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Abstract. We present a novel similarity measure for bag-of-words type large
scale image retrieval. The similarity function is learned in an unsupervised man-
ner, requires no extra space over the standard bag-of-words method and is more
discriminative than both L2-based soft assignment and Hamming embedding.
Experimentally we show that the novel similarity function achieves mean average
precision that is superior to any result published in the literature on the standard
Oxford 105k dataset/protocol. At the same time, retrieval with the proposed sim-
ilarity function is faster than the reference method.

1 Introduction

Recently, large collections of images become readily available [1–3] and image-based
search in such collections has attracted significant attention of the computer commu-
nity [4–8]. Most if not all recent state-of-the-art methods build on [4] who represented
the image by a histogram of ”visual words”, i.e. discretized SIFT descriptors [9]. The
bag-of-words representation possesses many desirable properties required in large scale
retrieval. If represented as an inverted file, it is compact and supports fast search. It is

Fig. 1. An example of corresponding patches. A 2D PCA projection of the SIFT descriptors (left);
two most distant patches in the SIFT space and the images where they were detected (right); a
set of sample patches (bottom). The average SIFT distance within the cluster is 278, the maximal
distance is 591.
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sufficiently discriminative and yet robust to acquisition ”nuisance parameters” like illu-
mination and viewpoint change as well as occlusion1.

The discretization of the SIFT features is necessary in large scale problems as it is
neither possible to compute distances on descriptors efficiently nor feasible to store all
the descriptors. Instead, only (the identifier of) the vector quantized prototype for visual
word is kept. After quantization, Euclidean distance in a high (128) dimensional space
is approximated by a 0–∞ metric - features represented by the same visual word are
deemed identical, else they are treated as ”totally different”. The computational con-
venience of such a crude approximation of the SIFT distance has a detrimental impact
on discriminative power of the representation. Recent methods like soft assignment and
in particular the Hamming embedding aim at obtaining a better space-speed-accuracy
trade off.

In this paper, unsupervised learning on a large set of images is exploited to improve
on the 0–∞ metric. First, an efficient clustering process with spatial verification es-
tablishes correspondences within a huge (>5M) image collection. Next, a fine-grained
vocabulary is obtained by hierarchical approximate nearest neighbour. The automati-
cally established correspondences are then used to define a similarity measure on the
basis of a probabilistic relationships of visual words; we call it the PR visual word
similarity.

When combined with a 16 million word vocabulary (one or two orders of magnitude
larger than commonly used), the PR similarity has the following desirable properties:

(i) it is more accurate, i.e. it is more discriminative, than both standard 0–∞ metric
and Hamming embedding.

(ii) the memory footprint of the image representation for PR similarity calculation is
roughly identical to the standard method and smaller than that of Hamming embed-
ding.

(iii) search with PR similarity is faster than standard bag-of-words.

As a main contribution of the paper, we present a novel similarity measure that is
learned in an unsupervised manner, requires no extra space (only O(1)) in comparison
with the bag-of-words and is more discriminative than both 0–∞ and L2-based soft
assignment.

As a secondary contribution, we will make available the database of matching SIFT
features, together with the executable of the feature detector (hessian affine) and de-
scriptor used to extract and describe the features.

2 Related Work

In this section, approaches to vocabulary construction and soft assignment suitable for
large-scale image search are reviewed and compared.

1 We only consider and compare with methods that support queries that cover only a (small) part
of the test image. Global methods like GIST [10] achieve a much smaller memory footprint at
the cost of allowing whole image queries only.
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(a) (b) (c) (d)

Fig. 2. Different approaches to the soft assignment (saturation encodes the relevance): (a) hierar-
chical scoring [5] – the soft assignment is given by the hierarchical structure; (b) soft clustering
[11] assigns features to r nearest cluster centers; (c) hamming embedding [12] – each cell is di-
vided into orthants by a number of hyperplanes, the distance of the orthants is measured by the
number of separating hyperplanes; (d) the set of alternative words in the proposed PR similarity
measure.

