or simply the novelty of the test typically
motivate the subject to engage [1].

In the case of frequent testing with the same test(s), how-
ever, the circumstances may be radically different. Exposure to
the same test or similar tests over and over again is known to
cause test or survey fatigue in humans. Simply put, it becomes
boring. Subjects who are bored cannot be expected to produce
data that is as indicative and valid as data from subjects who
are highly motivated for and/or engaged with the test [43].
The amount of noise in the collected data should be expected
to increase.

For the use case envisioned here, where we want to assess
the same individual on a daily basis, principles drawn from
game design seem like suitable approaches to enriching an
assessment test with motivating elements reducing this un-
desirable noise. Identifying gratifying core loops for games
that simultaneously work as cognitive performance indicators
would be one approach to ensure that the subject remains
attentive to and engaged with the test.

Appealing and motivating game designs often incorporate
strong elements of feedback to the player, in order to commu-
nicate the game’s evaluation of her performance and to guide
her to play in certain ways or take certain actions [44], [45].
Typically, psychometric test construction avoids these kinds
of feedback loops in order to minimize the amount of noise
introduced into the test situation and to keep tests comparable.
By keeping the context static it becomes easier to assess the
individual and compare individuals [1]. In contrast, feedback
and performance communication is considered integral to
game design [44].

As noted above, the literature on game based testing shows
that it is possible to create motivating games rich in feedback
that still have acceptable validity as assessment tools. This
indicates that it should also be possible to motivate the player
through interesting, varying gameplay while still accurately
evaluating player performance through player models that
take the game as context into consideration [46]–[48] and by
extension we should most likely also be able to evaluate their
cognitive characteristics.

A problem related to dealing with the context of the game
is dealing with the developing expertise of the player, as she
becomes more proficient through experience. This, in turn, is
related to the problem of test-retest reliability in psychological
testing, which we approach in the following section.

B. Test-retest Reliability

Game design and player modeling excel at evaluating indi-
viduals in manners perceived as fair across contexts that are
comparable in general, but vary in their specific configuration.
Scores obtained in individual play sessions of e.g. Tetris
[49] are generally considered comparable to one another even
though the specific sequence of tetrominoes encountered may
have been different. The balancing of the game is assumed to
provide guarantees that even though specific game instances
are unique, their difficulties are roughly equal over time and
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part of the gameplay is managing this uncertainty [50]. If
games feature progression, a player generally expects a well-
planned challenge curve that matches her development of skill
over time, or even adapts to it [28].

In psychological assessment, the development of expertise
with regard to the test itself is generally viewed as undesirable,
as this is assumed to obscure actual underlying performance
characteristics of the subject which are applied to the test
as a task, but not trained by or developed from it [1]. In
games, and in particular games that leverage computational
intelligence for difficulty adjustment, this development is
generally leveraged as an asset. Knowing the player’s devel-
opment of expertise allows the game designer or the game
artificial intelligence to configure the game to an appropriate
difficulty level. Importantly, a game may keep a history of
the player’s skill development and may store the context for
the exhibited performances too [51], [52]. This shows that
player modeling already contains the necessary frameworks to
track and calibrate for the player’s development of expertise
over time by adjusting the challenge/difficulty [31]. For the
case of daily cognitive assessment using games, this becomes
particularly important, as each subject/player may follow an
individual learning curve. We engage with this topic in the
following section.

C. Individualized Test Sensitivity

Classical psychological assessment would typically provide
all subjects with the same instrument and use principles
such as e.g. Item Response Theory, time limits, or progress
measures through instrument items to gain sufficient infor-
mation about each subject [1]. More recently, Computerized
Adaptive Testing has started providing methods for making
individualized test configurations that adapt during testing by
selecting appropriate items from item pools [6]. This approach
has a natural counterpart within games where personalized
[53], experience driven content generation [54] is capable of
generating content that is appropriate to e.g. a player’s skill
level or emotional state. Additionally, research has shown how
player models can be used to drive not only the generation of
content that matches the player’s desired experience, but also
content that will reveal the maximal amount of information
about the player. As such, the combination of player modeling
and procedural content generation provides methods for games
that may extend current practices within psychological testing.

D. Testing Costs

A typical concern that may limit the application of psycho-
logical assessment today is the cost of deploying tests. Even
though many psychological tests are now available in digital
versions, ported from their original paper version and scored
automatically by local or remote software, they still typically
assume controlled environments and administration by profes-
sionals. Deploying psychological assessment solutions in the
form of games on mobile devices will be able to tap into
existing, standardized distribution platforms and may leverage
existing data collection, aggregation, and analysis frameworks

[51]. Taking this into account, games applied as assessment
tools might be able to extend current psychological testing
practice through the infrastructure that games (and mobile
games in particular) bring.

In the following section we go into deeper detail about how
player modeling and procedural content generation may offer
new methods for psychological testing.

IV. PROCEDURAL CONTENT GENERATION IN
ASSESSMENT GAMES

The promise of procedural content generation is to auto-
matically create new games, new game variants or simply
new game content each time a test is taken. By now, the
general problem of generating content for games is fairly well
understood, and a number of effective methods exist for e.g.
generating levels, textures, puzzles, characters, and vegetation
for games ranging from platformers to puzzle games to open-
world adventures [55]. In the context of cognitive performance
assessment games the role of procedural content generation
would be to introduce variety, which serves both to avoid
learning effects and to ensure continued player engagement.

Procedural generation can be applied to different levels in
a game—in more constrained settings it might be a question
of changing a few parameters, in less constrained settings a
matter of generating new structural content such as a level,
and in the least constrained setting procedural generation can
be applied to the very rules of a game, creating new variants,
but with similar underlying challenges.

We hypothesize that the less constrained the procedural
generation is, the better learning effects can be avoided. If
the test consists of the same game at each occasion with
only minor variations in the parameters or the level, learning
effects will likely only be partially mitigated—there will still
be significant training benefits from having played another
(similar) version of the same game. If instead an entirely new
game is generated for each test, learning effects are likely to be
negligible, as the time and effort spent taking previous tests is
not likely to improve the individual’s performance on the new
test. On the other hand, the more the game changes between
tests, the less comparable the results will be and reliability
may suffer as a result and any prior established validity may be
invalidated. This is a trade-off which will need to be explored
in more depth in future research. Particularly investigating
how much change along one or more dimensions impacts
validity, as measured using e.g. well-known psychological tests
as criteria, will be a significant challenge.

An initial strategy toward addressing this could be
simulation-based testing of the generated games. This ap-
proach should be able to ascertain the level at which they
challenge a particular cognitive skill, or in other words the
performance/behavior in a game relative to a given latent
construct. To do this, we envision developing computational
agents that can learn to play any of these games with the
same skill and playing style as a particular human player.
We refer to these player-imitating agents as procedural per-
sonas [56], adaptive agents that learn to reproduce human play
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skill, preferences, and implicitly playing styles in a single
game [56]. This is done by identifying common patterns of
skills and preferences in games, and biasing existing game-
playing algorithms with these patterns. Such agents would
be trained on a player’s testing/playing history and become
increasingly representative over time. Creating computational
agents that can learn to play the testing games in a similar way
to the human player/test-taker, and with the same performance,
is not a trivial task, both because the performance needs to
carry over from the game variant the agent was trained on to
the new game variant, and because most computational game-
playing agents tend to play in distinctly non-human-like ways.
When a new game, or a new variation of a game, has been
generated, it can first be played by the procedural persona to
set a baseline for the player’s expected performance on that
game. This moves the problem of reliability from the particular
instance of the test/game and instead places it on the persona
as a user/player model. As long as this is representative of the
player it should enable a procedural content generation system
to choose configurations with an appropriate discriminatory
ability. Prior work has demonstrated that it is possible to
represent skill in game playing agents [57] and to bias game
playing agents towards exhibiting more human-like play styles
[58], [59].

