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Abstract. The recent trend of structure-guided feature detectors, as op-
posed to blob and corner detectors, has led to a family of methods that
exploit image edges to accurately capture local shape. Among them, the
WαSH detector combines binary edge sampling with gradient strength
and computational geometry representations towards distinctive and re-
peatable local features. In this work, we provide alternative, variable-
density sampling schemes on smooth functions of image intensity based
on dithering. These methods are parameter-free and more invariant to ge-
ometric transformations than uniform sampling. The resulting detectors
compare well to the state-of-the-art, while achieving higher performance
in a series of matching and retrieval experiments.

1 Introduction

Image representation based on local features is often used in many computer
vision applications due to the balanced trade-off between sparsity and discrim-
inative power. By ignoring non-salient image parts and focusing on distinctive
regions, local features provide invariance, repeatability, compactness and com-
putational efficiency.

Popular detectors like the Hessian-Affine [1] and SURF [2] are based on image
gradients, while others like the MSER [3] are purely based on image intensity.
All of them have been successfully applied to a variety of applications, but often
the balance between quality and performance remains an issue. For example,
the image coverage of the Hessian-Affine detector is limited, since—for a given
threshold—multiple detections appear on nearby spatial locations at different
scales. The MSER detector is fast, but often extracts sparse regular regions that
are not representative enough. SURF is also fast, but detections are often not
stable enough.

Although not so popular, another family of detectors is based on image edges,
which are naturally more stable than gradient e.g . to lighting changes. The re-
cently introduced WαSH detector [4] belongs to this family and is based on
grouping edge samples using the weighted α-shapes, a well known representa-
tion in computational geometry. A weakness of WαSH is that edge sampling is
roughly uniform along edges, with a fixed sampling interval s. In an attempt to
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overcome this limitation, we propose a different sampling scheme that relies di-
rectly upon image intensity. We demonstrate its efficiency by common statistics
on image matching and retrieval experiments.

2 Related work and contribution

Edge-based local features have not become popular due to the lack of stable
edges (e.g . under varying viewpoint) and computational inefficiency. One of the
earliest attempts, the edge-based region detector (EBR), starts from corner points
and exploits nearby edges by measuring photometric quantities across them. It
is suitable for well-structured scenes (like e.g . buildings), but not for generic
matching, as shown in [5]. Mikolajczyk et al . [6] propose an edge-based detector
that starts from densely sampled edge points combined with automatic scale
selection and use it for object recognition. Starting also from dense edge samples,
Rapantzikos et al . [7] compute the binary distance transform and detect regions
by grouping its local maxima, guided by the gradient strength of nearby edges.

Indirectly related to edges are the methods that exploit gradient strength
across them by avoiding the thresholding step. Zitnick et al . [8] apply an ori-
ented filter bank to the input image and detect edge foci (EF), i.e. points that are
roughly equidistant from edgels with orientations perpendicular to the points.
The idea is quite interesting, but computationally expensive. Avrithis and Ra-
pantzikos [9] compute the weighted medial axis transform directly from image
gradient, partition it and select associated regions as medial features (MFD) by
taking both contrast and shape into account. Although those methods exploit
richer image information compared to binary edges, gradient strength is often
quite sensitive to lighting and scale variations.

The recently proposed WαSH detector [4] combines edge-sampling and group-
ing towards distinctive local features supported by shape-preserving regions. It
is based on weighted α-shapes on uniformly sampled edges, i.e. a representa-
tion of triangulated edge samples parametrized by a single parameter α. WαSH
uses a regular triangulation, where each sample is assigned a weight originating
from the image domain. Despite this rich representation, WαSH is limited by its
uniform sampling scheme, which is not stable under varying viewpoint.

In this work, we introduce two sampling methods that are based on the well
known Floyd-Steinberg algorithm [10]. The latter was the first of the error-
diffusion dithering approaches, where the idea is to produce a pattern of pixels
such that the average intensity over regions in the output bitmap is approx-
imately the same as the average over the same region in the original image.
Error-diffusion algorithms compare the pixel intensity values with a fixed thresh-
old and the resulting error between the output value and the original value is
distributed to neighboring pixels according to pre-defined weights. The main ad-
vantages of these algorithms are the simplicity combined with fairly good overall
visual quality of the produced binary images.

