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We propose a novel method for performing point- 
.feature correspondence based on a modal shape descrip- 
tion. Introducing shape information into a low-level 
matching proc’ess allows our algorithm to cope easily 
with rotutions and translutions in the image plane, yet 
still give a dense correspondence. We also show positive 
results for scale changes and small skews, and demon- 
strate how reflectional symmetries can be detected. 
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The correspondence problem is a generic one in 
computer vision, arising whenever a match must be 
found between the features of two related patterns. It 
emerges in paradigms as diverse as stereo fusion. 
structure-from-motion, model-based recognition and 
navigation. In this paper we propose a novel token- 
based technique for matching two sets of point 
features. using a modal shape description. 

Our starting point is the work of Scott and Longuet- 
Higgins. After identifying two shortcomings of their 
algorithm. we outline our modal approach and give 
some experimental results. We conclude with a set of 
open problems and directions for future research. 

PREVIOUS WORK 

The correspondence problem has long intrigued com- 
puter vision researchers, and a vast literature is 
testimony to the numerous techniques proposed to 
solve it. There are two main classes of algorithm, 
intensity-bused and feature-based. The former operate 
directly on the raw grey-level data in images, while the 
latter employ pre-processing stages to extract features 
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(or tokens) such as corners, edges or blobs. We adopt 
the feature-based approach for various reasons, among 
them the undesirability of dense temporal sampling 
(which intensity-based techniques demand) in our 
application (mobile robot navigation). 

In a recent paper’, Scott and Longuet-Higgins 
proposed an algorithm to match 2D point-features 
across a pair of images. Consonant with the ‘minimal 
mapping’ philosophy of Ullman’, they incorporated an 
affinity measure between features (based on inter- 
element distances) and a competition scheme allowing 
candidate features to contest matches. These criteria 
were formulated as a principle of proximity (favouring 
matches across shorter distances), and a principle oj 
exclusion (favouring one-to-one matches). The result- 
ing mapping then effectively minimized the overall sum 
of the squared distances travelled by the features, 
subject to the uniqueness constraint. 

A remarkable feature of the algorithm was its elegant 
implementation, founded on a well-conditioned eigen- 
vector solution which involved no iteration. As input. 
the algorithm received a set of m features (xi,,) in 
image I, and n features (x,,-,) in image 12. The computa- 
tion then consisted of three stages. The first step was to 
enumerate all possible pairwise matches and store their 
affinities in a proximity mutrix G. Each element G,, 
recorded the attraction between the ith feature in I, 
and the ith feature in I? via a Gaussian-weighted 
distance metric: 

d’ :?(,’ 
G,,= eP $1 . i= I m, j= I n 

where d 3 = )/ x,, , - x,.? 11’ was the squared Euclidean 
distance between the two features. Thus G,j ranged 
from 0 for widely-separated features (d;, = y-) to I 
for coincident features (d,, = 0). The parameter u 
controlled the degree of interaction between the two 
sets of features. This was roughly like placing a small 
circle around a feature in I, and only allowing it to 
interact with those features in l2 lying within the 
circumference. Hence, a small value of v enforced 
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local interactions, while a larger value permitted more 
global interactions. 

The second step was to perform a singular value 
decomposition (SVD) of G, i.e. express G as: 

G=TDU 

The T and U matrices were orthogonal, i.e. their rows 
(and columns) were mutually perpendicular and had 
unit length. The D matrix contained the (posi- 
tive) singular values along its diagonal in descending 
numerical order. 

The final step was to compute the correlation (in 
a scalar-product sense) between T’s rows and U’s 
columns, giving an association matrix P: 

P=TEU 

where E was obtained by replacing each diagonal 
element in D by a 1. The element Pij then indicated the 
strength of attraction between features xi,, and x~,~, 
where 1 indicated a perfect match and 0, no match at 
all. The correspondence between the two features was 
‘strong’ only if P;j was largest in both its row and its 
column, implying a mutual consent to the match. When 
Pii was largest in its column but not its row (or vice 
versa), a ‘weak’ correspondence was implied, with 
multiple features competing for the match. 