Modeling players’ performance and playing style can be
taken even further in order to more accurately assess the
player. The paradigm of Active Player Modeling uses active
learning in player modeling [60]: the space of content is
searched for the content areas where the model is least
certain about the player’s performance. In other words, the
game content generator probes the content space to maximally
improve its knowledge about the player. This approach could
be very effective for exploratory cognitive assessment.

Active player modeling can be usefully compared to Com-
puterized Adaptive Testing, where test items are chosen from a
pool in order to provide the most appropriate test questions for
a given test-taker in order to maximize the information gained
from each item [6]. The difference to our envisioned system is
that each configuration of the test/game, comparable to an item
or an item set, is selected or generated and then configured
based on simulations in response to the player model, which is
continuously updated. This could allow for accurate generation
of tests for individual test-takers, taking into account variation
among multiple dimensions of cognitive performance.

Given our assumption that games applied as assessment
instruments might bring new methods to the assessment of
cognitive characteristics within motivation, reliability, sensi-
tivity, and cost, we have developed a prototype test platform,
which we describe in the following section.

V. THE SKILLSHOW PROTOTYPE

In this section we describe the work-in-progress SkillShow
prototype. The prototype is built in accordance with the
three principles outlined above in Section I: game design
should be applied to build motivation, player modeling in
context should be applicable through game playing agents, and

TABLE I
OVERVIEW OF THE DESIGN CHARACTERISTICS OF THE Interrupted SET

TEST/GAME.

Game genre/template Card game: SET
Game mechanics Set identification, sorting, search
Test inspiration SIMKAP
Latent construct Simultaneous capacity

procedural content generation should be supported to ensure
novelty and maximal individual information gain from each
test session. In this application the three principles are applied
in moderation and the application design still leans heavily
on existing psychological tests. SkillShow is designed to
measure two different latent constructs: simultaneous capacity
[8] and inductive reasoning intelligence [9] Each construct
will be measured through a test/game that combines and
adapts existing game designs and existing psychological tests.
Given that we can successfully demonstrate that the suggested
approaches work for these tests/games, we envision moving on
to more complex tests/games later. Below, we describe each
of the two tasks that we currently plan to include in our user
studies.

A. Interrupted SET

The first mode of SkillShow is titled Interrupted SET. The
fundamental psychological task is drawn from a well-known
assessment instrument called SIMKAP [7], [8]. It is typically
used in the assessment and selection of personnel for critical
functions such as ship captains, fighter pilots, or air traffic
controllers. SIMKAP measures a construct called simultaneous
capacity: an individual’s ability to perform several mental
operations simultaneously and switching between these tasks
based on outside demands. In order to fuse the properties of
the SIMKAP test with a motivating game design that supports
player modeling and adaptive procedural content generation,
we borrow and adapt the rules of the game SET [61]. The game
requires players to analyze a selection of 18 cards in order to
create sets of three cards that are either all identical or all
unique on four dimensions: count, color, shape, and fill type.
The player must identify as many sets as possible within a time
limit. While the player is solving this task we intermittently
interrupt the player by presenting distracting, overlaid tasks
that require the player to either sort integers or conduct visual
search for characters. The resulting test/game is characterized
in Table I and the two game modes are displayed in Figure 1.
We expect the challenge to be configurable through the number
of sets present in the each initial card spread and the frequency
and complexity of the distracting tasks.

B. Simple MULTIFLUX

The second mode of SkillShow is titled Simple MULTI-
FLUX and is adapted from the work of Kröner et al. who
show how interactive computer simulations can be used to
assess inductive reasoning intelligence [9]. They develop a
simulation-based task where the subject must go through three
stages of understanding a dynamic system: identifying rules,
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(a) Identifying sets. (b) One kind of interruption.

Fig. 1. Two modes of Interrupted SET.

TABLE II
OVERVIEW OF THE DESIGN CHARACTERISTICS OF THE Simple

MULTIFLUX TEST/GAME.

Game genre/template Puzzle games
Game mechanics Dynamic systems learning/manipulation
Test inspiration MULTIFLUX
Latent construct Inductive reasoning intelligence

applying rules, and demonstrating understanding of rules.
First, the subject is given time to analyze the relations between
a number of control inputs and the outputs of an abstract,
simulated machine. Secondly, the subject is given an instance
of this abstract machine and asked to bring it into a particular
goal state using the acquired information. Thirdly, the subject
is given a pre-configured machine and asked to determine how
the controls must be arranged to cause this output. This test
is reminiscent of many abstract puzzle games and well suited
to the mobile format. A design overview of this test/game
is shown in Table II. In order to increase the appeal of the
task, we designed a compelling user interface, simplifying the
display and adding visual, auditive, and animation feedback.
We did not change the core rules of the test as this was deemed
appropriate and engaging in its original form. The resulting
design is displayed in Figure 2.

The original MULTIFLUX test has four inputs and four
outputs and gave subjects 7 minutes and 30 seconds to solve
the tasks. Through informal experimentation, we deemed this
to be too complex, and reduced the problem to our Simple
MULTIFLUX variant with only three inputs and three outputs
and a 5 minute time limit. We expect the difficulty of this
test/game to be configurable via the complexity of the function
that maps inputs to outputs in the simulated machine.

(a) Learning condition. (b) Application condition.

(c) Solved application condi-
tion.

(d) Demonstration condition.

Fig. 2. Four states of Simple MULTIFLUX.

C. Feedback and Evaluation Screens

In order to support player motivation and adherence both
test/games in SkillShow are built with rich visual and auditive
feedback. The tests/games are built to a production value that
would seem familiar to a player used to playing premium
puzzle games on their mobile phone. Additionally, the applica-
tion includes immediate feedback after each play session. The
application rates the player’s performance in the latest play in
relation to previous performances and displays a graph with
recent sessions, shown in Figure 3.
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(a) SIMKAP evaluation (b) MULTIFLUX evaluation

Fig. 3. Two evaluation screens from SkillShow providing individualized
feedback.

VI. EVALUATING THE SKILLSHOW APPLICATION

The next step for evaluating the SkillShow application’s
usefulness for daily cognitive assessment will be to conduct a
pilot user study with the two games. At the present time, two
user study configurations are planned.

First, since the tests/games are based on existing psycho-
logical assessment instruments, a longitudinal study where
subjects/players play the two games once a day will be run.
Intermittently, during this period of time, the players will be
asked to complete the original tasks under lab conditions. In
addition to conducting the original, validated tasks that the
tests/games are based upon, the subjects/players will also be
asked to complete a battery of other, validated tests measuring
well-known psychological constructs, such as attention and
intelligence. Additionally, once a baseline is established for
the players, a number of interventions will be staged, where
participants will be split into a treatment group and a control
group. The treatment group will undergo a procedure known to
reduce cognitive performance; currently we are contemplating
a moderate amount of sleep deprivation. We expect the treat-
ment group to exhibit significantly worse performance in both
games on the occasion when they are sleep deprived, relative
to their baseline, and we expect them to return to this baseline
when they are no longer sleep deprived. We expect this effect
to be present for both the reference psychological tests, and
the SkillShow versions. For the control group, we expect no
effect other than performance increases due to learning effects.