The Floyd-Steinberg algorithm has been extensively studied in the literature.
Indicatively, Ostromoukhov [11] and Zhuand and Fang [12] have addressed the
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limitations of the initial algorithm, like the visual artifacts in highlights/dark ar-
eas and the appearance of visually unpleasant regular structures using intensity-
dependent variable diffusion coefficients. Nevertheless, we use the initial algo-
rithm because of its computational efficiency and the nature of our problem,
which is sampling rather than halftoning.

Our work is also related to the work of Gu et al. [13], who detect local
features as local minima and maxima of the β-stable Laplacian. They combine
the local features in order to create a higher level representation, resembling
the constellation model [13, 14]. However, we do not detect our sample points as
features; we rather use them to initialize the WaSH feature detector.

The main contributions of this work are: (a) the introduction of two image
sampling schemes of variable density, and (b) the application to local feature
detection, evaluated on image matching and retrieval.

3 Background: the WαSH detector

The WαSH feature detector [4] is based on α-shapes, a representation of a point
set P in two dimensions, parametrized by scalar α. In fact, α-shapes are a gen-
eralization of the convex hull, which is not convex or even connected in general.
In the simplest case, α-shapes use an underlying Delaunay triangulation, but
weighted α-shapes in [4] use the regular triangulation instead. The latter is a
generalization of Delaunay where each point in P is assigned a non-negative
weight, hence it can capture more information from the image domain. In prac-
tice, weight is a function of image gradient in [4].

A particular size is assigned to every simplex (edge or triangle) in the trian-
gulation, as a function of positions and weights of its vertices. Ordering simplices
by decreasing size, a component tree is used to track the evolution of connected
components as simplices are added to form larger regions. Connected components
are potentially selected as features during evolution, according to a shape-driven
strength measure. The resulting features correspond to blob-like regions that re-
spect local image boundaries. Features are also extracted on cavities of image
objects as well as regions that are not fully bounded by edges.

One important limitation of WαSH is that edge sampling is uniform, hence
when sampling a contour, the representation scale is fixed. In a single image,
objects of diverse scales have different representations: too dense on large objects,
and too sparse on small ones. Though this may be partially compensated for
by subsequent processes, a sampling step parameter is still needed to control
the density of samples along edges. Further, uniform sampling naturally leads
to severe undersampling of highly curved paths, so important details of object
shape may be lost.

In section 4 we introduce two alternative methods for sampling that apply
on smooth functions of image input rather than binary edge maps and provide
variable density samples. For the remaining process including triangulation, com-
ponent tree and feature selection, we keep the same choices as in [4].
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4 Dithering-based sampling

In this section we propose two image sampling methods based on error-diffusion.
The goal is to adapt the spatial density of samples over the image and achieve
a sparse representation without compromising structure preservation. Removing
the limitation of samples belonging to binary edges, we expect to get a triangu-
lated set of sparse samples that fits well with the underlying image structure.

For dithering, we use the Floyd–Steinberg algorithm [10], which is fast, re-
quiring only one iteration over the image, and provides reasonable results. In our
framework, the algorithm is not applied directly to the image intensity, but to a
scalar function s(x, y) over the image domain. The two methods we introduce are
based on two different choices for s(x, y). In both cases, the extracted samples
are the nonzero points of the binary output of the Floyd-Steinberg algorithm.
Each sample point (x, y) is assigned a weight that is proportional to the sampled
function s(x, y); these weights are needed for the remaining steps of the WαSH
detector [4].

4.1 Gradient-based dithering

The gradient strength G of an image I is obtained by convolving with the gra-
dient of a Gaussian kernel g(σ) of standard deviation σ,

G = ‖∇g(σ) ∗ I‖. (1)

Then, similar to [15], if Ĝ(x, y) is the gradient strength at point (x, y) normalized
to [0, 1], we use the non-linear function

s(x, y) = Ĝ(x, y)γ (2)

to represent image boundaries, where γ is a positive constant. Error-diffusion
is performed using the Floyd-Steinberg algorithm on s(x, y) rather than image
intensity I(x, y). Increasing the value of γ results in sparser sampling.

In smooth regions of the image, e.g . in the interior of objects or on smooth
background, G is low and samples are sparse, resulting in large triangles. Near
image edges or corners on the other hand, G is high, samples are dense, and a
finer tessellation is generated that captures important details. Variable sample
density offers a computational advantage without compromising the descriptive
power of the triangulation.