This algorithm was shown’ to maximize the trace of 
P”‘G. In other words, the P matrix was effectively a 
‘mask’ which slotted over G and selected the biggest 
elements. Since G,, was large precisely when d12/ was 
small, an overall minimum squared distance mapping 
was ensured. This can be understood intuitively by 
imagining pieces of string tied between matching 
features with the aim of minimizing the total amount of 
string used. At the same time, however, P was 
orthogonal, so there could only be one large element 
per row or column. Hence, no feature in I, could be 
strongly coupled with more than one feature in I,, 
neatly giving the exclusion principle. 

Empirical results’ showed that the algorithm success- 
fully matched random scatter diagrams undergoing 2D 
translations, expansions and shears. A theoretical 
proof confirmed that the algorithm would always 
recover these mappings, provided that (T was suffi- 
ciently large. Our investigation of the algorithm’s 
performance on real-world objects confirmed this 
claim, but we draw attention to two weaknesses. 

Figure 1. Bottle rotated 
about the optic axis by 
80” *: image I,; 0: im- 
age 12; -: ff (a) Out- 
put of algorithm (only 
strong attactions are 
shown, which is why cer- 
tain features remain un- 
matched); (b) output of , 
our algorithm (correct 
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Firstly, the algorithm does not cope with large 
rotations in the image plane. An example is given 
in Figure la, where features on the outline of a 
bottle have been rotated about the optic axis by 80”. 
Clearly, the algorithm fails to generate the correct 
correspondence; the correct matches (obtained using 
our algorithm) appear in Figure lb. This failure is a 
consequence of treating all features as equal, with no 
regard for the structure within the image. For instance, 
Figure la contains violations of the continuity con- 
straint (whereby neighbouring features in I, should 
remain neighbours in I,). 

Secondly, implementation considerations can make 
the assumption of large u unreasonable, since this 
forces the smaller singular values towards zero. Conse- 
quently some columns in T (and rows in U) become 
unstable, and the association matrix becomes incorrect. 
This phenomenon is so marked that sometimes even a 
simple ID translation cannot be properly matched”, 
although the exact effect obviously varies from compu- 
ter to computer (depending on the maths processor). 

EIGENVECTOR APPROACH 

In devising our solution, we sought to retain the clear 
strengths of the above algorithm while overcoming its 
weaknesses. It was apparent that in order to deal with 
rotations, the structure inherent within the individual 
images would have to be accounted for, requiring a 
shape representation. The algorithm presented here 
first analyses each image separately to extract its 
modes, and then uses these modes to establish corres- 
pondence. The modes essentially encode the ‘shape’ of 
the scene based on the inter-feature distances, and so 
constitute a shape description. 

To gain an intuitive understanding of the approach, 
consider an image with m features, and suppose that we 
define a set of m axes to act as a coordinate system in an 
m-dimensional space. Each image-feature is then 
assigned a coordinate in this higher space, i.e. each 
feature is mapped from its 2D image-plane into a 
hyperspace with m axes. We perform such a mapping 
independently for each image, and when the ‘shapes’ of 
the images are similar, features which belong together 
will coincide in the hyperspace. We outline the 
algorithm below and then demonstrate its operation 
with a worked example. 

::’ 
b 
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The algorithm 

Consider first how to form the modes of a single image 
having m features x,. A square proximity matrix H is 
created, recording the distances between features 
within the image. In other words, here we use intra- 
image distances, rather than inter-image distances. 
(Taylor and Cooper” employed a similar matrix of all 
possible point-to-point distances in their Chord Length 
Distribution (C‘LD) model of 2D shape; however, they 
adopted a more statistical approach, finding correla- 
tions between the inter-point distances.) 

We employ the same Gaussian-weighted metric as 
before: 

where rf, = /IX, - x,(j’. Evidently H is symmetric 
(r,, = r,,), and its diagonal elements are unity (r,, = 0). 
The parameter (rI again controls the interaction 
between features. with the subscript x emphasizing that 
interaction occurs between features in the same image 
rather than features in two different images. For small 
CT, then, each feature only has knowledge of its local 
turround. while for large CT_,, each feature is more 
globally aware. Since the two analyses proceed inde- 
pendently, the value of u can be different for the two 
images. say (r, and CT? respectively. 

Next, wc compute the eigenvalues A, and eigen- 
vectors E, of H. i.e. solve: 

HE,=h,E,, i==l m 

The eigenvectors are of unit length and are mutually 
orthogonal, and hence form an orthonormal basis. 
They are termed modes by analogy with mechanical 
oscillating systems, whose eigenvectors describe the 
modes of vibration. (The mechanism for generating 
these modes was described in Scott and Longuet- 
Higgins’. where the modes were used to group image 
features into ‘natural clusters’. We have employed 
these modes as a shape description and have extended 
them to allow, matching between images.) 

