
Image matching and visual search
Local features and geometry

Yannis Avrithis

National Technical University of Athens
Image, Video and Multimedia Systems Laboratory

Image and Video Analysis Group

Bordeaux, March 2011



Outline

1 Visual search, local features and bag-of-words

2 Local features based on distance maps

3 Geometry indexing: feature map hashing

4 Relaxed spatial matching and re-ranking

5 Photo collections: view clustering and scene maps

6 Location and landmark recognition

7 Implementation: ivl library



Outline

1 Visual search, local features and bag-of-words

2 Local features based on distance maps

3 Geometry indexing: feature map hashing

4 Relaxed spatial matching and re-ranking

5 Photo collections: view clustering and scene maps

6 Location and landmark recognition

7 Implementation: ivl library



Matching local feature points
[Scott and Longuet-Higgins 1991]
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• given two sets of points ai, i = 1, . . . ,m and bj , j = 1, . . . , n on the
same plane, let dij be the distance between ai and bj

• following earlier theories of Ullman and Marr, the problem is to
associate points ai and bj in a one-to-one correspondence such that
the sum of squared distances between corresponding points is
minimized



A spectral approach

1 construct the m× n proximity matrix G with elements

gij = exp(−d2ij/2σ2)

2 perform singular value decomposition of G

G = USV T

where U, V are orthogonal matrices of dimension m,n and S is a
non-negative diagonal m× n matrix

3 replace each diagonal element sij of S by 1 and reconstruct

P = UEV T

4 finally, associate points ai and bj if element pij of P is the greatest
element in its row and its column



A spectral approach
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scale, translation rotation



Matching discriminative local features
[Lowe 1999]Do these images match?
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Matching discriminative local features
[Lowe 1999]Local features (interest regions, patches, ...)

features
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Matching discriminative local features
[Lowe 1999]Local feature normalization

features

normalized features
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Forget about geometry: bag-of-words
[Sivic and Zisserman 2003]

Forget about geometry: BoW

Object Bag of ‘words’
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Vector quantization → visual words
... back to image retrieval

15query
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Vector quantization → visual words
Feature correspondences with image #15

15query
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Vector quantization → visual words
Feature correspondences with image #19
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Vector quantization → visual words
Matching in descriptor space
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Vector quantization → visual words
Vector quantization → visual words
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Vector quantization → visual words
Vocabulary
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Inverted file indexingIndex
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Inverted file indexingInverted file
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Inverted file indexingInverted file
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Inverted file indexingInverted file
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Inverted file indexingRanking
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Back to geometry: re-ranking

original images



Back to geometry: re-ranking

local features



Back to geometry: re-ranking

tentative correspondences



Back to geometry: re-ranking

RANSAC inliers



RANSAC
[Fischler and Bolles 1981]

Robust estimation:
RANdom SAmple Consensus (RANSAC)

problem: fit line to data
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RANSAC
[Fischler and Bolles 1981]

Robust estimation:
RANdom SAmple Consensus (RANSAC)

least squares fit !!!
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RANSAC
[Fischler and Bolles 1981]

Robust estimation:
RANdom SAmple Consensus (RANSAC)

solution: choose 2 random points ...
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RANSAC
[Fischler and Bolles 1981]

Robust estimation:
RANdom SAmple Consensus (RANSAC)

... fit line to them ...
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RANSAC
[Fischler and Bolles 1981]

Robust estimation:
RANdom SAmple Consensus (RANSAC)

... classify remaining points to inliers ...
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RANSAC
[Fischler and Bolles 1981]

Robust estimation:
RANdom SAmple Consensus (RANSAC)

... and outliers
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RANSAC
[Fischler and Bolles 1981]

Robust estimation:
RANdom SAmple Consensus (RANSAC)

repeat ...
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RANSAC
[Fischler and Bolles 1981]

Robust estimation:
RANdom SAmple Consensus (RANSAC)

... and repeat

4



RANSAC
[Fischler and Bolles 1981]

Robust estimation:
RANdom SAmple Consensus (RANSAC)

finally: maximum inliers

4
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Edge-based feature detection
[Rapantzikos and Avrithis 2010]

• Blob-like regions starting from single-scale edges

• local maxima of Euclidean distance transform expected to lie in
region interior or close to ridges

• greedily merge maxima guided by edge strength, to reproduce the
effect of smoothing in scale-space evolution

• regions of arbitrary shape and scale, unaffected by spurious or
disconnected edges



Original image



Binary edge map



Binary distance map



Distance map + local maxima



Delaunay triangulation



Convex hulls of selected regions



Original image + features



A weighted approach
[Avrithis and Rapantzikos 2011, unpublished]

• Weighted distance map directly from image gradient

• Weighted medial capturing region structure and topology

• Very simple selection criterion: is a region well-enclosed by
boundaries?