In [4], the first ‘bag of words’ approach to image retrieval was introduced. The
vocabulary (the number of visual words ≈ 104) was constructed using a standard k-
means algorithm. Adopting methodology from text retrieval applications, the image
score is efficiently computed by traversing inverted files related to visual words present
in the query. The inverted file related to a visual word W is a list of image ids that
contain the visual word W . It follows that the time required for scoring the documents
is proportional to the number different visual words in a query and the average length
of an inverted file.

Hierarchical clustering. The hierarchical k-means and scoring of Nistér and Stewenius
[5] is the first image retrieval approach that scales up. The vocabulary has a hierarchical
structure which allows efficient construction of large and discriminative vocabularies.
The quantization effect are alleviated by the so called hierarchical scoring. In such a
type of scoring, the scoring visual words are not only stored in the leafs of the vo-
cabulary tree. The non-leaf nodes can be thought of as virtual or generic visual words.
These virtual words naturally score with lower idf weights as more features are assigned
to them (all features in their sub-tree).

The advantage of the hierarchical scoring approach is that the soft assignment is
given by the structure of the tree and no additional information needs to be stored for
each feature. On the downside, experiments in [11] show that the quantization artefacts
of the hierarchical k-means are not fully removed by hierarchical scoring, the problems
are only shifted up a few levels in the hierarchy. An illustrative example of the soft
assignment performed by the hierarchical clustering is shown in Fig. 2(a).

Lost in quantization. In [11], an approximate soft assignment is exploited. Each fea-
ture is assigned to n = 3 (approximately) nearest visual words. Each assignment is

weighted by e−
d2

2σ2 where d is the distance of the feature descriptor to the cluster cen-
ter.

The soft assignment is performed on features in the database as well as the query
features. This results in n times higher memory requirements and n2 times longer run-
ning time – the average length of the inverted file is n times longer and there are up to
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n times more visual words associated with the query features. For an illustration of the
soft assignment, see Fig. 2(b).
Hamming embedding. Jégou et al. [12] have proposed to combine k-means quantiza-
tion and binary vector signatures. First, the feature space is divided into relatively small
number of Voronoi cells (20K) using k-means. Each cell is then divided by n inde-
pendent hyper-planes into 2n subcells. Each subcell is described by a binary vector of
length n. Results reported in [12] suggest that the hamming embedding provides good
quantization. The good results are traded off with higher running time requirements and
high memory requirements.

The higher running time requirements are caused by the use of coarse quantization
in the first step. The average length of an inverted file for vocabulary of 20K words is
approximately 50 times longer than the one of 1M words. Recall that the time required
to traverse the inverted files is given by the length of the inverted file. Hence 50 times
smaller vocabulary results in 50 times longer scoring time on average. Even if two
query features are assigned to the same visual word, the relevant inverted file has to be
processed for each of the features separately as they will have different binary signature.

While the reported bits per feature required in the search index ranges from 11 bits
[8] to 18 bits [11], hamming embedding adds another 64 bits. The additional informa-
tion reduces the number of features that can be stored in the memory by a factor of
6.8.
Summary All approaches to soft clustering mentioned above are based on the distance
(or its approximation) in the descriptor (SIFT) space. It has been observed that the Eu-
clidian distance is not the best performing measure. Learning a global Mahalanobis dis-
tance [13, 14] showed that the matching is improved and / or the dimensionality of the
descriptor is reduced. However, even in the original work on SIFT descriptor matching
[9] it is shown that the similarity of the descriptors is not only dependent on the distance
of the descriptors, but also on the location of the features in the feature space. There-
fore, learning a global Mahalanobis metric is suboptimal and a local similarity measure
is required. For examples of corresponding pathes where SIFT distance does not predict
well the similarity see Figures 1, 3, and 4.

3 The Probabilistic Relation Similarity Measure

Consider a feature in the query image with descriptor D ∈ D ⊂ Rd. For most ac-
curate matching, the query feature should be compared to all features in the database.
The contribution of the query feature to the matching score should be proportional to
the probability of matching the database feature. It is far too slow, i.e. practically not
feasible, to directly match a query feature to all features in a (large) database. Also, the
contribution of features with low probability of matching is negligible.

