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Abstract. A novel method for two-dimensional curve nor- to extend retrieval capabilities to video sequences separately
malization with respect to affine transformations is presentedrom still images.
in this paper, which allows an affine-invariant curve repre-  Content information in content-based retrieval systems is
sentation to be obtained without any actual loss of infor-usually modeled in terms of low-level features such as color
mation on the original curve. It can be applied as a pre-and texture composition (Avrithis et al. 1998), motion field
processing step to any shape representation, classificatioand depth maps (Doulamis et al. 2000), as well as shape at-
recognition, or retrieval technique, since it effectively decou-tributes (Xirouhakis et al. 1998). Higher-level attributes such
ples the problem of affine-invariant description from featureas semantic objects can be obtained by appropriate fusion of
extraction and pattern matching. Curves estimated from oblow-level features, especially in the context of specific ap-
ject contours are first modeled by cubic B-splines and therplications. As claimed in Persoon and Fu (1986), if the main
normalized in several steps in order to eliminate translationjnformation for description or classification of an object can
scaling, skew, starting point, rotation, and reflection transfor-be found from its boundary (contour) shape, it is natural to
mations, based on a combination of curve features includingetain only the boundary for further analysis. Such situations
moments and Fourier descriptors. may arise, for example, in the classification of silhouettes of
airplanes or satellites, in character recognition, and in doc-

Key words: Curve normalization — Affine invariants — Shape ument processing (Jiang et al. 1999). However, the study of
analysis — Image and video retrieval shape for the purpose géneral object classification, recog-
nition, or retrieval, either by itself or in combination with
other object features, is an active field of current research
(Swanson and Tewfik 1997; Yang and Cohen 1999).

There are two main reasons for this increased interest in
1 Introduction shape analysis. First, object shape can provide a very pow-

erful tool for visual image retrieval, by means ofgaery-

The recent growth of interest in multimedia applications hasby-sketch mechanism (Bimbo and Pala 1997), where user-
led to an increasing demand for efficient storage, managesketched templates are used for similarity matching over ob-
ment, and browsing of multimedia databases. Browsing hafect shapes in an image or video database. The process of
been given considerable attention after the guidelines of th&atching is performed between prototype templates and the
Moving Pictures Expert Group regarding the MPEG-4 andrough sketch of the desired object provided by the user.
MPEG-7 standards (ISO 1997, 1998; Sikora 1997). ContentSecond, content-based functionalities will be embedded in
based query, indexing, and retrieval capabilities are of majonew multimedia coding standards (ISO 1998). Towards this
importance in browsing digital image and video databasesgoal, second-generation coding techniques have been pro-
due to the large amount of information involved (Avrithis Posed (Torres and Kunt 1996), where video coding is based
et al. 1998; Doulamis et al. 1999; Xirouhakis et al. 1999b).0n segmentation and allows content-based object manipu-
Several prototype systems have been implemented to prdation (Salembier et al. 1997). Thus, shape information is
vide content-based image query and retrieval capabilitiesincluded in video object planes in the form of binary im-
including VIRAGE (Hamrapur et al. 1997), QBIC (Flickner age sequences, and can be used for the prediction of image
et al. 1995), Photobook (Pentland et al. 1996), VisualSEEKPartitions with applications to partition interpolation or ex-
(Smith et al. 1996), Netra (Ma and Manjunath 1997), MARS trapolation (Marques et al. 1998).
(Rui et al.1997), VideoQ (Chang et al. 1998), Excalibur,  Several methods have been proposed in the literature for
ClIR, and C-BIRD. Some of these systems are already at thehape analysis, modeling, and representation, ranging from