• Again, arbitrary shape and scale, without explicit scale-space
construction

• Affordable speed—1s for an 1Mpixel image, on average



Original image



Weighted distance map and medial



Region/boundary duality



Original image + features



The challenge of shape



The challenge of shape



The challenge of scale



The challenge of scale



The challenge of scale



Viewpoint: graffiti scene



Viewpoint: graffiti scene



Viewpoint: graffiti scene
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Scale + rotation: boat scene



Scale + rotation: boat scene



Scale + rotation: boat scene
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Blur: bikes scene



Blur: bikes scene



Blur: bikes scene
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Texture + blur: trees scene



Texture + blur: trees scene



Texture + blur: trees scene
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Viewpoint: wall scene



Viewpoint: wall scene



Viewpoint: wall scene

15 20 25 30 35 40 45 50 55 60 65
0

10

20

30

40

50

60

70

80

90

100
wall

viewpoint angle

m
at

ch
in

g 
sc

or
e 

%

 

 
MFD
Hessian−Affine
Harris−Affine
MSER
IBR
EBR
Salient



Outline

1 Visual search, local features and bag-of-words

2 Local features based on distance maps

3 Geometry indexing: feature map hashing

4 Relaxed spatial matching and re-ranking

5 Photo collections: view clustering and scene maps

6 Location and landmark recognition

7 Implementation: ivl library



Weak geometric consistency (WGC)
[Jegou et al. 2008]

324 Int J Comput Vis (2010) 87: 316–336

the inverted file and can efficiently be applied to all images.
Our weak geometric consistency constraints refine the vot-
ing score and make the description more discriminant.

Note that the re-ranking step can still be applied on a
short-list to estimate the full geometric transformation. It is
complementary to the weak consistency constraints and fur-
ther improves the results (see Sect. 7.5).

4.1 Analysis of Weak Geometric Information

In order to obtain orientation and scale invariance, region
of interest detectors extract the dominant orientation of the
region (Lowe 2004) and its characteristic scale (Lindeberg
1998). This extraction is performed independently for each
interest point. When an image undergoes a rotation or scale
change, these quantities are consistently modified for all
points, see Fig. 7 for an illustration in the case of image
rotations. It shows the difference in dominant orientations
for pairs of matching regions. One can observe that only the
incorrect matches are not consistent with the global image
rotation.

Similarly, the characteristic scales of interest points are
consistently scaled between two images of the same scene
or object, as shown on Fig. 8.

4.2 Weak Geometrical Consistency

The key idea of our method is to verify the consistency
of the angle and scale differences of the matching descrip-
tors. We build upon and extend the BOF formalism of (1)
by using several scores sj per image. For a given image
j , the entity sj then represents the histogram of the angle
and scale differences, computed from the characteristic an-
gle and scale of the interest regions of corresponding de-
scriptors. Although these two parameters are not sufficient
to map the points from one image to another, they can be
used to improve the image ranking. The update step of (1) is
modified:

sj (δa, δs) := sj (δa, δs) + f (xi,j , yi′), (13)

Fig. 7 Orientation consistency. Top-left: Query image and its inter-
est points. Top-right: Two images of the same location viewed under
different image rotations. The slices on each matched interest point
show the difference in orientation between the interest point and the

matching point on the query image. Matches are obtained with our HE
method. Bottom-right: Histogram of the differences between the dom-
inant orientations of matching points. The peak clearly corresponds to
the global angle variation



Weak geometric consistency

• when an image undergoes rotation or scaling, the orientation and
scale of local features is consistently modified

• quantize orientation and scale differences between feature pairs

• maintain several scores for each image, one for each difference bin

• this is not enough to recover a full transformation, but does improve
ranking



Feature map hashing
[Avrithis et al. 2010]

• estimate image alignment via single correspondence

• for each feature construct a feature map encoding normalized
positions and appearance of all remaining features

• represent an image by a collection of such feature maps

• RANSAC-like matching is reduced to a number of set intersections



Local patches

• each local feature is associated with an image patch L, which also
represents an affine transform

• the rectified patch R0 is transformed to the patch via L

• the patch is rectified back to R0 via L−1
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Fast spatial matching (FSM)
[Philbin et al. 2007]

• single patch correspondence L↔ R

• the transformation from one patch to the other is RL−1

• each correspondence provides a transformation hypothesis

• transformation hypotheses are now O(n); we can compute them all



Feature set rectification

• rectify both feature sets by transformations L−1 and R−1, then
compare

• rectify the entire set of features in advance

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

origin



Feature set rectification

• rectify both feature sets by transformations L−1 and R−1, then
compare

• rectify the entire set of features in advance
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Spatial quantization

• encode positions in polar coordinates (ρ, θ)

• quantize positions in the rectified frames

• define spatial codebook U ⊆ R2 with |U| = kρ × kθ = ku bins
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Spatial quantization

• encode positions in polar coordinates (ρ, θ)

• quantize positions in the rectified frames

• define spatial codebook U ⊆ R2 with |U| = kρ × kθ = ku bins
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Feature maps