The success of fast retrieval approaches is based on efficient separation of (poten-
tially) matching features from those that are highly unlikely to match. The elimina-
tion is based on a simple idea – the descriptors of matching patches will be close
in some appropriate metric (L2 is often used). With appropriate data structure, enu-
meration of descriptors in proximity is possible in time sub-linear in the size of the
database. All bag-of-words based methods use partitioning {Wi} of the descriptor space
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: ∪Wi = D, Wi ∩ Wj 6=i = ∅. The partitions are then used to separate features that
are close (potentially matching) from those that are far (non-matching).

In the case of hard assignment, features are associated with the quantized visual
word defined by the closest cluster center. In the scoring that evaluates query and
database image match, only features with the same visual word as the query feature
are considered.

We argue that the descriptor distance is a good indicator of patch similarity only
up to a limited distance, where the variation in the descriptors is caused mostly the
imaging noise. In our approach, we abandon the assumption that the descriptor distance
provides a good similarity measure of patches observed under different viewing angles
or under different illumination conditions. Instead, we propose to exploit the matching
probability between a feature observed in the query image and a database feature. Since
our aim is to address retrieval in web-scale databases where store requirements are
a critical, we constrained our attention to solution that store no extra information per
feature, or more exactly, that have a minimum overhead in comparison with the standard
inverted file representation.
The proposed approach. We propose to use a fine partitioning of the descriptor space,
so that the partitions only compensate for the imagining noise (or even less). Even
though the fine partitioning is learned in a data dependent fashion (as in the other ap-
proaches), the fine partitioning unavoidable separates matching features into a number
of clusters.

For each partition (visual word) we learn which other partitions (called alternative
visual words) that are likely to contain descriptors of matching features. This step is
based on the probability of observing visual word Wj in a matching database image
when visual word Wq was observed in the query image

P (Wj |Wq). (1)

The probability (eqn. 1) is estimated from a large number of matching patches.
A simple generative model, independent for each feature, is adopted. In the model,

image features are assumed to be (locally affine) projections of a (locally close to pla-
nar) 3D surface patches Zi. Hence, matching features among different images are those
that have the same pre-image Zi. To estimate the probability P (Wj |Wq) we start with
(a large number of) sets of matching features, each set being different projections of a
patch Zi. Using the fine vocabulary (partitioning) the sets of matching features are con-
verted to sets of matching visual words. We estimate the probability P (wj |wq) from
the feature tracks as

P (Wj |Wq) ≈
∑
Zi

P (Zi|Wq)P (Wj |Zi). (2)

For each visual word Wq, a fixed number of alternative visual words that have the
highest conditional probability (eqn. 2) is recorded.

3.1 Learning stage

The first step of our approach is to obtain a large number of matching image patches.
The links between matching patches are consequently used to infer links between quan-
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tized descriptors of those patches, i.e. between visual words. As a first step towards
unsupervised collection of matching image patches, called (feature) tracks, clusters of
matching images are discovered. Within each cluster, feature tracks are found by a wide-
baseline matching method. This approach is similar to [15], where the feature tracks are
used to produce 3D reconstruction. In our case, it is important to find a larger variety of
patch appearances than precise point locations. Therefore, we adopt a slightly different
approach to the choice of image pairs investigated.
Image clusters. We start with by analyzing connected components of the image match-
ing graph (graph with images as vertices, edges connect images that can be matched)
produced by a large-scale clustering method [16, 17]. Any matching technique is suit-
able provided it can find clusters of matching images in a very large database. In our
case, an image retrieval system was used to produce the clusters of spatially related
images. The following structure of image clusters is created. Each cluster of spatially
related images is represented as an oriented tree structure (the skeleton of the clus-
ter). The children of each parental node were obtained as results of an image retrieval
using the parent image as a query image. Together with the tree structure, an affine
transformation (approximately) mapping child image to its parent are recorded. These
mappings are later used to guide (speed-up) the matching.
Feature tracks. To avoid any kind of bias (by quantization errors, for example), instead
of using vector quantized form of the descriptors, the conventional image matching
(based on the full SIFT [9]) has to be used. In principle, one can go back even to the
pixel level [18, 19], however such an approach seems to be impractical for large volumes
of data.