stage of commercial exploitation, while the current trend ischain coding (Freeman 1970) to polygonal approximation
(Pavlidis and Ali 1975), medial axis transform (skeleton)
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(Blum 1967), Fourier descriptors (Persoon and Fu 1986)way that all affine transformations of the same object are
curve moments (Hu 1962), B-splines (Cohen et al. 1995)also normalized to the same position. Apart from the affine
curvature scale spaces (Mokhtarian 1995), interest pointtransformation parameters, to which the normalization is in-
(Wang et al. 1998), sinusoidal transform (Pratt 1996), andvariant, no other information is discarded; the normalization
Legendre descriptors and Zernike moments (Khotanzad angdrocess consists in fact of an affine (linear) transformation
Hong 1990). Basically, most approaches exploit geometricand the shape of the original curve remains unchanged. A
features of curves, either global (e.g., moments, length, pringeneralized normalization process for determining invariants
cipal axes, elongation, or compactness) or local (e.g., interess given in Rothe et al. (1996), image normalization is tack-
points, curvature measures, or implicit polynomials) in or-led in Shen and Ip (1997), while normalization of affinely
der to achieve shape matching, recognition, or classificationdistorted shapes is discussed in Taubin and Cooper (1992).
Whatever the application, all shape analysis methods share At the same time, a number of approaches have been
a common problem: object shapes can change drastically ggoposed in the literature for curve matching under arbi-
the point of view changes due to perspective transformatrary deformations, which are based on deformable tem-
tion. Most studies have approximated the viewpoint changeplates (Bimbo and Pala 1997). The deformable templates
by an affine transformation, which is a pretty good approx- are obtained by imposing parametric transforms to the pro-
imation when the object is far from the camera, since thetotype curve, while the template curve variability is achieved
slight distortion that may result from the more general pro-in a probabilistic manner (Jain et al. 1996). Active contour
jection can be regarded as part of a deformation. In order tonodels (snakes) are also appropriate in this sense (Lai and
avoid storing or matching several “prototype” shapes corre-Chin 1995). Although deformable templates deal success-
sponding to different affine transformations (e.g., differentfully with both image noise and local contour deformations

rotation, translation, or scaling) one has to defiffine in- (due to object local dissimilarities or even occlusion), local
variants, i.e., properties that remain constant under arbitrarydeformations can often be mixed with global changes due
affine transformations. to rigid motion or affine transformations. In this sense, their

One property that most affine-invariant techniques inperformance is limited. However, improved results can be
the literature have in common is that invariance is “em-obtained when normalization is performed before employing
bedded” in the process of matching, recognition, or sim-deformable templates or active contour models, as pointed
ilarity measure estimation. For example, a similarity met-out in Ip and Shen (1998).
ric invariant to rotation, translation, and scaling based on In the context of this paper, a novel method for two-
turning functions for comparing polygonal shapes has beenlimensional (2-D) curve normalization with respect to affine
proposed in Arkin et al.(1991), and a similarity distance transformations is presented, making it possible to obtain an
based on modified Fourier descriptors was introduced in Ruaffine-invariant curve representation without any actual loss
et al. (1998). For the same purpose, moment invariants aref information on the original curve. In the case of closed
employed in Balslev (1998). Object recognition using nor-contours, the representation is also invariant to the starting
malized Fourier descriptors and neural networks has beepoint. In particular, a 2-D closed curve representing the con-
presented in Wang and Cohen (1994), while genetic algotour shape of an object is first modeled by a cubic B-spline
rithms for affine-invariant shape recognition have been pro-so that the shape is simplified and segmentation noise is re-
posed in Tsang (1997). Techniques based on local curve fealuced, and uniform curve sampling in terms of arc length
tures include local grayscale invariants based on automatiis obtained by estimating the B-spline knot points. Then
cally detected points of interest for image retrieval (Schmidthe sampled curve is normalized in several steps in order
and Mohr 1997), affine invariants based on convex hulls forto eliminate translation, scaling, skew, starting point, rota-
image registration (Yang and Cohen 1999), and local detion, and reflection transformations. Normalization is based
formation invariants for curve recognition based on implicit on a combination of curve features including moments and
polynomials (Rivlin and Weiss 1995). Another approach isFourier descriptors. All such features are globally estimated
to match two given curves by optimally evaluating the affinefrom all curve samples and no local information is used.
parameters that maximize their similarity measure. This op-The computational complexity involved is particularly low,
timization is based, for example, on curve moments (Huango that the method can be easily integrated in a real-time
and Cohen 1996) or Fourier descriptors (Persoon and Fsystem for image retrieval or video coding. Some of the
1986). main ideas of the approach followed in this paper have been