• represent an image by a local feature set P

• define the joint (visual-spatial) codebook W = V × U with
|W| = kvku = k bins

• to construct a feature map we rectify a feature set and assign
rectified features to spatial bins and visual words

fP (x̂) = hW (P (x̂))

feature map of P wrt origin x̂ rectified feature set P wrt origin x̂

histogram wrt joint codebook W

• there is a different map for each origin; represent each image with a
feature map collection FP

• can be seen as a local descriptor encoding the global feature set
rectified in a local coordinate frame
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Feature maps

• represent an image by a local feature set P

• define the joint (visual-spatial) codebook W = V × U with
|W| = kvku = k bins

• to construct a feature map we rectify a feature set and assign
rectified features to spatial bins and visual words

fP (x̂) = hW (P (x̂))

feature map of P wrt origin x̂ rectified feature set P wrt origin x̂

histogram wrt joint codebook W

• there is a different map for each origin; represent each image with a
feature map collection FP

• can be seen as a local descriptor encoding the global feature set
rectified in a local coordinate frame



Feature maps—example

• well aligned feature sets are likely to have maps with a high degree
of overlap
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Feature maps—example

• well aligned feature sets are likely to have maps with a high degree
of overlap
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Feature map similarity

for all visual words that P,Q have in common

for all origins mapped to visual word v

SF (P,Q) = max
v∈V (P,Q)

max
x̂∈Hv(P )
ŷ∈Hv(Q)

fTP (x̂) fQ(ŷ)

feature map of image P wrt origin x̂

feature map of image Q wrt origin ŷ
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ŷ∈Hv(Q)

fTP (x̂) fQ(ŷ)
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Feature map similarity
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ŷ∈Hv(Q)

fTP (x̂) fQ(ŷ)
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Feature map similarity—example

fast spatial matching [Philbin et al. 2007] (35 inliers)



Feature map similarity—example

feature map similarity (32 inliers)



Towards indexing

• FMS is a fast way of matching 2 images, but still not enough for
indexing

• a feature map is an extremely sparse histogram; bin count typically
takes values in {0, 1}

• each feature map f is represented by set f̄ ⊂ W of non-empty bins



Min-wise independent permutations
a.k.a. min-hashing [Broder 2000]

• feature space F = P(W), the powerset of W
• h : F→W, hash function mapping objects back to W
• π : F→ F, a random permutation

• given a feature map f̄ ⊂ W, compute a hash value
h(f̄) = min{π(f̄)}

• two features maps are hashed to the same value with probability
equal to their resemblance or Jaccard similarity coefficient

Pr[h(f̄) = h(ḡ)] =
|f̄ ∩ ḡ|
|f̄ ∪ ḡ|

= J(f̄ , ḡ)



An example
[Chum et al. 2007]

a b c d e f {a, b, c} {b, c, d} {a, e, f}
permutations hash values

3 6 2 5 4 1 2 2 1

1 2 6 3 5 4 1 2 1

3 2 1 6 4 5 1 1 3

4 3 5 6 1 2 3 3 1
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Map sketch

• construct a set Π = {πi : i = 1, . . . ,m} of m independent random
permutations

• represent each feature map f̄ by map sketch f ∈ Wm,

f = f(f̄) = [min{π1(f̄)}, . . . ,min{πm(f̄)}]T

• sketch similarity: count number of elements that sketches f , g have
in common

sK(f ,g) = m− ‖f − g‖0



Feature map hashing (FMH)

• map sketch collection F: set of all map sketches f of an image

• image similarity reduces to sketch similarity

SM (F,G) = max
f∈F

max
g∈G

sK(f ,g)

• collisions may appear for several pairs of maps; sum all sketch
similarities instead of keeping the best one

SK(F,G) =
∑

f∈F

∑

g∈G
sK(f ,g)

• constrain sketch origins to those mapping uniquely to the same
visual words



Matching maps

Multiple matching pairs of feature maps



Matching maps

Multiple matching pairs of feature maps



Matching maps

Multiple matching pairs of feature maps



Matching maps

Multiple matching pairs of feature maps



Matching maps

Multiple matching pairs of feature maps



Matching maps

Multiple matching pairs of feature maps



Indexing

index construction

• construct inverted file of triplets (v̂, w, π) (origin, hash value,
permutation)

• memory requirements 5× a typical baseline system

query

• retrieve images by triplets (v̂, w, π) of query image

• re-estimate transformation parameters using LO-RANSAC

• re-ranking is an order of magnitude faster than FastSM, because an
initial estimate is already available



European Cities dataset 50K (EC50K)

• 778 Annotated images

• 20 groups of photos

• 5 queries from each group

• 50,000 distractor images

Publicly available: http://image.ntua.gr/iva/datasets/ec50k

http://image.ntua.gr/iva/datasets/ec50k
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Database Size

m
A

P

 

 

FMH

FMH+LO

FMH+LO(1000)