Once this pilot study is complete we intend to build individ-
ual player models, modeling skill and style over time. This, in
turn, will allow us to construct procedural difficulty adjustment
systems for each task, that may be used in a subsequent second
pilot study. If learning and development of skill is observed

in the first study, the purpose of this second study will be to
enable the SkillShow application to keep challenge steady and
maximize information gain by adjusting the difficulty of the
tasks to match the players’ skill development.

VII. CONCLUSION

In this paper, we outlined a number of reasons, based on
the literature, to assume that games applied as cognitive tests
may be able to facilitate daily cognitive assessment through
motivating, reliable, personalized, and cost effective tests. We
described four key ways in which combining this approach
with player modeling and procedural content generation might
bring novel methods to cognitive testing in general. Addi-
tionally, we described a prototype for a first pilot user study
testing the efficacy of games as daily assessment tools. The
tasks included in the prototype are relatively conservative
interpretations of existing psychological tests, but fused with
game mechanics drawn from existing games, and game de-
sign principles such as such rich interfaces and feedback. If
the pilot-studies show the tests/games can provide valid and
reliable assessment we will expand the prototype application
with more elaborate games, player modeling, and procedural
content generation.

The overarching vision described in this paper is to explore
the possibilities in combining key elements from game design
and computational intelligence in games, specifically player
modeling and procedural content generation, with psycholog-
ical testing. The SkillShow prototype represents our first step
in exploring these possibilities.
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Abstract—Recently, procedural content generation (PCG) has 
attracted positive attentions from gamers and applied for various 
content types such as maps, items and so on. Deep neural networks 
have been reported that they have potential to learn styles of 
artistic images. In this study, we propose to apply convolutional 
neural networks to change artistic styles of video game graphics. 
It’s expected to change original games into different styles 
(modern, old-fashioned, scientific, and so on) given the input 
images. We applied the neural styling algorithm to the game 
images from Hedgewars, an open-source turn-based strategy 
game.  Our results show that styles of video games can be changed 
from an input styling image.  

Keywords—Procedural content generation, Convolutional 
neural network, Image conversion, Deep learning application 

I. INTRODUCTION  

Deep learning has been successfully applied to some game 
AI applications. Most of them focused on building AI players 
from reinforcement or supervised learning. In recent studies, 
they used the game screen as inputs to the AI player and the deep 
neural networks process the raw pixel information to select 
proper actions. Google’s recent success on Go demonstrated the 
potential of deep reinforcement learning to solve very complex 
games.  

It has been known that the convolutional neural network 
(CNN) is not just powerful on image recognition but also useful 
for image styling and super resolution. Recently, Champandard 
applied deep learning to scale up and style pixel art for 
MineCraft textures [1].  

In this study, we applied a neural styling algorithm to all 
game images from a single open-source game. Our research 
question is to see what makes difficult to use the neural styling 
for all aspects of games. Because game images have unique 
property separated from other graphics, artistic, or photo images, 
it’s important to design a system suitable for the game graphics 
styling.  

II. A NEURAL ALGORITHM OF ARTISTIC STYLE 

Gatys et al., used convolutional neural network to separate 
contents and styles of artistic images [2]. They demonstrated 
that the neural network can combine contents of arbitrary 
images with styles of well-known artists’ works. They used 
Vincent van Gogh’s The Starry Night for style representation 
and created photographs with the style. Because the source code 

was open to the public, there are web services to support the 
styling of small number of images [3].  

 
Fig. 1 Applying neural styling algorithms to commercial game screen shots (it 
just converted a single screen image using https://dreamscopeapp.com/) 

Screen shot 
Outputs from Neural Styling Algorithm 

(with names of style input images) 

 
Angry Birds Clayton Kashuba Picasso Blue 

StarCraft Winter Solstice Blue Mosaic 

III. PROPOSED SYSTEMS AND EXPERIMENTS 

It needs high-end graphic cards to get high quality outcomes 
because it uses GPGPU. The higher outcome image resolution 
is necessary, the more memory space is required. For example, 
7 GB of graphic card memory size is recommended to apply 
neural styling for an 1024 by 1024 pixels image. Even 800 x 800 
images, it needs 5GB memory for the neural styling. Most of 
graphic card with GPUs support 2GB ~ 4GB memory. When the 
resolution exceeds the memory requirement, it’s rescaled to 
affordable image size and processed by the neural styling 
algorithm. The outcome images are rescaled to the original input 
size. Because recent state-of-the art graphic cards provide up to 
12GB memory size, it’s possible to convert them without 
resizing with special hardware support. Table 1 summarizes the 
specification of our hardware systems. In our system, images 
larger than 800 by 800 or smaller than 64 by 64 are rescaled.  

TABLE I.  HARDWARE SEPCIFICATION USED IN NEURAL STYLING  

CPU intel(R) Core(TM) I7-4790 3.60 Hz 
RAM 16.0GB 
GPU Geforce GTX 980 6GB GDDR5 

There are some parameters to be tuned for the styling. For 
example, content weight can control the loss of original content 
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and important to adjust the level of change. It can balance 
between the style and content representation to produce 
combined outcomes.  
 

Fig. 2 Styling of game play screens using the input image and convolutional 
neural networks (two videos of the game playing is provided in the 
supplementary part.)  

 
(a) Input style image (b) Original game screen 

(c) Game screen processed by the neural styling algorithm 

 
Fig. 3 Change of explosion effect by the neural styling  

 
(a) Original  (b) After styling 

 

Hedgewars is an open-source turn-based strategy game 
(http://www.hedgewars.org/). When we select the target game 
for this experiment, we search for an open-source game with all 
the game images accessible in a widely acceptable file format 
such as JPEG or PNG. Some open-source games are excluded 
because parts of images are stored as resources not supported in 
neural styling.  

In the game, the total size of all images files (formatted in 
JPEG and PNG) is 70MB. We applied the neural styling 
algorithm [4] to the images one by one and took about 12 hours. 
For the big size images, it included rescaling process and PNG 
files with alpha channel, it did reconstruction of the transparency 
channel after neural styling. PIL (Python Imaging Library) was 
used. Although the neural styling is promising, it’s not yet 
realistic to do the conversion of all game images in real-time. 
Instead, the game designers prepare several sets of game images 
styled with different input images (modern, old-fashioned, 
scientific and so on) and allow users to select their preference 
when they play the game.  If the styling is targeting only the 
small portion of all image files, it’s realistic to apply them in 
real-time. For example, the conversion is applied only to the 
main character or small-sized items.  

In this study, we just used a single input style image to convert 
all the game images. However, it’s more desirable to use several 
styles to convert game images. For example, different styles can 
be used for background and foreground objects. Also, it’s 
necessary to apply the styling selectively and some images are 
not suitable for the change. Images with letters and symbols can 
be damaged after the styling.  

IV. CONCLUSIONS AND FUTURE WORKS 

The outcomes show the potential of neural styling for video 
games. In this study, we just applied to a single game with one 
input style. There is still enough room for improvement for 
better use of the automatic styling in video games. We found 
that the neural styling has not yet fully supported all kinds of 
graphic images from games. We addressed issues to handle 
large size image files, real-time processing, alpha channel in 
PNG file format, and letter/symbols distortion. There are 
additional potential problems to be considered for wide use of 
this system. For example, they’re as follows.  
 
 Content descriptions: Assuming that certain game item 

description says it is a sword, but this algorithm transmutes 
the item design into something else which is not seen as a 
sword.  

 Paired contents: Some contents are paired each other such 
as a key and locked door. Because they’re designed to be 
connected, it’s important to keep the contents in their 
original position.  