The main disadvantage of the first approach — embeddingntroduced in Avrithis et al. (2000).
invariance in the matching or recognition process — is that It is proved that each normalized curueiquely corre-
in most cases some information about the original curve issponds to a set of curves that are related through an arbitrary
lost. Meanwhile, the second approach — evaluating the affinaffine transformation. Moreover, the normalized representa-
parameters between two instances of an object — requirestéon, together with the estimated affine parameters that re-
priori knowledge of both instances, thus it can only be usedate the original curve with the normalized orempletely
for matching a particular pair of curves and not, for exam-describe the original curve, since the latter can then be re-
ple, for recognition using a neural network or some otherconstructed exactly. Based on the above completeness and
means of classification. Moreover, it usually involves a veryuniqueness properties, the curve is decomposed into global,
high computational cost. To this end, the methodnof- affine-transformation-related position, and local shape infor-
malization has been recently introduced as an alternative tanmation. Consequently, the proposed method can be applied
dealing with invariance. An image or curve can be normal-as a preprocessing step to any shape representation, classifi-
ized to a “standard” position, which is defined in such acation, recognition, or retrieval technique, since it efficiently
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decouples the problem of affine-invariant description from  Each input curve is supposed to be subjected to two
feature extraction and pattern matching. Several well-knowrkinds of transformations: parameter and coordinate trans-
curve similarity measures are employed to demonstrate théormations. Parameter transformations are due to the fact
ability of the proposed representation to maintain all curvethat curves are obtained through image segmentation, hence
information except for arbitrary affine transformations, to discretization of continuous objects is involved, leading to
which it is invariant. In all cases, it is experimentally shown segmentation noise and nonuniform sampling in terms of
to be considerably robust to shape deformations and noisearc length. Also, since object contours correspond to closed
The paper is organized as follows. Section 2 introducesurves, a point moving along the contour generates curve
the details of the environment where the proposed methodoordinates that are actually periodic functions of the arc
can be applied, the assumptions made, and the known limlength, and so an arbitrary starting point may be selected for
itations. Section 3 presents the procedure of B-spline curvéhe description of a single period. Moreover, the curve ori-
modeling and the extraction of uniform curve samples byentation might be either clockwise or counterclockwise. On
means of knot points. Section 4 describes the curve orthogahe other hand, coordinate transformations are due to the fact
nalization procedure employed to eliminate translation, scalthat images are produced by projection of three-dimensional
ing, and skew transformations, while the remaining normal-(3-D) objects onto a 2-D plane, leading to nonlinear perspec-
ization with respect to starting point, rotation, and reflectiontive transformation. Assuming that an object is far enough
is provided in Sect. 5. Finally, experiments on several realfrom the camera, this could be approximated by a linear
life and simulated images and video sequences are presenteffine transformation. The problem is to normalize a curve
in Sect. 6 to evaluate the performance, efficiency, and robustand extract a representation that is invariant to both parame-
ness of the proposed curve normalization, and conclusionter and coordinate transformations, and yet maintains all the
are drawn in Sect. 7. remaining curve information.
Parameter transformations due to nonuniform sampling
and segmentation noise are tackled by means of a B-spline
2 Problem statement curve model, as described in Sect.3. Some information is
actually lost during this procedure, since this is necessary
In the following, it is assumed that the contour shape offor noise removal and curve simplification, but the remain-
an object is available and represented by a set of orderetthg normalization steps are completely reversible. Coordi-