It is not feasible to match all pairs of images in the image clusters, especially not
of clusters with large number of images (say more than 1000). It is also not possible to
simply follow the tree structure of image clusters because not all features are detected
in all images (in fact, only a relatively small portion of features is actually repeated).
The following procedure, that is linear in the number of images in the cluster, is adopted
for detection of feature tracks that would exhibit as large variety of patch appearances
as possible. For each parental node, a sub-tree of height two is selected. On images in
the sub-tree, a 2k-connected graph called circulant graph [20] is constructed. Algorithm
for construction of minimal 2k-connected graph is summarized in Algorithm 1. Images
connected by an edge in such a graph are then matched using standard wide-baseline
matching. Since each image in the image cluster participates in at most 3 sub-trees (as
father, son and grand-son), the number of edges is limited to 6kN , where N is the size
of the cluster. Instead of using epipolar geometry as a global model, a number of close-
to-planar (geometrically consistent) structures is estimated (using affine homography).
Unlike the epipolar constraint, such a one-to-one mapping enables to verify the shape
of the feature patch. Connected components of matching and geometrically consistent
features are called feature tracks.

Tracks that contain two different features from a single image are called inconsistent
[15]. These features clearly cannot have a single pre-image under perspective projection
and hence cannot be used in the process of 3D reconstruction. Such inconsistent tracks
are often caused by repeated patterns. Inconsistent feature tracks are (unlike in [15])
kept as they provide further examples of patch appearance.
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Input: K - requested connectivity, N - number of vertices
Output: V a set of vertices, E ⊂ V × V a set of edges of 2K connected graph
(V,E).

1. if 2K ≥ N − 1 then
return fully connected graph with N vertices.

end
2. S := a random subset of {2, . . . , bN−1

2
c}, |S| = K − 1

3. V := {v0, . . . , vN−1}
4. E := {(vi, vj) | vi, vj ∈ V, j = (i + 1) mod N}
5. for s ∈ S
6. E := E ∪ {(vi, vj) | vi, vj ∈ V, j = (i + s) mod N}
7. end

Algorithm 1: Construction of the 2K connected graph with a minimal number of edges
as a union of circulants.

Large vocabulary generation. To efficiently generate a large visual vocabulary we
employ a hybrid approach - approximate hierarchical k-means. A hierarchy tree of two
levels is constructed, each level has 4K nodes. In the assignment stage of k-means,
approximate nearest neighbour, FLANN [21], is used for efficiency reasons.

First, a level one approximate k-means is applied to a random sub-sample of 5
million SIFT descriptors. Then, a two pass procedure on 10,713 million SIFTs (from
almost 6 million images) is performed. In the first pass, each SIFT descriptor is assigned
to the level one vocabulary. For each level one visual word a list of descriptors assigned
to it is recorded. In the second pass, approximate k-means on each list of the descriptors
is applied. The whole procedure takes about one day on a cluster of 20 computers.
Balancing the tree structure. For the average speed of the retrieval, it is important that
the vocabulary is balanced, i.e. there are approximately the same number of instances
of each visual word in the database.

There are two options how to balance the proposed structure. The level one structure
can be balanced so that the branches are of approximately equal weight by constraining
the length of the mean vectors (this stems from the fact that SIFT features live approx-
imately on a hyper-sphere). Balancing can be also achieved by un-even splitting of the
level two – proportional to the weight of the branch. In our implementation we have
used the former.