 Continuous motions: Animation of characters are coming 
from lots of frame images. It’s not fully tested that the neural 
styling can produce smooth transition of similar frames.  
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Abstract—This paper describes a search-based level generation
approach that uses the search space of action sequences, repre-
sented as graphs, rather than spatial layouts. The search is guided
by mutation operators that manipulate the graph topology, and
the paper explores various objective functions that are based on
generic level evaluation metrics. The evolved action sequences are
passed to a grammar-based system and a layout solver transforms
them into dungeon levels for the Dwarf Quest game.

I. INTRODUCTION

Procedural content generation (PCG) in games has received
considerable attention; this paper uses search-based PCG ap-
proaches [1] to evolve action sequences (missions) of a hero
traversing a dungeon, which can then be transformed into a
dungeon level. The dual representation for game levels (as a
mission and as a space) was introduced in [2] and expanded in
[3], where the mission graph was created via a graph grammar
while the architecture was built from shape grammars which
rewrite mission nodes into rooms of various sizes. Using
an indirect representation of levels as mission graphs, the
generator can evolve the player’s sequence of key actions
rather than the explicit sequence of rooms they have to visit.
While the level geometry and the action sequence are linked
(i.e. the latter constrains the former), the action sequence is
a more concise representation as it omits trivial information
(e.g. empty rooms or walls). Moreover, the action sequences
are represented as a graph of nodes which can evolve via
simpler genetic operators with a better locality. Finally, parsing
the graph directly allows for fast and simple evaluations of
the decision density of a player traversing a level from start to
finish. This demo paper focuses on the generation of missions
for the dungeon crawl game Dwarf Quest (Wild Card Games
2013). The final levels, showcased in Fig. 3, can be played in
the Dwarf Quest engine (see Fig. 1).

Fig. 1. Screenshot of a fight in a generated level in Dwarf Quest.

II. MISSION EVOLUTION

The algorithm evolves mission graphs represented as a list
of nodes and edges. Nodes represent abstract player actions,
such as solving a puzzle. This abstract action will later be
transformed into a specific action by a grammar, which is then
transformed into one or more rooms in which the action will
take place by a layout solver. There are 14 types of nodes,
split into four categories: fight (i.e. monsters), puzzle (i.e.
environmental hazards), reward (i.e. powerups), and neutral
(i.e. start or end of the dungeon). The hero’s goal is to traverse
the mission graph starting from the start node and reaching
the end node. A more detailed description of node types and
their transformation into level spaces is provided in [4]. For
evolution, each node is stored as an integer (identifying its
node type). Edges connect two nodes, and are represented by
three parameters: the index of the starting node, the index of
the ending node, and a flag on whether the edge is directed.

Following the search-based PCG paradigm, an initial popu-
lation of mission graphs (with only the start and end node) is
evolved to maximize a fitness function of one or more objec-
tives. Evolution is carried out via mutation alone, and increases
the topology of these initial individuals. Mutation operators
can insert a new node between two existing nodes (linking
them appropriately), deleting a random node or changing its
type, or adding and deleting edges between two random nodes.
To ensure that mutation is not destructive, mutation operators
do not affect the start or end node and do not place more than
one boss node or one altar node per level.

Inspired in part by generic level evaluations of [5], five
fitness dimensions are designed to drive evolution (alone or
combined into a weighted sum). Based on preliminary tests
and designer intuition, all metrics were normalized to [0, 1],
with high scores assigned to (qualitatively) desirable content.

The five fitnesses include: (a) shortest path (fp) between
start and end nodes in terms of nodes, normalized to reward
paths of 5 to 10 nodes; (b) exploration (fe) which uses flood
fill from the start node to evaluate how many nodes the hero
visits before reaching the end node, normalized to reward
explored nodes equal to three times the nodes on the shortest
path; (c) variation (fv) as the ratio of edges connecting nodes
of different categories (except neutral nodes); (d) dispersed
rewards (fs) as the number of nodes considered safe [5] to
rewards1; (e) balanced rewards (fb) evaluating if each reward

1Safe nodes are much closer to one reward versus all other rewards.
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(a) Fittest for fp (b) Fittest for fb (c) Fittest for all objectives

Fig. 2. Mission graphs of the fittest individuals for certain fitnesses. Graphs
have white (neutral), red (fight), yellow (reward), and blue (puzzle) nodes.

(a) Level layout for Fig. 2a. (b) Level layout for Fig. 2b.

(c) Level layout for the Fig. 2c.

Fig. 3. Level layouts created from the fittest mission graphs of Fig. 2. Rooms
included in the mission graph are highlighted as circles of the same colors as
Fig. 2. Gray circles are the start node (left-most) and end node (right-most).

has an equal number of safe nodes around it.
The game’s final levels are created via the mixed-initiative

grammar-based system of [4], which transforms the evolved
mission graphs into a larger and more detailed graph. This
in turn is converted into Dwarf Quest levels by the layout
solver described in [6]. Post-processing edits are applied to
the evolved mission graphs, to abide to the layout solver’s
constraints (e.g. as rooms in Dwarf Quest must have two or
more doors, non-neutral nodes with one edge are omitted).

III. RESULTS

Figure 2 shows the fittest mission graphs for some sample
objectives, and a combination of all objectives. The graph for
fp is a linear path to the end node, since this objective does not
reward branching. The graph for fb has two rewards placed
symmetrically to all other nodes: due to the reward nodes’
edges, all nodes are actually unsafe (i.e. equally close) to both
rewards and thus the mission graph is “balanced” in terms

of safe areas around rewards. This example highlights some
artifacts which can be caused when evolving towards a single
objective without e.g. rewarding more safe nodes (via fs).

When all objectives are optimized, the resulting graph is
much larger than the other graphs, which is caused by the
interaction between fe and fp; due to fv , there are no two
nodes of the same type adjacent to each other. Furthermore,
due to the high branching factor at the start, two ‘areas’ seem
to emerge; a straight path to the end node, and a maze-like
structure that either leads back to the start or to a boss fight.

Figure 3 illustrates level architectures for Dwarf Quest
based on the evolved mission graphs of Figure 2. The actual
rooms which contain nodes in the mission graph are shown in
circles of different colors. The level in Fig. 3c is created from
the mission graph of Fig. 2c, and it is immediately obvious
that most rooms in the final Dwarf Quest level are empty
and in many cases form long corridors to connect the nodes.
This is due to the graph’s high branching factor, which forces
the layout solver to connect nodes that are spatially far away.
In contrast, the central part of the dungeon has fewer empty
rooms, with only a couple of rooms between each pair of
mission graph nodes. The simpler graphs of Fig. 2a and 2b,
however, result in levels with few empty rooms, and thus the
layout solver seems less suited for creating levels with high
branching factors or complex topologies.

IV. CONCLUSION

This demo paper described an approach for generating game
levels by evolving their indirect representation rather than
their layout. Mission graphs representing the possible action
sequences of the player for reaching the end of the level were
evolved towards different objectives inspired by general game
design patterns such as exploration, balance and safety.
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Abstract—There are numerous widely disseminated beliefs in
the rapidly growing domain of Mobile Game Analytics, notably
within the context of the Free-to-Play model. However, the field
remains in its infancy, as there is limited conclusive empirical
knowledge available across industry and academia, to provide
evidence for these beliefs. Additionally, the current knowledge
base is highly fragmented. For Mobile Game Analytics to mature,
empirical frameworks are needed. In this paper the concept
of stylized facts is presented as a means to develop an initial
framework for a common understanding of key hypotheses and
concepts in the field, as well as organizing the available empirical
knowledge. A focus on stylized facts research will not only
facilitate communication but also, more importantly, improve the
quality and actionability of insights. Unified terminology and a
comprehensive collection of stylized facts can be the building
blocks for a conceptually well-founded understanding of mobile
gaming.