BOW

BOW+FastSM

WGC

WGC+FastSM



Outline

1 Visual search, local features and bag-of-words

2 Local features based on distance maps

3 Geometry indexing: feature map hashing

4 Relaxed spatial matching and re-ranking

5 Photo collections: view clustering and scene maps

6 Location and landmark recognition

7 Implementation: ivl library



Relaxed spatial matching
[Tolias and Avrithis 2011, unpublished]

• invariant to similarity transformations

• flexible, allowing non-rigid motion and multiple matching surfaces or
objects

• imposes one-to-one mapping

• non-iterative, and linear in the number of correspondences

• in a given query time, can re-rank one order of magnitude more
images than the state of the art

• needs less than one millisecond to match a pair of images, on
average
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Relaxed matching—statistics
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L 2 3 4 5 6
pyramid 0.473 0.498 0.536 0.556 0.559

flat 0.448 0.485 0.524 0.534 0.509

Table 2. mAP for pyramid and flat matching at different levelsL on
the Barcelona dataset with 2M distractors. Filtering is performed
with BoW and the top 1K images are re-ranked.
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Figure 7. mAP comparison for varying database size on Barcelona
dataset with up to 2M distractors. Filtering is performed with
BoW or WGC and re-ranking top 1K with FSM or HPM, except
HPM10K, where BoW and WGC curves coincide.

re-ranking on the single finest level of the pyramid for each
L. We refer to the latter as flat matching. Observe that the
benefit of HPM in going from 5 to 6 levels is small, while
flat matching actually drops in performance. Our choice
for L = 5 then makes sense, apart from saving space—
see section 5. For the same experiment, mAP is 0.341 and
0.497 for BoW and FSM respectively. It is thus interest-
ing to observe that even the flat scheme yields considerable
improvement.

Distractors. Figure 7 compares HPM to FSM and base-
line, for a varying number of distractors up to 2M. Both
BoW and WGC are considered for the filtering stage and
as baseline. HPM turns out to outperform FSM in all cases.
We also re-rank 10K images with HPM, since this takes less
time than 1K with FSM. This yields the best performance,
especially in the presence of distractors. Interestingly, BoW
and WGC give identical results in this case. In Table 3 we
summarize results for the same experiment with orientation
priors for WGC and HPM. When these are used together,
prior is applied to both. Again, BoW and WGC are almost
identical in the HPM10K case. Using a prior increases per-
formance in general, but this is dataset dependent. The side
effect is a decrease in rotation invariance.

Timing. Varying the number of re-ranked images, we
measure mAP and re-ranking time for FSM and HPM. Once

Method no distractors 2M distractors
no prior prior no prior prior

WGC+HPM10K – – 0.599 0.612
BoW+HPM10K – – 0.601 0.613

WGC+HPM 0.832 0.851 0.573 0.599
BoW+HPM 0.832 0.837 0.558 0.565
WGC+FSM 0.826 0.846 0.536 0.572
BoW+FSM 0.827 – 0.497 –

WGC 0.811 0.843 0.355 0.447
BoW 0.808 – 0.341 –

Table 3. mAP comparison on Barcelona dataset with and without
prior. Re-raking on top 1K images, except for the two first rows.
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Figure 8. mAP and total (filtering + re-ranking) query time for a
varying number of re-ranked images. The latter are shown with
text labels near markers, in thousands. Results on the Barcelona
dataset with 2M distractors.

more, we consider both BoW and WGC for filtering. A
combined plot is given in Figure 8. HPM appears to re-rank
10 times more images in less time than FSM. With BoW, its
mAP is 10% higher than FSM for the same re-ranking time,
on average. At the price of 7 additional seconds for filtering,
FSM eventually benefits from WGC, while HPM is clearly
unaffected. Indeed, after about 3.3 seconds, mAP perfor-
mance of BoW+HPM reaches saturation after re-ranking
7K images, while WGC does not appear to help.

Specific codebooks. Table 4 summarizes performance
on the Oxford dataset for specific codebooks of varying
size, created from all Oxford images. HPM again has supe-
rior performance except for the 100K vocabulary. Our best
score without prior (0.692) can also be compared to the best
score (0.664) achieved by 5-dof FSM in [12], though the lat-
ter uses a 1M codebook and different features. The higher
scores achieved in Perdoch et al. [11] are also attributed to
superior features rather than the matching process.

More datasets. Finally, we perform large scale experi-
ments on Oxford and Paris datasets. We consider both good
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Relaxed matching—timing
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re-ranking on the single finest level of the pyramid for each
L. We refer to the latter as flat matching. Observe that the
benefit of HPM in going from 5 to 6 levels is small, while
flat matching actually drops in performance. Our choice
for L = 5 then makes sense, apart from saving space—
see section 5. For the same experiment, mAP is 0.341 and
0.497 for BoW and FSM respectively. It is thus interest-
ing to observe that even the flat scheme yields considerable
improvement.