In matrix form: 

H = VDVT 

The diagonal matrix D contains the (positive) eigen- 
values along its diagonal in decreasing size. The modal 
matrix V is orthogonal. and has the eigenvectors as 
its column vectors (i.e. V = [E, /. . .1&l). Each row 
of V can then be thought of as a feature vector F,, 
containing the m modal coordinates of feature i, i.e. the 
expansion of the ith image feature along the m modal 
axes: 

This computation proceeds simultaneously for the two 
images. That is, for image I, (m features) we obtain 
H, = V, D,V [ while for image Iz (n features) we 
obtain Hz = VzD,Vz. The associated feature vectors 

are written F,, , and F,.,. The final stage is to correlate 
the two sets of feature vectors, yielding the association 
matrix Z. As before, Zi, reflects the confidence in the 
match between x,, , and xi, z Here. four points should 
be noted. Firstly, because the images have different 
numbers of features, their number of modes will differ. 
We therefore truncate the / m-n 1 least significant 
modes from the image with more features, where ‘least 
significant’ is indicated by smallest eigenvalues. Thus 
both modal matrices will have k columns (or modes), 
where k=min {m,n} (in fact, fewer than k modes can 
also be used). Effectively. we have discarded compo- 
nents of the feature vectors along the least important 
axes. This truncation naturally affects the orthogonality 
of the truncated matrix (either V, or V,); we will 
discuss this further in the section on our experiments. 

Secondly, the sign of each eigenvector is not unique. 
since switching its direction does not violate the 
orthonormality of the basis. However. rt is vital that 
both sets of axes have consistent directions, since WC 
wish to directly compare the feature vectors. A sign 
correction stage is thus necessary. Briefly. we treat V, 
XG the reference basis and proceed to orient the axes in 
Vz one at a time, choosing for each that direction 
which maximally aligns the two sets of feature vectors 
(expanded only along the axes which have already been 
untangled). Further details are given in Shapiro”. 

Thirdly, the association matrix Z differs from 0 in 
that a perfect match is now indicated by the value 0, 
while a value of 2 indicates no match at all. Best 
matches are thus given by elements in Z which are 
smallest in their row and column. The values Z,, arc 
obtained by taking the Euclidean distance between 
feature vectors: 

rather than their scalar product. The advantages of this 
approach are robustness to truncation of inessential 
modes, improved sensitivity (due to an increased range 
of values) and a convenient interface to the sign 
correction algorithm. 

Finally, we consider the feasibility. of scaling the 
eigenvectors in V by their correspondmg eigenvalues, 
essentially giving more weight to the dominant modes. 
This weighting is already implicit in the ordering of the 
modes, which aligns the components of the feature 

Figure 2. Two images to be matched, each having four 
features. Image I1 (open dots) is a distorted version of I, 
(solid dots), and has moved upwards and to the right. 
The features have been labelled arbitrarily, and the 
correct solution is 1 - 1 ., 2 -- 3. 3 - 2 and 4 - 4 
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vectors (‘sorts the axes’), and dictates the sequence of 
processing in the sign correction stage. More impor- 
tantly, though, retaining the normalization of the 
modes allows a fixed range (and hence interpretation) 
of values in the association matrix (e.g. ZU=2 always 
imples a perfect mtach). Without this, assessing the 
relative merits of alternative pairings would be tricky. 

Example 

Two sets of features are shown in Figure 2, and the 
aim is to discover the correct correspondence. For the 
first image, we choose g1 =4 and obtain: 

Similarly, for the second image we set CT~ =4 and 
obtain (after sign correction): 

Each row in V, and Vz refers to an image feature, and 
thus if the (arbitrary) numbering of two features in an 
image is changed, their feature vectors simply change 
positions in V. The feature vectors for our example are 
plotted in Figure 3. The left column contains the 
feature vectors of I, (the rows of V,), while the right 
column contains the Zz counterparts. Each graph 
represents a 4/vector, with the magnitude of the 
components shown. The abscissa therefore indexes the 
position of the component in the vector, while the 
ordinate gives its value (beween -1 and +l). It is clear, 
by comparing the ‘shapes’ of these vectors, that feature 
1 in I, pairs with feature 1 in Zz, that feature 2 in I, pairs 
with feature 3 in Z2, and so on. 