4.2 Hessian-based dithering

Instead of using the gradient strength as the input to error-diffusion, Yang et
al . [15] use the largest eigenvalue of the Hessian matrix at each point. We also
explore this option for our sampling.

If H(x, y) is the Hessian matrix at point (x, y), again after filtering with
Gaussian kernel g(σ), let λ1(x, y) be its largest eigenvalue. It is known that λ1
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is the largest second order directional derivative of I. Similarly to (2), if λ̂1(x, y)
is the largest eigenvalue normalized to [0, 1], we use function

s(x, y) = λ̂1(x, y)γ (3)

to represent image boundaries, again performing error-diffusion on s(x, y).
The magnitude of the second order derivatives increases near image edges, so

the error-diffusion algorithm will favour dense sampling at these regions. How-
ever, samples will now appear more scattered at both sides of an edge, making
the triangulation more complex. At smooth areas, sampling is sparse, but since
the Hessian is more sensitive to noise a grid-like sampling can occur (see Fig. 1f).
Compared to the gradient-based sampling, the number of detected features is
often lower (see section 5).

4.3 Examples

A visual example of the sampling methods is shown in Fig. 1. Fig. 1cd depict
the normalized gradient strength Ĝ and the resulting gradient-based sampling.
Notice the sparsity of the samples in smooth areas and the density in structured
ones. Fig. 1ef depict the Hessian response λ̂1 and the resulting sampling. Few
weak edges are lost within the background noise in this case. For all examples
we set γ = 1.

Fig. 2 shows an example on a detail of an image along with different sam-
pling methods and the resulting triangulations. The uniformly sampled edges
are sparse and well distributed along the edges, but lose details at the corners
and highly curved edge parts. On the other hand, the dithering-based methods
are denser, but preserve the underlying structure better. In the Hessian-based
approach, points are sampled on both sides of edges that—depending on the
application—may prove useful at enforcing actual edge boundaries.

Examples of the features detected using either the baseline sampling of WαSH
or the proposed sampling methods are depicted in Fig. 3, 4. In each example,
the number of detected features for each method is approximately the same
(around 200 for Fig. 3 and 50 for Fig. 4). In Fig. 3 we present the results on the
first image of the graffiti dataset of [5]. Both dithering-based samplings detect
more detailed regions of the image, and the gradient-based one better captures
the correct boundaries of objects. In Fig. 4, the input image comes from the
PASCAL VOC 2007 test set [16], a dataset heavily used for evaluating object
recognition algorithms. Again the gradient-based variants capture finer details
of the image that can boost the performance in recognition tasks (see the ceiling
lamp and the chairs).

5 Experiments

We evaluate the proposed sampling methods and compare to the state-of-the-
art, using two different experimental setups. The first is the matching experiment
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. Dithering-based sampling. (a) Input image and (b) Floyd-Steinberg dithering
on (a). (c) Normalized gradient strength Ĝ and (d) sampling on Ĝ. (e) Hessian response
λ̂1 and (f) sampling on λ̂1. Figure is optimized for screen viewing.
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(a)

(b) (c)

(d) (e)

(f) (g)

Fig. 2. Example of the different sampling methods and the corresponding triangu-
lations. (a) Input image, a detail of the first image of the boat sequence of [5] (see
section 5.1). (b) Binary edge map and (c) uniform sampling on (b). (d) Normalized
gradient strength and (e) error-diffusion on (d). (f) Hessian response and (g) error-
diffusion on (f). (b,d,f) are shown in negative for better viewing and printing.
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(a) (b)

(c) (d)

Fig. 3. Example of local features detection. (a) Input image and (b) baseline WαSH
results using uniform sampling. (c) Results using the gradient-based sampling and (d)
using the Hessian-based sampling.

proposed by Mikolajczyk et al . [5], with the corresponding well-known dataset.
We measure the repeatability and matching score of WαSH when using the pro-
posed sampling methods, and also compare to other state-of-the-art detectors.
The second experimental setup involves a large scale image retrieval applica-
tion on the Oxford 5K [17] dataset. The performance is measured by the mean
average precision (mAP) of the query results.

Following an initial brief evaluation of the proposed samplings, we set γ = 1
for all the experiments. For γ > 1 samplings were sparser and performance
slightly dropped, while for γ < 1 the performance increased, but samplings were
denser, increasing the computational cost of the feature detector.