Distractors. Figure 7 compares HPM to FSM and base-
line, for a varying number of distractors up to 2M. Both
BoW and WGC are considered for the filtering stage and
as baseline. HPM turns out to outperform FSM in all cases.
We also re-rank 10K images with HPM, since this takes less
time than 1K with FSM. This yields the best performance,
especially in the presence of distractors. Interestingly, BoW
and WGC give identical results in this case. In Table 3 we
summarize results for the same experiment with orientation
priors for WGC and HPM. When these are used together,
prior is applied to both. Again, BoW and WGC are almost
identical in the HPM10K case. Using a prior increases per-
formance in general, but this is dataset dependent. The side
effect is a decrease in rotation invariance.

Timing. Varying the number of re-ranked images, we
measure mAP and re-ranking time for FSM and HPM. Once

Method no distractors 2M distractors
no prior prior no prior prior

WGC+HPM10K – – 0.599 0.612
BoW+HPM10K – – 0.601 0.613

WGC+HPM 0.832 0.851 0.573 0.599
BoW+HPM 0.832 0.837 0.558 0.565
WGC+FSM 0.826 0.846 0.536 0.572
BoW+FSM 0.827 – 0.497 –

WGC 0.811 0.843 0.355 0.447
BoW 0.808 – 0.341 –

Table 3. mAP comparison on Barcelona dataset with and without
prior. Re-raking on top 1K images, except for the two first rows.
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varying number of re-ranked images. The latter are shown with
text labels near markers, in thousands. Results on the Barcelona
dataset with 2M distractors.

more, we consider both BoW and WGC for filtering. A
combined plot is given in Figure 8. HPM appears to re-rank
10 times more images in less time than FSM. With BoW, its
mAP is 10% higher than FSM for the same re-ranking time,
on average. At the price of 7 additional seconds for filtering,
FSM eventually benefits from WGC, while HPM is clearly
unaffected. Indeed, after about 3.3 seconds, mAP perfor-
mance of BoW+HPM reaches saturation after re-ranking
7K images, while WGC does not appear to help.

Specific codebooks. Table 4 summarizes performance
on the Oxford dataset for specific codebooks of varying
size, created from all Oxford images. HPM again has supe-
rior performance except for the 100K vocabulary. Our best
score without prior (0.692) can also be compared to the best
score (0.664) achieved by 5-dof FSM in [12], though the lat-
ter uses a 1M codebook and different features. The higher
scores achieved in Perdoch et al. [11] are also attributed to
superior features rather than the matching process.

More datasets. Finally, we perform large scale experi-
ments on Oxford and Paris datasets. We consider both good
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Outline

1 Visual search, local features and bag-of-words

2 Local features based on distance maps

3 Geometry indexing: feature map hashing

4 Relaxed spatial matching and re-ranking

5 Photo collections: view clustering and scene maps

6 Location and landmark recognition

7 Implementation: ivl library



Community photo collections

clustering / landmark recognition

• focus on popular subsets

• applications: browsing, 3D reconstruction
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Figure 2: Representative images for the top landmark in each of the top 20 North American cities. All parts of the figure, including

the representative images, textual labels, and even the map itself were produced automatically from our corpus of geo-tagged photos.

about 110,000 photos, again making it difficult to generalize their

results. Their method also does not scale well to a global image

collection, as we discussed in Section 3. There is a considerable

earlier history of work in the Web and digital libraries community

on organizing photo collections; however those papers in general

make little or no use of image content (e.g., [1]) and again do not

provide large-scale quantitative results.

8. CONCLUSIONS
In this paper we introduce techniques for analyzing a global col-

lection of geo-referenced photographs, and evaluate them on nearly

35 million images from Flickr. We present techniques to automat-

ically identify places that people find interesting to photograph,

showing results for thousands of locations at both city and land-

mark scales. We develop classification methods for predicting these

locations from visual, textual and temporal features. These meth-

ods reveal that both visual and temporal features improve the ability

to estimate the location of a photo compared to using just textual

tags. Finally we demonstrate that representative photos can be se-

lected automatically despite the large fraction of photos at a given

location that are unrelated to any particular landmark.

The techniques developed in this paper could be quite useful in

photo management and organization applications. For example, the

geo-classification method we propose could allow photo manage-

ment systems like Flickr to automatically suggest geotags, signif-

icantly reducing the labor involved in adding geolocation annota-

tions. Our technique for finding representative images is a practical

way of summarizing large collections of images. The scalability of

our methods allows for automatically mining the information latent

in very large sets of images; for instance, Figures 2 and 3 raise the

intriguing possibility of an online travel guidebook that could au-

tomatically identify the best sites to visit on your next vacation, as

judged by the collective wisdom of the world’s photographers.