The relative similarities between these two sets of 
features are finally summarized in the association 
matrix Z: 

r 0.06 2.22 1.62 2.18 1 

’ = I 2.33 1.60 0.07 1.96 

1.68 0.09 2.35 1.65 
I 

L 1.87 2.37 1.94 0.04J 

The rows in Z index featues in I,, while the columns 
index features in Z2. The fourth row, for instance, 
derives from comparing the fourth row in V, (feature 
vector F4, ,) with the four rows in V2 (feature vectors 

Image l(1) Image l(2) 

I r f 
Figure 3. Plots of the & ?: Y 5 

eigenvectors in the 
worked example (see 
text) 

Fl 

F2 

F3 

F4 
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F,, 2). The smallest elements are shown in bold and give handles uniform scale well (Figure 4b), since scaling the 
the correct answer (see Figure 2 caption). Thus, the image by S is equivalent to replacing u by CT/S. 
second feature in I, matches the third feature in I1 Information about the relative sizes of (To and cZ is 
(element &), and so on. contained in the eigenvalues of H, and HT. 

RESULTS 

Because the modes are based solely on the distances 
between features, the shape description is unaffected 
by transformations which preserve these distances 
(such as rotations, translations and reflections in the 
image plane). This is demonstrated clearly in Figures 
lb and 4a (or = a7 in both cases). The program also 

b 

Figure 4. Modal algorithm 
copes with rotation, translation 
and scale. (a) Outline of a 
head translated and rotated in 
the image plane (Ax = 5, 
Al’=_?, 8=25”); (6) aero- 
plane scaled by a factor of 2//J. 
Here, o, and r~ are unequal 

O_ (o2 = 3a, ) 

Furthermore, our shape description provides infor- 
mation about reflectional symmetries by identifying all 
possible matches (Figure Sa-d). The symmetries are 
detected when switching the sign of the axis has no 
detrimental effect on the match. In such cases, the 
number of arbitrary sign choices equals the number of 
(orthogonal) reflectional symmetries. The modes have 
also proven to be fairly robust to distortions in the 
image, so long as the global shape doesn’t change 
substantially. Figure 5e shows the performance of the 

Figure 5. Modal algorithm (dotted lines show symmetry axes). (a) (b) Two possible mappings for a roof-like shape 
(one reflectional symmetry); (c) (d) two of four possible mappings for a rectangle (two reflectional symmetries); (e) 
rectangle skewed by small perspective distortion; (f) two skewed shapes whose modes are too dissimilar to match 
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Figure 6. 
Example with X 0 
different 
numbers of 
features in 
each image 

algorithm when faced with small perspective distortion. 
However, for large slant (Figure 5f), the ‘shape’ of the 
figure changes too much and the match is unsuccessful. 

Finally, we present an example where the number of 
features in the images differs (see Figure 6). However, 
because this requires truncation of the extra modes in 
one image, the algorithm cannot tolerate too many 
missing points, a consequence of the global nature of 
the algorithm. No rehable upper bounds for such cases 
have yet emerged from our tests, and this is the subject 
of ongoing investigation. 

CONCLUSION 

We have presented a novel correspondence algorithm 
which generates a modal description of an image based 
on the spatial distribution of its features. This shape 
representation allows rotations and translations in the 
image plane to be handled trivially. The algorithm also 
copes with uniform scaling and small skews, and more- 
over detects multiple valid matches arising from reflec- 
tional symmetries. From an implementation viewpoint, 

the algorithm is well-conditioned, linear in the number 
of features, and potentially parallelizable; moreoever, 
it gives a one-shot solution. However, as with any 
global shape representation, the presence of occlusion 
and multiple moving objects present difficulties which 
have not yet been resolved. 

Future research wilt address the feasibility of incor- 
porating inter-image feature distances (d,) into the 
algorithm; at present, only intra-image distances (rji) 
are used. Rigorous tests on noise tolerance have still to 
be conducted, and we also intend to investigate 
rotational symmetries and automatic selection of the 
(r’s. Finally, many of the applications mentioned in the 
introduction (such as data and model matching) involve 
sets of point-features not necessarily related by the 
transformations we have examined; this important 
problem remains to be tackled. 
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