I. INTRODUCTION

Game Analytics as a domain of research and inquiry has
rapidly emerged within the past ten years, going from being
virtually unknown in industry and academia to forming a core
part of game development and research [1]–[8]. Within the
larger umbrella of Game Analytics, mobile games have grown
to form a substantial part of the industry in terms of both
revenue and number of games developed. For example, in
2015 the Apple App Store carried almost 400,000 games on
its mobile platform, a platform that did not exist ten years
prior [9]. Academic and industry games research has expanded
in parallel [10]–[13]. The vast majority of mobile games
follow the freemium business model, i.e. they are Free-to-Play
(F2P,FtP) and generate revenue via In-App Purchases (IAPs)
[14]. F2P games are thus dependent on the willingness of users
to make purchases, and therefore require analytical support.
This has prompted a surge in research on player behavior,
with a focus on profiling, monetization, funnel analysis, on-
boarding, prediction and the impact of design [1], [5], [8],
[15].

A byproduct of this rapid development is a general im-
maturity in the field, the common symptom of which is
an uneven level of analytical capacity across both industry
and academics. This is especially true for Small-Medium
sized Enterprises (“SMEs”) which have trouble keeping up
due to the specialized knowledge and investment required

to take advantage of behavioral data. On the academic side,
researchers struggle to keep up with the work being done
in a field where industry has access to both more resources
and more data. In essence, the field is in its infancy and the
available knowledge is heavily fragmented, not the least due
to Game Analytics interdisciplinary nature and the lack of
knowledge sharing between academia and industry. One result
of this immaturity is a lack of standardization and effective
communication between industry and academics [8].

The root cause of these problems is the lack of a framework
for organizing current knowledge and prioritizing interesting
problems. This is unlike older and more mature fields such as
Economics, where the research agenda is better defined and
open questions more broadly known. For example, in the field
of economic growth, specific questions regarding why poor
countries are poor and rich countries are rich are well defined
and deemed important, allowing researchers to prioritize [16].
Similar, in Game AI there are specific, well-known flagship
areas based on previous research [17]. Researchers in those
fields, given a hypothetically perfect data set, would use that
data to solve these questions first. In the field of Mobile Game
Analytics, this prioritization is not explicit.

The current situation is common for new empirical research
domains, but there are clear benefits to establishing research
frameworks for guiding the development of new research and
organizing existing knowledge. In the case of Mobile Game
Analytics, where no such framework exists, building one
involves testing prevalent ideas about player behavior which
currently have limited empirical backing.

In this paper the current state-of-the-art of Mobile Game
Analytics is described in terms of the distribution of
knowledge in the domain, the general forces driving current
research and interest in mobile games. The concept of stylized
facts is introduced in the context of Mobile Game Analytics
for the purpose of providing a vehicle for developing a
framework, across both industry and academics, for research
in the area. To be specific, such a framework should be an
aggregation of current knowledge into recognizable areas, a
synchronization of terminology and definitions, and a system
for organizing and defining the open problems in the domain.
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Unfortunately, given the fragmented state of empirical
knowledge in Mobile Game Analytics, it is not currently
possible to define stylized facts. To facilitate their creation,
this study introduces two proto-stylized fact concepts which
describe situations where less empirical validation is available:
beliefs and hypothetical stylized facts. These, respectively,
represent situations where none/highly limited vs. some
empirical support is available. Namely, they represent lower
levels of empirical validation, which are needed given the
current state of available empirical evidence in Mobile
Game Analytics. Introducing these concepts should provide
a roadmap for structuring current knowledge and building
towards a situation where stylized facts can be generated and
validated.

Stylized facts originate in the Social Sciences, notably
Economics [18], [19]. [18] defined stylized facts as: “such
properties, common across a wide range of instruments,
markets and time periods are called stylized empirical facts.”
They are observations that have been made in so many
contexts that they are widely understood to be empirical
truths, and used as the basis for other theories. Stylized
facts are essentially a simplified presentation of a broad,
empirical finding, similar to basic theories describing the
relationship between variables [20]. They are sometimes
referred to as statistical regularities and can provide a basis
for aggregating and communicating knowledge in a field,
being a particularly popular tool in Economics [18], [19].
Collections of stylized facts form frameworks of organized
knowledge in Economics and help define areas of open
research. They thus bear similarity to the use of standards in
the domain of Human-Computer Interaction and Computer
Science, although less specifically defined [21].

The Game Analytics field, not only in mobile/F2P games
but perhaps especially therein, is rife with empirical ideas
and statements that are presented like stylized facts, but have
yet to be rigorously validated. For example, in F2P games,
it is a widely held belief that player retention correlates with
monetization, i.e. as the frequency users play a game increases
so does the revenue generated by that game. If this belief
was based on a substantial amount of empirical research,
even if the details varied slightly over different contexts (e.g.
match-3 games vs. collectible card games, PC versus mobile
platforms), it could be labeled as a stylized fact. However,
there is currently little available empirical evidence in mobile
games to convincingly define this as a stylized fact.

A framework, such as that provided by stylized facts, is
needed to mature research in this domain. Towards this end
we propose, based on current evidence and industry interest,
a set of hypothetical stylized facts that should help focus
research on open problems. Studying these problems will push
research towards turning these hypothetical stylized facts into
actual stylized facts and thus establish a basic organizational
framework. Luckily, there is a already a base amount of
empirical research done in the areas that we consider ripe for
the establishment of stylized facts; our study builds upon that

effort.
The organization of this paper is as follows. Section 2

provides background and a literature review of Mobile Games
Analytics, Section 3 defines stylized facts, with a focus on
showing how they help mature a field, while Section 4 presents
a set of hypothetical stylized facts of interest to both academic
and industry researchers. Finally, Sections 5 and 6 provides a
vision for future research and a conclusion, respectively.

II. BACKGROUND: THE STATE OF MOBILE GAME
ANALYTICS

There are numerous reasons for the interest in mobile games
research, most of which stem from the unique opportunity they
present for studying behavior, including:

• The technological underpinningas of the mobile platform
and its dissemination into society, coupled with the
introduction and spread of games on these platforms,
provides the opportunity for behavioral data collection
at an unprecedented scale.

• Mobile games form a unique opportunity to inform
game design and game research: devices are ubiquitous,
both across geography and culture, and are evolving
very rapidly with new devices being introduced in the
marketplace continually.

• Mobile devices are also often continually network con-
nected, which enables constant behavioral measurement.

• Mobile games are generally cheaper to develop when
compared to consoles and, thanks to pre-installed dis-
tribution services such as the Apple App Store, mobile
games are easy to find (if the player knows the name of
the game - there are hundreds of thousands of mobile
games available making exploratory searches difficult),
install and uninstall. The games are also, in the majority
of cases, F2P, implying that the barrier to entry for a
user is only the time it takes to download [14]. This
has yielded a situation where a user’s investment in a
title is low, impacting the design of mobile games and
the approach to revenue generation on these platforms
(commonly referred to as monetization) [5], [6], [8].

Jointly, these aspects of mobile games provide a unique op-
portunity for large-scale research and, thanks to the technology
powering mobile devices, detailed tracking of user behavior.
In other words, games researchers have access to broader and
deeper datasets concerning user behavior than ever before; and
this across audiences that are, while already large and diverse,
continually growing.