In this paper we have focused on using geospatial data as a form

of relational structure, and combining that with content from tags

and image features. An interesting future direction is to relate this

back to the explicit relational structure in the social ties between

photographers. Preliminary investigation suggests that these can

be quite strongly correlated — for example, we observe that if two

users have taken a photo within 24 hours and 100 km of each other,

on at least five occasions and at five distinct geographic locations,

there is a 59.8% chance that they are Flickr contacts.
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Community photo collections

retrieval / location recognition

• include all images, has not yet scaled enough

• applications: automatic geo-tagging, camera pose estimation



View clustering
[Avrithis et al. 2010]

• identify images that potentially depict views of the same scene

• geo clustering: according to location

• visual clustering: according to visual similarity

• use sub-linear indexing in the clustering process



Kernel vector quantization (KVQ)
[Tipping and Schölkopf 2001]

• input dataset: D ⊆ X, where (X, d) is a metric space

• codebook: a small subset Q(D) such that distortion is minimized

• for codebook vector x ∈ Q(D), cluster C(x) contains all points
y ∈ D within distance r:

C(x) = {y ∈ D : d(x, y) < r}

• sparse solution by solving a linear programming problem

• pairwise distance matrix: quadratic in the dataset size |D|



Kernel vector quantization

properties

• codebook vectors are points of
the original dataset:
Q(D) ⊆ D

• distortion upper bounded by r:
for all x ∈ Q(D)

max
y∈C(x)

d(x, y) < r

• the cluster collection

C(D) = {C(x) : x ∈ Q(D)}

is a cover for D

• clusters are overlapping
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Geo clustering

• given set of photos P ⊆ P in metric space (P, dg)
• each photo p ∈ P is represented by tuple (`p, Fp) (location,

features)

• metric dg: the great circle distance

• construct codebook Qg(P ) by KVQ of P with scale parameter rg

• maximum distortion: photos taken e.g. further than 2km apart are
not likely to depict the same scene



Geo clustering—example
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Visual clustering
visual similarity measure

• I(Fp, Fq): number of inliers between visual feature sets Fp, Fq of
photos p, q respectively



Visual clustering

• for each geo-cluster G, construct codebook Qv(G) by KVQ in space
(P, dv) with scale parameter rv

• metric dv(p, q) and scale parameter rv are expressed in terms of
number of inliers

• maximum distortion: equivalent to minimum number of inliers

• overlapping: support gradual transitions of views



Visual clustering

• geo-cluster specific sub-linear indexing

• bottleneck: computation of pairwise distances, quadratic in |G| →
inverted file indexed by both visual word and geo-cluster

• given a query image q ∈ G, find all matching images p ∈ G with
I(Fp, Fq) > τ in constant time, typically less than one second

• the entire computation is now linear in |G|



Visual clustering—example

1, 146 geo-tagged Flickr images of Pantheon, Rome

• 258 resulting visual clusters

• 30 images at each visual cluster on average

• an image belongs to 4 visual clusters on average
8

Fig. 2 Photos associated to the centers of the most populated visual clusters from Pantheon,
Rome.

3.3 Visual Clustering

As in [39], we will say that any two photos p, q ∈ P are connected if at least one rigid

object is visible in both, possibly under different viewpoints. A scene is then defined

as a subset S ⊆ P of connected photos. That is, for all p, q ∈ S, we may visually match

common objects under rigid 3D geometry regardless of viewpoint. Local visual features

and descriptors are employed for this purpose, as detailed in section 5.1. The output

of visual matching is typically the number of inliers I(p, q) between visual feature sets

Fp, Fq of photos p, q respectively.

We now apply KVQ to each geo-cluster G ∈ Cg(P ) in space (P, dv) with scale

parameter rv. Since I(Fp, Fq) is a similarity measure, any decreasing function will do

as a metric, e.g . dv(p, q) = exp{−I(Fp, Fq)}. The exact formula of dv(p, q) is not im-

portant; in effect, the scale parameter specifies a threshold τ = − log rv in the number

of inliers. Let Qv(G) be the resulting codebook, and define visual cluster Cv(p) = {q ∈
G : dv(p, q) < rv} for p ∈ G and visual cluster collection Cv(G) = {Cv(p) : p ∈ Qv(G)},
similarly to geo-clustering. Repeating over all geo-clusters, the complete codebook

Q(P ) over the entire dataset is the union Q(P ) =
⋃

G∈Cg(P )Qv(G). Finally, the set of

all view clusters C(P ) is defined accordingly as C(P ) = {Cv(p) : p ∈ Q(P )}.
The main bottleneck the clustering process above is the computation of pairwise

distances, which is typically quadratic in the size of the dataset. This is not an issue in

geo-clustering but is critical in visual clustering. Our solution here is geo-cluster specific

sub-linear indexing. In particular, we use an inverted file indexed by both visual word

and geo-cluster. Given a query image q ∈ G, we find all matching images p ∈ G

with I(Fp, Fq) > τ in constant time that is typically less than one second. The entire

computation is now linear in |G|.
To illustrate the effect of visual clustering on a set of photos, we give an example

from Pantheon, Rome, following the examples appearing in [39] and [34]. In particular,

we select all Flickr photos geo-tagged in Rome9. We then separate a seed set of photos

with tag pantheon and expand this set by adding all Rome photos that are visually

matching any other photo in the seed set. We end up with a total of 1146 images that

we consider to be a single geo-cluster. The resulting visual clusters are 258. The average

visual cluster size is 30 images and an image belongs to 4 visual clusters on average,

due to overlapping.