The imbalance measure [12] for our vocabulary is 1.17 for the training image set
(¿5M images) and 1.33 for the Oxford 105k (compared to 1.21 in [12]).
Computing the conditional probability. To compute the conditional probability (eqn. 2)
from the feature tracks, an inverted file structure is used. The tracks are represented as
forward files (named Zi), i.e. lists of matching SIFT descriptors. The descriptors are
assigned their visual word from the large vocabulary. Then, for each visual word wk,
a list of patches Zi so that P (Zi|wk) > 0 (the inverted file) is constructed. The sum
(eqn. 2) is evaluated by traversing the relevant inverted file.
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Fig. 3. A 2D PCA projection of a feature track of SIFT descriptors (left); the most distant patches
and their images (right); sample of feature patches from the track. The distance of the most distant
SIFT descriptors is 542 and is caused by an enormous change in the viewpoint.

Fig. 4. A 2D PCA projection of a feature track of SIFT descriptors (left); the most distant patches
and their images (right); sample of feature patches from the track. The distance of the most distant
SIFT descriptors is 593 and is caused by the viewpoint and scale change.

Statistics. Over 5 million images were clustered into almost 20 thousand clusters of
750 thousand images. Out of those 733 thousand were successfully matched in the
wide-baseline matching stage. Over 111 million of feature tracks were established, out
of which 12.3 millions are composed of more than 5 features. In total, 564 million
features participated in the tracks, 319.5 million features belong to tracks of more than
5 features. Some examples of feature tracks are shown in Figures 5 and 6.

Memory and time efficiency. For the alternative words storage, only constant space
is required, equal to the size of the vocabulary times the number of alternative words.
The pre-processing consists of image clustering ([16] reports near linear time in the
size of the database), intra-cluster matching (linearity enforced by the 2k-connected
circulant matching graph), and of the evaluation of expression eqn. (2) for all visual
words. The worst case complexity of the last step is equal to the number of tracks
(correspondences) times size of the vocabulary squared. In practice, due to the sparsity
of the representation, the process took less than an hour in our settings for over 5 million
images.
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3.2 Retrieval stage

The implementation of the retrieval stage is fairly standard, using inverted files [4]
for candidate image selection which is followed by fast spatial verification and query
expansion [6]. The modifications listed below are the major differences implemented in
our retrieval stage.
Unique matching. Despite being assigned to more than one visual word, each query
feature is a projection of a single physical patch. Thus it can match only at most one
feature in each image in the database. We find that applying this uniqueness constraint
adds negligible computational cost and improves the results by approximately 1%.
Weights of alternative words. Contribution of each visual word is weighted by the idf
weight [22]. A number of re-weighting schemes for alternative words have been tried,
none of them affecting significantly the results of the retrieval.

4 Experiments

We have evaluated the performance of the PR similarity on a standard retrieval dataset
Oxford 105K2. The experiments focus on retrieval accuracy and the retrieval speed.
Since both our training set of 6 million images and the Oxford dataset were downloaded
from FLICKR, we have explicitly removed all images from the training set that appear
(or their scaled duplicate) in the test dataset.

4.1 Retrieval quality

We follow the protocol of 55 queries (11 landmarks, 5 queries each) defined in [23]
and use the mean average precision as a measure of retrieval performance. We start by
studying the properties of the PR similarity for a visual vocabulary of 16 million words.

In the first experiment, the quality of the retrieval as a function of the number of al-
ternative words was measured, see Figure 7. The plots show that performance improves
monotonically for plain retrieval without query expansion and almost monotonically
when it is used for post-processing.

The second experiment studies the effects of the vocabulary size, the number of
alternative words and compares the PR similarity with soft assignment. The left-hand
part of Table 1 shows results obtained with the 16M vocabulary with three different
settings ‘std’ – standard tf-idf retrieval with hard assignment of visual words; ‘5L’ and
‘16L’ – retrieval using alternative words (4 and 15 respectively). The righthand part
presents results of reference state-of-the-art results [8] obtain with a vocabulary of 1M
visual words learned on the PARIS dataset3. Two version of the reference algorithm are
tested, without (“std”) and with the query soft assignment to 3 nearest neighbours (“SA
3NN”).
The experiments supports the following observations:

(i) For a hard assignment to a single visual word, 1M dictionary outperforms the 16M
one. For the 0–∞ metric, the 16M visual word dictionary is too fine.