However, due to the lack of standardized knowledge and
shared frameworks in Mobile Game Analytics, a primary
challenge facing all games researchers is deciding where their
energy should be spent, i.e. how to utilize this available data,
or discover what data is needed to address a given question, or
even what the most important open questions are [5], [6], [8],
[22], [23]. Even basic best practices for using the currently
available, overwhelming amount of behavioral telemetry data
for games is lacking [1], [8], [13]. This is notably critical given
the diversity of games and contexts in which they are played.
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On the industry side, the rise of analytics has led to
the hiring of data analysts, machine learning specialists and
data mining experts at prodigious rates to take advantage of
these new data sources. To be successful in the F2P space
requires actively leveraging data to inform decision-making
[5]. Today large publishers have dozens of data scientists
and user researchers working for them, far outstripping the
academic ranks. However, SMEs are struggling to catch up,
especially small developers operating on constrained budgets
[24].

Despite the surge of interest in Mobile Game Analytics,
there remains a dearth of available information from the in-
dustry. This can, to a large degree, be explained by the business
value of behavioral data from games, the sensitivity of personal
data, and by the relative recent introduction of analytics in
games. As yet, there are no associations of game analytics or
other formal bodies that can help promote knowledge shar-
ing or standardization. Confidentiality around managerially
sensitive metrics such as revenue and churn/retention makes
knowledge sharing difficult apart from high-level discussions,
as evident in presentations at industry events, white papers,
reports and blog posts released by analysts, e.g. [25], [26].
Similarly, aggregate information on player behavior across
many games is only available for publishers, or via analytics
companies and generally locked behind paywalls.

In summary, industry knowledge has a tendency to stay
within the confines of developers or publishers rather than be
disseminated broadly. However, even when efforts are made
to communicate information, the lack of shared definitions,
terminology and understanding are obvious. The lack of
consistent terminology signifies that we are not operating
from the same baseline because of the lack of underpinning
stylized facts. This leads to a continual loop of companies
and researchers re-inventing the same concepts, terms and
solutions.

Academic Mobile Game Analytics research finds itself in a
generally similar situation. This includes the level of secrecy,
as the majority of academic papers contributing to the field
of Game Analytics (including F2P games), do not release
the datasets used. This is commonly because the research is
carried out in collaboration with a company which needs to
keep the raw data confidential, or because additional studies
can be performed and published on the dataset. Furthermore,
similar to industry, the interdisciplinary nature of Mobile
Game Analytics means that publications are distributed across
numerous databases, journals, publishers and indexes and
thus challenging to discover. Academic research is also of-
ten locked behind publisher paywalls, which means that the
knowledge generated is not readily available to the industry,
especially SMEs. It is also the case that academic research in
Mobile Game Analytics tends to redefine key concepts such as
churn, retention, life-time value etc. in each new paper, rather
than coalescing towards shared definitions.

Academic research work in Mobile Game Analytics, F2P
games included, is currently fragmented, covering a wide
variety of business intelligence problems, rather than aligned

around a set of open problems. This is to be expected in
the explorative phase of a new domain being established,
but means that even when studies overlap they tend to de-
fine key terms differently. Examples from interdisciplinary
studies include behavioral profiling [1], [27], [28], player
activity analysis [29], [30], social network analysis [31] churn
and retention analysis [10], [12], [32]–[34], premium user
identification [13], [35], automatic game content generation
[36], [37], abusive content analysis [38], opponent difficulty
adjustment [39] and recommender systems [40]. It is important
to note that, with the recent popularity of freemium models,
more and more studies are devoted to study player behavior
in F2P games [10], [12], [13], [33], [35], [38], [39]. A
general observation across these studies is that they introduce
individual problem definitions, and report data and methods
differently, indicating a lack of standards for reporting work
in Mobile Game Analytics.

III. INTRODUCING STYLIZED FACTS

As mentioned in the introduction, this study’s purpose
is to introduce the concept of stylized facts, as they are
used in Social Science and Economics, into the context of
Game Analytics. This is in order to provide a framework for
structuring knowledge in the field and define open problems.

In Economics, stylized facts were introduced based on the
need to create a set of common beliefs for organizing knowl-
edge. [41] defined stylized facts as succinct encapsulations of
statistical information regarding a topic: “Stylized facts can be
a useful way of organizing one’s thinking about phenomena of
interest, giving a broad direction to theorizing and mapping
out an agenda for empirical work.” Among the first clear uses
of stylized facts was in the Economics subfield of economic
growth. Explicitly writing down a list of stylized facts helped
define where the field stood as well as areas for future research
[42]. In particular, Kaldor [43] defined six facts regarding
economic growth that any model of growth should explain.
While the facts were empirical in nature, they were not perfect
since, as Kaldor [43] admitted, the goal was to: “concentrate
on broad tendencies, ignoring individual detail.” Choosing to
focus on broad features allowed for a level of abstraction that
pushed the field forward. Similarly, creating a set of stylized
facts for the mobile video game industry has the potential to
push forward video game research in a number of different
ways:

1) Research evaluation: Having a framework to evaluate
research creates a well-defined environment for valuing in-
cremental contributions. In particular, research is often eval-
uated using a Bayesian framework where value is ascribed
to how the result changes our beliefs [44]. Research that
either strongly confirms a weak prior belief or cast doubts
upon strong prior beliefs is valued above research that either
confirms an already strong prior or weakly counteracts a
weak prior. When researchers have a set of stylized facts
to base their research on they can be leveraged as priors,
allowing us to better understand the contribution of a piece of
research. Specifically, not having a set of stylized facts creates
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an environment where research tends toward exploration and
technique, rather than interpretation.

To take an example, [12] provided the first formal definition
of the churn problem in games and provided prediction models
across five mobile game titles. As part of the contribution, the
authors define a set of behavioral features and describe their
influence on the process of classifying churning players, i.e.
for predicting future player departure. Despite the importance
of understanding player churn, particularly for practitioners,
and the existence of other recent papers in this area [10], [13],
[33], it is difficult for non-experts to evaluate the importance
of the work because there is no baseline to evaluate it against.
Furthering this example, consider the case of applying Hidden
Markov Models to churn prediction by [10]. Does this research
provide a new understanding of player behavior in F2P mobile
games, or is the contribution a confirmation of something
already known but in a new context? Trying to appraise
research without defined prior stylized facts (or another system
for organizing and evaluating empirical knowledge), forces us
to focus on the technique used by the authors rather than the
interpretation of the results of that technique. In other words,
an author can present a novel method for solving a problem
of interest, but without a set of stylized facts, evaluating the
method’s contribution can be challenging.

2) Research focus: Having a framework of stylized facts
allows researchers - whether in academia or industry - to
focus their research energy. For example, if we accept the
idea that “retention in core games is lower than in more casual
titles,” then studies confirming, denying or defining when this
fact is true become priorities for researchers (when given a
dataset that permits investigating this broad fact). In much
the same way that the equity premium puzzle [45] provides a
prioritization mechanism for research in the Finance field, so
would the establishment of stylized facts in Game Analytics.

3) Standards and reporting: Having stylized facts provides
a consistent framework for information to provide regarding
a game title when reporting research. In many other applied
fields, studies attempt to present consistent, basic information
about the subjects in their study. For example, empirical stud-
ies focusing on mergers and acquisition activities report the
Herfindahl–Hirschman index for that industry, as it provides a
numerical data point addressing the current industry concen-
tration. While researchers in this field know that this number
is not a perfect encapsulation of industry concentration, it
does provide baseline information that is useful for other
researchers.

In games research, the lack of stylized empirical facts
has hindered the presentation of this type of foundational
information about the subject of research.