9 Data uploaded until 30/09/2009



Visual clustering—example
9

Fig. 3 Photos in a sample of visual clusters from Pantheon. The first image (on the left) of
each cluster corresponds to the cluster center.

Figure 2 depicts photos corresponding to cluster centers for the most populated

clusters. Comparing to [39], the objective here is neither summarization nor canonical

view selection, and there is no requirement for orthogonality between cluster centers.

On the other hand, the maximal distance between photos in a single visual cluster is

such that we can subsequently align all of them in a scene map. Figure 3 depicts images

in a sample of visual clusters. Due to the strict matching process, images in each visual

cluster are quite similar. The last cluster at the bottom appear to be diverse, but close

observation reveals that all images are connected—that is, share a common rigid image

part—with the first image in the cluster, that is the cluster center.

3.4 Discussion

Different strategies are followed for clustering in existing research works. For instance,

Crandall et al . [10] and Yunpeng et al . [24] use mean-shift to perform geo-clustering

alone and mine high-density locations corresponding to popular places. On the other

hand, a second layer of visual clustering follows in other approaches, using different

algorithms including k-means ([19]) and agglomerative clustering ([34],[11],[46]). For

geo-clustering, Kenedy et al . [19] and Zhenget al . [46] use the same algorithm as for

visual clustering, whereas Quack et al . [34] and Gammeter et al . [11] simply quantize

locations into overlapping rectangular tiles. There are also [23], [39] and [9] which

perform visual clustering alone. Naturally, this does not scale well.

The main drawback of k-means and agglomerative clustering is that there is no

control over the maximal intra-cluster distance. This is crucial because it may lead to

geo-clusters with photos taken too far apart, or visual clusters with photos that have

too few inliers. Note that k-means requires a vector space anyway, so it cannot use the



Scene maps
[Avrithis et al. 2010]

• the image associated to the center of a view cluster shares at least
one rigid object with all other images in the cluster

• treat this image as a reference for the cluster and align all other
images to it

• initial estimates available from the view clustering stage—only local
optimization needed

• construct a 2D scene map by grouping similar local features

• extend index, retrieval, and spatial matching for scene maps



View cluster alignment—example

Palau Nacional, Montjuic, Barcelona—input images
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Palau Nacional, Montjuic, Barcelona—input images



View cluster alignment—example

Palau Nacional, Montjuic, Barcelona—aligned images
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Palau Nacional, Montjuic, Barcelona—aligned images



View cluster alignment—example

Palau Nacional, Montjuic, Barcelona—aligned images



Scene map construction

• F (p): the union of features over all images in visual cluster Cv(p)
after alignment

position aligned to reference image p feature set of photo q

F (p) =
⋃

q∈Cv(p)

{( Hqpx ,w) : (x,w) ∈ Fq }

union over all photos q of Cv(p) (position, visual word)

• apply spatial KVQ separately to features mapped to each visual
word

• join the resulting codebooks into a single scene map S(p)
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position aligned to reference image p feature set of photo q

F (p) =
⋃

q∈Cv(p)

{( Hqpx ,w) : (x,w) ∈ Fq }

union over all photos q of Cv(p) (position, visual word)

• apply spatial KVQ separately to features mapped to each visual
word

• join the resulting codebooks into a single scene map S(p)



Scene map construction—example

visual cluster containing 30 images of Palau Nacional, Montjuic



Scene map construction—example

before vector quantization



Scene map construction—example

after vector quantization



Scene map indexing

index construction

• scene maps and images have the same representation—sets of
features

• index all scene maps by visual word in an inverted file

query

• re-rank using the single correspondence assumption [Philbin et al.
2007]

• whenever a scene map S(p) is found relevant, all images q ∈ Cv(p)
are retrieved as well



European Cities 1M dataset (EC1M)

• 1, 081 images from Barcelona annotated into 35 groups

• all geo-tagged Flickr images

17 landmark groups 18 non-landmark groups

Publicly available: http://image.ntua.gr/iva/datasets/ec1m/

http://image.ntua.gr/iva/datasets/ec1m/


European Cities 1M dataset (EC1M)

• 908, 859 distractor images from 21 European cities, excluding
Barcelona

• most depict urban scenery like the ground-truth

Publicly available: http://image.ntua.gr/iva/datasets/ec1m/

http://image.ntua.gr/iva/datasets/ec1m/


Mining statistics—scene maps

• 1M images, 58 hours, single machine (8GB RAM), landmarks and
non-landmarks



Mining statistics—related work

• [Chum et al. 2009] web-scale clustering: 5M images, 28 hours,
single machine (64GB RAM), popular subsets only