2 http://www.robots.ox.ac.uk/∼vgg/data/oxbuildings/
3 http://www.robots.ox.ac.uk/∼vgg/data/parisbuildings/
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Fig. 5. Three examples of feature tracks of size 50. Five selected images and all 50 patches of the
track. Even though the patches are similar, the SIFT distance of some pairs is over 500.
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Fig. 6. Three examples of feature tracks of size 20. Images and corresponding patches, note the
variation in appearance.
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Fig. 7. The quality of the retrieval, expressed as mean average precision (mAP), increases with
the number of alternative words. The mAP after (upper curve) and before (lower curve) query
expansion is shown.
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16M std 16M L5 16M L16 PARIS 1M std PARIS 1M SA 3NN
plain 0.554 0.650 0.674 0.574 0.652
QE 0.695 0.786 0.795 0.728 0.772

Table 1. Mean average precision for selected vocabularies on the Oxford 105k data-set.

16M std 16M L5 16M L16 PARIS 1M std
Oxford 105K 0.071 0.114 0.195 0.247

Table 2. Average execution time per query in sec.

(ii) Similarity calculation with using the learned alternative words increases signifi-
cantly the accuracy of the retrieval, both with and without query expansion.

(iii) The PR similarity outperforms soft SA in term of precisions, yet does not share the
drawbacks of SA.

(iv) The PR similarity outperforms the Hamming embedding approach combined with
query expansion, Jegou et al. [24, 12] report the mAP of 0.692 on this dataset.

(v) The mAP result for 16M L16 is superior to any result published in the literature on
the Oxford 105k dataset.

4.2 Query times

To compare the speed of the retrieval, an average query time over the 55 queries de-
fined on the Oxford 105K data set was measured. Running times recorded for the same
methods and parameter settings as above are shown in Table 2.

The plot showing dependency of the query time on the number of alternative words
is depicted in Figure 8. The times for the references PARIS 1M std method and the 16M
L16 are of the same order. This is expected since the average length of inverted files is
of the same order for both methods. The proposed method is about 20% faster, but this
might be just an implementation artefact.
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Fig. 8. Dependence of the query time on the number of alternative words.

Finally, we looked at the dependence of the speed of the proposed method as a
function of the number alternative words. The relationship shown in Fig. 8 is very close
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to linear plus a fixed overhead. The plot demonstrates that speed-accuracy trade-off is
controllable via the number of alternative words.

4.3 Results on other datasets

The proposed approach has been tested on a number of standard datasets. These include
Oxford, INRIA holidays (with manually corrected orientation of images, where the
correct (sky-is-up) orientation is obvious), and Paris datasets. In all cases (Table 3),
the use of the alternative visual words improves the results. On all datasets except the
INRIA holidays the method achieves the state of the art results.

Dataset 16M std 16M L16 16M QE 16M L16 QE
Oxford 5k 0.618 0.742 0.740 0.849

Paris 0.625 0.749 0.736 0.824
Paris + Oxford 100k 0.533 0.675 0.659 0.773
INRIA holidays rot 0.742 0.749 0.755 0.758

Table 3. Results of the proposed method on a number of publicly available datasets.

5 Conclusions

We presented a novel similarity measure for bag-of-words type large scale image re-
trieval. The similarity function is learned in an unsupervised manner using geometri-
cally verified correspondences obtained with an efficient clustering method on a large
image collection.

The similarity measure requires no extra space in comparison with the standard bag-
of-words method. Experimentally we show that the novel similarity function achieves
mean average precision that is superior to any result published in the literature on the
standard Oxford 105k dataset/protocol. At the same time, retrieval with the proposed
similarity function is faster than the reference method.

As a secondary contribution we will make available the database of matching SIFT
features, together with the executable of the feature detector (hessian affine) and de-
scriptor used to extract and describe the features.
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