The natural question arising from the above considerations
is how to identify and define stylized facts in mobile games.
Fortunately, Game Analytics is an applied field in an area
where analytics are ubiquitous: simply putting a game up
on the Apple App store or the Google Play store generates
basic KPIs about a title such as downloads and revenue. Many
applications also contain more advanced tracking systems [46]

and thus game developers are generally familiar with the
concept of analytics and understand the importance of it, even
if analytics is not deeply integrated within every company [5],
[6], [8].

Stylized facts rest on a substantial body of empirical knowl-
edge which amalgamates to high-level, crisp, facts. The current
state-of-the-art in Game Analytics for mobile/F2P games is
not in a place where enough empirical work has been done
to support stylized facts as they occur in Economics. If we
were to represent stylized facts in games currently, they would
sound like facts, but would have a much weaker empirical
basis than in other fields. In essence, while we cannot currently
present a series of stylized facts for Game Analytics, we can
provide examples of what they would look like and what they
could be used for and include any limited empirical evidence
that is currently available. Doing so provides a starting point
or guide for researchers to either validate (or invalidate) them.

We will therefore refer to these as hypothetical stylized facts.
Where stylized facts are normally defined bottom-up, these are
defined top-down, i.e. based on current high-level ideas and
perceptions in the F2P Game Analytics domain. While there
maybe some available empirical evidence supporting these hy-
pothetical stylized facts, it is clearly not enough to rigorously,
generally, support them. These hypothetical stylized facts will
need to be examined in the future, and refuted or confirmed for
different contexts. They will change and some may gradually
mature into actual stylized facts.

An example of a hypothetical stylized fact is represented
in [1], who examined the belief that playtime distributions
follow a power law. The authors indicated prior work across
academia and industry that described or analyzed playtime
distributions. They then demonstrate across over 3,000 games
that playtime distribution could be modeled using a Weibull
distribution. This led the authors to propose a “playtime
principle” suggesting that playtime in games follows a Weibull
distribution, and furthermore described the potential cause in
terms of rising and falling components of human interest. Im-
portantly, the authors acknowledge that this principle needed
further validation. This is an example of researchers taking
a prevalent but minimally supported belief, compiling what
empirical evidence exists and adding to it, and using this as
a the basis for proposing a hypothetical stylized fact. Other
potential stylized facts in Game Analytics exist in behavioral
profiling [1], [47] and churn prediction [10], [12], [13] as
well as in network balancing in Massively Multi-Player Online
Games (MMOGs) [48].

We contrast hypothetical stylized facts against beliefs. Be-
liefs are, in this context, perceptions with little or no docu-
mented empirical evidence. There are many beliefs in Mobile
Game Analytics that often get presented as stylized facts
without the required empirical basis. These include statements
such as:

• “Hard core games have higher monetization” [49]
• “Monetization and retention move in different directions”

[50]
• “Casual Users are not as engaged as other users” [51]
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• “Tablet Users Monetize better than SmartPhone Users”
[52]

Beliefs can give rise to hypothetical stylized facts through
amalgamation and analysis of empirical knowledge, which can
then, through further research, become stylized facts.

A. The importance of context

Whereas stylized facts in Economics are often presented
as being context-independent, this is only partially correct
and commonly pointed out in the literature. The idea is not
that they apply everywhere but are a general trend, and that
exceptions to the trend are of interest [42]. In Mobile Game
Analytics, beliefs are often presented as stylized facts that are
context-independent, e.g. the higher the difficulty of a game,
the quicker the drop in retention. However, games are highly
varied in their design and how they approach building user
experience. Games can also be played alone or with others,
physically or online. While research on the effect of context
on gameplay and user experience remains somewhat limited
[53], context would appear to play a significant role in player
behavior. The expectation is that stylized facts in Mobile Game
Analytics need to be accompanied by definitions for these
different contexts or conditions, or even for some stylized facts
to be defined directly in relation to a specific set of conditions.

IV. HYPOTHETICAL STYLIZED FACTS: A FIRST ATTEMPT

In this section, we create a set of hypothetical stylized facts
that we believe, if studied and researched, mature the field of
Mobile Game Analytics. In particular, our stylized facts relate
monetization, retention and engagement, which are frequently
studied academically while also being of prime interest in
industry. Despite their importance, however, there are opposing
views on how they relate to each other [50], [54] and it is
apparent that a comprehensive answer relating all three is not
straightforward [55].

There is already some literature present around this topic.
Most analytical models of free-to-play build on the assumption
that retention comes first and determines monetization [56].
However, a look into the marketing literature reveals that the
causality between retention and monetization is unlikely to
be unidirectional [57]–[59]. A number of papers in this field
also relate to how pricing and sunk costs (such as an initial
purchase or previous engagement) affect the level and pattern
of consumption [57], [60]. Paywalls, which block content
from customers in much the same way that some F2P games
monetize, have also been studied in the literature [61], [62]
while industry sources have more directly considered the effect
of blocking core gameplay through monetization practices
[63]. In other words, while there is some literature discussing
the relationship between retention and monetization, it has yet
to be clearly defined.

Further, engagement (as often measured by sessions, rounds
or time spent in game per day) and retention are generally
assumed to go hand in hand. [50] While this may largely hold,
there are clear instances where a game with lower retention is
characterized by more engagement. As an example, consider

the iOS versions of Wooga’s Pearl’s Peril and Jelly Splash.
While Jelly Splash has a more than ten percentage points
higher day one retention than Pearl’s Peril, players of Pearl’s
Peril play more than twice as many sessions per day as Jelly
Splash players.

Given the incomplete and fragmented empirical information
regarding these important topics, we propose the following an-
alytical notation to facilitate the creation of stylized facts. Let
monetization be defined as µ, retention as ρ and engagement
as γ. Revenue (and success) of a free-to-play game can then be
written as π = f(ρ, µ, γ). Using this notation, we propose the
following stylized facts, writing them as simple derivatives:

• dπ
dρ > 0, dπ

dγ > 0, dπ
dµ > 0 : Revenue π derived from a

free-to-play mobile game is increasing in retention ρ, in
engagement γ and in monetization µ [56], [64].

• dµ
dρ > 0, dµdγ > 0 : Monetization (potential) µ is increasing
in both retention ρ and engagement γ [56], [64].

• dρ
dµ >= 0, dγdµ >= 0 : Retention ρ and engagement γ are
non-decreasing in changes to monetization µ (abstract-
ing from dubious monetization mechanisms that may
adversely affect usage).

• dρ
dγ >=< 0, dγdρ >=< 0 : Retention ρ and engagement γ
can increase or decrease in each other or even be stable
contingent on different levels of each other.

Functions and derivatives provide a concise, analytically
rigorous, notion to define the associations between these im-
portant levers that can be easily simplified when presenting to
lay audiences. While this is a condensed example, it provides
the basis for further discussion about what kind of format
stylized facts in Mobile Game Analytics should take and how
they could be published to the community.

In the above sections, we have provided citations to pub-
lished information where possible, but a number of the hy-
pothetical stylized facts discussed above are known in the
industry, but, because of confidentiality concerns, are more
difficult to find direct information regarding. Later we will talk
more about these types of informational asymmetry issues.

V. DISCUSSION: A VISION FOR THE FUTURE

In order to push our field forward, we need to move
beliefs to hypothetical facts towards stylized facts. This will
require collaboration between academia and industry across a
number of venues of inquiry, from improving collaborations
and fostering data sharing, jointly shaping definitions and
building the framework for standardization.