• [Agarwal et al. 2009] Rome in a day: 150K images, 24 hours, 500
cores

• [Frahm et al. 2010] Rome in a cloudless day: 3M images, 24 hours,
GPU

• [Heath et al. 2010] image webs: 200K images, 4,5 hours, 500 cores



Retrieval comparisons

• baseline: bag-of-words with fast spatial matching [Philbin et al.
2007]

• QE1: iterative query expansion, re-query using the retrieved images
and merge results, 3 times iteratively

• QE2: create a scene map using the initial query’s result and
re-query once

• both QE schemes similar to total recall [Chum et al. 2007]

query timing

Method time mAP

Baseline BoW 1.03s 0.642
QE1 20.30s 0.813
QE2 2.51s 0.686
Scene maps 1.29s 0.824



Retrieval statistics
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Outline

1 Visual search, local features and bag-of-words

2 Local features based on distance maps

3 Geometry indexing: feature map hashing

4 Relaxed spatial matching and re-ranking

5 Photo collections: view clustering and scene maps

6 Location and landmark recognition

7 Implementation: ivl library



Location and landmark recognition
[Y. Kalantidis et al. 2011]

• assume that a subset of similar photos are correctly geo-tagged, and
not too far apart

• recognize the location where the query photo is taken, as the
centroid of the most populated spatial (geo) cluster

• cross-validate locations and text (title, tags) of similar images with
Geonames entries and geo-referenced Wikipedia articles

• link to known landmarks or points of interest



Location recognition—examples



Landmark recognition—examples



http://viral.image.ntua.gr

http://viral.image.ntua.gr


Query



Results



Similar of similar



Similar of similar



Similar of similar



Suggested tags



Related wikipedia articles



Related wikipedia articles



Visual similarity



Visual similarity
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Recall feature point matching

1 construct the m× n proximity matrix G with elements

gij = exp(−d2ij/2σ2)

2 perform singular value decomposition of G

G = USV T

where U, V are orthogonal matrices of dimension m,n and S is a
non-negative diagonal m× n matrix

3 replace each diagonal element sij of S by 1 and reconstruct

P = UEV T

4 finally, associate points ai and bj if element pij of P is the greatest
element in its row and its column



Matlab code

function [m1 , m2] =

match( x1, y1,

x2, y2 , F s)

[Ax1 , Ax2] = meshgrid (x1, x2);

[Ay1 , Ay2] = meshgrid (y1, y2);

D = sqrt((Ax1 - Ax2) .^ 2 + (Ay1 - Ay2) .^ 2);

G = exp(-D .^ 2 ./ (2 * s ^ 2));

[U, S, V] = svd (G);

E = S > 0;

P = U * E * V’ ;

[tmp , c] = max (P, [], 2);

[tmp , r] = max (P, [], 1);

match = r(c) == (1 : length(c) );

m1 = find(match );

m2 = c(match)’;



ivl C++ code

template <class F> ret <array <F>, array <F> >

match(const array <F>& x1, const array <F>& y1,

const array <F>& x2, const array <F>& y2, F s)

{

array_2d <F> Ax1 , Ax2 , Ay1 , Ay2 , U, S, V, tmp;

_(Ax1 , Ax2) = meshgrid ++(x1 , x2);

_(Ay1 , Ay2) = meshgrid ++(y1 , y2);

array_2d <F> D = sqrt((Ax1 - Ax2) ->* 2 + (Ay1 - Ay2) ->* 2);

array_2d <F> G = exp(-D ->* 2 / (2 * _[s] ->* 2));

_(U, S, V) = svd++(G);

array_2d <F> E = S > 0;

array_2d <F> P = U ()* E ()* V(!_);

array <int > c, r;

_(tmp , c) = max ++(P, _ , 2);

_(tmp , r) = max ++(P, _ , 1);

array <bool > match = r[c] == rng(0, c.length () - 1);

return _(find(match),

c[match ]);

}



ivl library
(Kontosis and Avrithis, expected 2011)

• C++ template library, compatible to STL

• supports most types, syntax and built-in operations of Matlab
language

• fully optimized: minimal overhead/temporaries/copying; all array
expressions boil down to a single for loop

• uses multiple CPU cores

• integrated with basic image functionalities of OpenCV

• integrated with most common LAPACK routines

plans

• integration with QT to support visualization

• CUDA massively parallel implementation on GPU



Credits

Yannis Kalantidis Giorgos Tolias Christos Varitimidis Kimon Kontosis

Marios Phinikettos Phivos Mylonas Kostas Rapantzikos Yannis Avrithis



project pages
http://image.ntua.gr/iva/research

VIRaL
http://viral.image.ntua.gr

datasets
http://image.ntua.gr/iva/datasets

thank you!

http://image.ntua.gr/iva/research
http://viral.image.ntua.gr
http://image.ntua.gr/iva/datasets
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