5.1 Repeatability and matching score

In this experiment, we investigate the impact on performance of a matching ap-
plication, when using the proposed sampling methods on WαSH. We also com-
pare to the state-of-the-art detectors, Hessian-Affine and MSER, for which we
use the executables provided by the corresponding authors and default parame-
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(a) (b)

(c) (d)

Fig. 4. Example of local features detection. (a) Input image and (b) baseline WαSH
results using uniform sampling. (c) Results using the gradient-based sampling and (d)
using the Hessian-based sampling.

ters. The image sets used, evaluate the impact of changes in viewpoint, rotation,
zoom, blur and illumination. For the matching score we use 128-dimensional
SIFT descriptors for all detectors.

The results of the evaluation are depicted in Fig. 5-6. The last row of Fig. 6
shows the average scores for the 6 datasets. Along with the repeatability and
matching score, we also provide the number of features detected. Overall, the
gradient-based sampling performs best, followed by the Hessian-based one.

5.2 Image retrieval

In this experiment, we evaluate the proposed variants of WαSH on an image re-
trieval application. The dataset is the Oxford 5K, consisting of images of build-
ings as queries, and other urban images as distractors. We compare against
Hessian-affine, MSER, SIFT and SURF, using the corresponding executables
and default values. For all detectors we extract SIFT descriptors, apart from
SURF, which performs best using the corresponding descriptor.

For the different versions proposed, we adapt the selection threshold to ex-
tract approximately the same number of features as the baseline WαSH. For all
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Fig. 5. Comparison of our proposed sampling methods to baseline WαSH and the state-
of-the-art in sequences boat, wall and graffiti. #features: number of features detected
per image. Hess: Hessian-based dithering; grad: gradient-based dithering.

detectors we create 3 different vocabularies of size 50K, 100K and 200K visual
words. We use the simple Bag-of-Words approach, as well as a spatial rerank-
ing of the results, using fastSM [17]. Performance is measured using the mean
Average Precision (mAP) metric, and the results are shown in Table 1.

The number of features extracted by each detector is critical for the large
scale retrieval applications, affecting the indexing time and memory needed to
store the inverted files, while using a lower number of features typically drops
performance. SURF extracted the least number of features, followed by the base-
line WαSH and our variants. Despite the low number of features, SURF and
baseline WαSH perform comparably to Hessian-affine. Increasing the size of the
vocabulary boosted the performance of all detectors. The gradient-based vari-
ant we propose outperformed all other detectors with and without the spatial
verification step, a result that verifies the findings of section 5.1.

6 Conclusions

In this paper we extend the recently introduced WαSH detector by proposing
different image sampling methods. Image sampling is the first step of the al-
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Fig. 6. Comparison of our proposed sampling methods to baseline WαSH and the
state-of-the-art in sequences leuven, bikes and trees, together with the averaged values
over the dataset.

gorithm and changes the qualities of the detected features, together with the
overall performance of the detector. We propose two different image sampling
methods that build on ideas from image halftoning. In that direction, we sam-
ple points based on error diffusion of smooth image functions. We thoroughly
evaluate the performance of the proposed methods in a matching and an image
retrieval experiment.

The proposed sampling methods, combined with the α-shapes grouping, re-
sult in a more accurate representation of the image structures. The detected
features capture finer image structures, while keeping the high image coverage
of the baseline method. Using the gradient-based scheme, the performance of
WαSH increases in both applications, exceeding the state-of-the-art. In the fu-
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Table 1. Results of the image retrieval experiment, using 3 different vocabularies,
the Bag-of-Words model and spatial reranking of the results, measuring mean Average
Precision.

detector
features Bag-of-Words (mAP) ReRanking (mAP)
(×106) 50K 100K 200K 50K 100K 200K

HessAff 29.02 0.483 0.539 0.573 0.518 0.577 0.607

MSER 13.33 0.487 0.534 0.565 0.519 0.569 0.595

SIFT 11.13 0.422 0.465 0.495 0.441 0.486 0.517

SURF 6.84 0.465 0.526 0.574 0.509 0.573 0.603

WαSH 7.19 0.529 0.569 0.590 0.537 0.569 0.585

WαSH, grad 7.63 0.531 0.580 0.605 0.543 0.578 0.609

WαSH, Hess 7.29 0.518 0.553 0.582 0.511 0.557 0.584

ture, we will further investigate the effect of the scaling factor γ applied on both
proposed sampling methods, as well as evaluate the performance on different
applications of the feature detector.
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