The previous section laid out four hypothetical stylized
facts, but in doing so, it obfuscated an important issue cur-
rently surrounding Mobile Game Analytics, the lack of con-
sistent definitions. As in other new and immature fields, one
of the major hurdles to achieving a set of stylized facts is the
lack of consistent definitions. Consider the case of retention,
or the likelihood that user returns to a title. Depending on
who you ask, you get a different definition [65]: “The thing
is that, however paramount it is for app publishers, retention
has a problem. Everyone talks about it, but there seems to be
no clear consensus on a common definition of what retention
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really means nor how it is actually calculated.The truth is that
there are several ways to compute this metric, all of which
lead to sensibly different results. In turn, people often end up
comparing apples with oranges.”.

Other practitioners have also lamented the inconsistencies
surrounding the definition of retention, monetization and en-
gagement. Given that these terms are used throughout both
industry and academics, the fact that there is not an easily
understood definition is a reminder of the research opportunity
in this field. As researchers we can help define these mea-
sures by studying how different possible definitions correlate
with each other and other business objectives. Importantly,
researchers can also pursue understanding where and when
different definitions break down or when they should not be
used.

This type of foundational work is common in other applied
fields. For example, looking at the history of gross domestic
product reveals a litany of discussions regarding how different
types of production should be measured [66], let alone how
to interpret and use it. For video games, similar discussions
regarding monetization, engagement and retention would cre-
ate a common knowledge base that would push forward both
academic and industry research. However, achieving these
definitions require collaboration across academia and industry.

The opportunities in mobile games across industry and
academia are substantial, as are the challenges. These are
not issues that can be dealt with rapidly but rather require
a shift in operational and strategic mindset. In particular, the
primary reason for the immaturity of Mobile Game Analytics
is a weakness in industry-academic partnerships.

In fact, industry usually has earlier and better access to the
most recent developments and information and thus tends to
be ahead of academic research. The raw capacity for analytics
work in the industry massively outstrips that in the associated
academic areas. Industry research, on the other hand, usu-
ally lacks the analytical structure and rigor present in more
academically focused research. To increase the usefulness of
academic research, the goal should be to leverage industry’s
experience to find facts that are in the intersection of what
researchers can do and what industry finds useful.

In our experience, many of the industry-academic partner-
ships are closer to a “hand-off” where academics are given
data, with some minor restrictions and allowed to “do research
on it,” with practitioners exerting little influence past this point,
or expecting much of a return. While this type of relationship
can yield some interesting techniques and insight, the lack
of an ongoing cooperation between academic and industry
researchers has a negative effect on both groups. On the aca-
demic side, the one-off, almost transactional, nature of these
relationships leaves researchers in a bind: while they would
like to engage in research that would push forward academic
and industry agendas, because they are not involved on the
industry side they are left to their own devices, attempting to
“guess” what industry would like to see. On the other hand,
industry practitioners are not finding academic research that
useful, as long academic time lines and the directionless nature

of the relationship ends up influencing the type of research that
is being done.

Industry and the academic community need to work together
more efficiently to take the understanding of mobile games
to the next level. To make our proposition actionable, it is
of paramount importance to point at tools that enable the
joint development of stylized facts. While stylized facts are
everywhere - they appear in many professional conversations,
often in the form of intuitive assumptions - generating and
collecting them in a structured manner is a challenge. We put
forward two suggestions for action in this regard:

1) Improved data provisioning from companies: While
much work has been done in Game Analytics, many gaming
companies do not yet understand the strategic relevance of
making their data accessible to researchers and allowing them
to write about the insights gleaned. Similarly, academics may
not see the relevance of working with industry. It should be
especially noted that relating findings to basic game char-
acteristics is important to encourage scientific debate. For
instance, studies that fail to include core information regarding
a game, such as genre or basic statistics regarding retention and
monetization lower their contribution potential. In particular,
academic researchers should make, as a condition for doing
research, the publication of basic statistical information about
a title (any personal information should be anonymized); and
industry should support this requirement in the interest of
maturing the domain as a whole. On the research evaluation
side, journals and conferences should encourage authors to
include this information. Studies without this basic information
is of less value to both practitioners and other academic
researchers.

2) Research cooperations: Research cooperations, where
academics work with a company, are becoming more
widespread. However, like other industry-academic partner-
ships, they sometimes suffer from a lack of communication
(and particularly communication depth) to ensure an aligned
and deep understanding of data and insights. In order to
yield a successful research cooperation, two key features are
desirable. First, academic researchers have to be sympathetic
to the realities of industry. This means focusing on research
efforts that maybe more short-term and less rigorous, with the
understanding that the academic researcher can revisit a topic
on their own when deciding to pursue publication. Secondly,
industry partners need to be sympathetic to the realities
of academics. Primarily, this means assisting researchers in
becoming informed about the processes and data of a company.
This may mean spending time with the researcher on multiple
occasions, and putting them into contact with other members
of a game development team, such as data analysts, product
manager and producers. If an academic researcher does not
have context for the game or situation, the result is likely to
be less useful. In this regard, we especially want to mention the
concept of “researcher in residence where a researcher joins
a company and works on-site. The physical presence of the
researcher is of inconceivable value as it allows for a plethora
of informal touch points within an organization. This exposes
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the researcher to the challenges faced by a company in a way
not possible as part of a more traditional research cooperation,
and - potentially more importantly - facilitates the delivery of
valuable impulses derived from thorough research.

These suggestions are complimentary to the current set
of activities that assist in the creation of stylized facts. On
the industry side, conferences, such as the Game Developers
Conference and analytics-focused talks and panels increase
connectivity between like-minded industry-based analytics re-
searchers. However, due to the confidentiality of sensitive
information such as companies’ revenue and churn/retention
rates, this type of data is neither consistent or plentiful.

Putting together fruitful industry-academic partnerships is
one first step toward creating precise and useful definitions.
If academics attempt to define these key terms in isolation,
the resulting terms may not conform to how industry uses
them, further pushing academics and practitioners apart. For
Mobile Game Analytics to mature as a field, there must be an
increase in industry-academics partnerships to, first, define key
terms and secondly, turn beliefs into stylized facts. Without an
increase in this type of partnership, Mobile Game Analytics
researchers will fail to take advantage of the opportunity
presented to them.

VI. CONCLUSION

Mobile Game Analytics has emerged rapidly within the
past decade, from virtually unknown to playing a foundational
role in what has become a major part of the game sector
in both industry and academia. Given the formative stage
of the domain, it is not surprising that current knowledge is
fragmented, often not publicly accessible, and that there is a
lack of standardization. However, any domain of inquiry needs
to mature, and this is also the case for Mobile Game Analytics.

In this paper, the current status of Mobile Game Analytics
has been described and the challenges discussed. Furthermore,
a high-level vision has been put forth for moving the domain of
Mobile Game Analytics to a more comprehensive, firm base,
via adopting the idea and concept of stylized facts and blending
them into analytical models.

Adopting such a framework will enable academia, industry
and especially their collaborations, to contribute to a better
understanding of mobile/Free-to-Play games in a more effec-
tive manner. Without a firm definition of the concepts and
terms used in Mobile Game Analytics research, industry and
academic practitioners, as well as non-experts, will continue
to be challenged to obtain clear information on the state of
the art of knowledge in the domain or even best practices.

The proposed approach can provide both framework and
direction for future research efforts. To get to that point,
we, as researchers, need to spend our energy working on
clearly defining terms such as monetization, retention and
engagement. We also need to focus on assessing, evaluating
and building empirical evidence towards constructing hypo-
thetical and then actual stylized facts; testing and pushing to
understand more within the unique opportunity that mobile
games provide across academia and industry.
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