points forming a 2-D, planar, and closed curve. This setnate (affine) transformations are decomposed into transla-
of sampled points is obtained from image data by meangion, skewing, scaling, rotation, and reflection. A curve or-
of manual or automatic segmentation. In practice, any segthogonalization procedure is proposed for the elimination
mentation algorithm can be applied, based for example omf translation, skew, and scaling transformations based on
color or motion homogeneity, edge detection, or morpho-curve moments. Then, a normalization procedure based on
logical tools (Salembier and Pardas 1994). The M-RSSTFourier descriptors is followed for elimination of starting
algorithm (Avrithis et al. 1999 — a multiresolution imple-  point, rotation, reflection, and orientation.
mentation of the recursive shortest spanning tree algorithm
— was used in our experiments for color segmentation, as
described in Sect. 6. In the case of video sequences includedi B-spline representation
in a video database, each sequence is first partitioned into
video shots corresponding to a continuous action of a sin3.1 Curve modeling
gle camera operation, and segmentation is applied to video
frames. In this case, segmentation is enhanced by exploiB-splines have been widely employed for shape analysis and
ing motion information. In particular, 2-D parametric mo- modeling, since they possess a number of important prop-
tion models were utilized for motion segmentation (Tekalp erties such as smoothness and continuity, built-in bounded-
1995; Odobez and Bouthemy 1997) and main mobile objechess, local controllability, and shape invariance under affine
detection techniques (Xirouhakis et al. 1999a). Although thetransformation (Cohen et al. 1995). In this work, B-splines
starting point normalization presented in Sect.5 is applica-have been employed in order to obtain a smooth and contin-
ble to closed curves only, the remaining normalization stepsious representation of curves, available as dense sets of data
remain valid for open curves too. points, which in turn are generally obtained using nonuni-
It is further assumed that curves correspond to nonoverform sampling. In our case, such data sets are provided by a
lapping object boundaries that are completely known. Thismotion and/or color segmentation scheme. In the rest of this
may lead to problems related to object occlusion, which carsection we cover some of the common background in fit-
only be overcome by means of local invariants, whereaging B-splines to data sets; for more details, see for example
global features are only employed in the proposed methodCohen et al. (1995).
Unfortunately, no method is known in the literature for nor- Cubic B-splines are composite curves consisting of a
malization that can retain all curve information and at thelarge generally number of curve segments wWithcontinuity
same time deal successfully with occlusion problems, al-on the connection points. Generally,k#h order B-spline
though considerable efforts have been made — see for exanis C*~1 continuous. We will hereon consider the case of
ple (Huang and Cohen 1996). In cases where the occlusion islosed cubic B-splines. Assuming that a closed cubic B-
“small” enough, however, it can be treated as a small shapspline consists of + 1 connected curve segmemts : = 0,
deformation and tackled in the subsequent process of curve. ., n, with r;(u) = (z;(u), y;(u)), each of these segments
matching. is a linear combination of four cubic polynomial3; (u),
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k =0,1,2,3 (commonly known as basis functions) in the is employed. Specifically, fou; = 0 andup,, = n — 2, u/
parameten; € [0, 1] associated with the sample pos)tis estimated by

ri(u) = Ci—1 Qo(u) + C; Qu(v) A A \Jnsj — S %
+Cis1 Q2(u) + Civz Qs(w),  i=0,....n (1) 7 7 it lIs = si—al|
where; =0, ..., m — 1.

It can be seen that the whole B-splingconsisting of
n+1 connected curve segmemts is characterized by + 1
parameters, namely the control poifits A parameterization
of the whole curve is essential to the description of the B-

spline, considering that the variablé € [0,n + 1]. Then, . but suffers f i ) d i
for the ith segmenty’ = u + i, whereu is defined in [0,1]. noise, but suflers from nonuniform noiseé and nonunitorm
sampling. Alternatively, the inverse chord length method

The B-spline curve is then given on the basis of the curve .
segments as: (ICL) could be used for robust results, as reported in Huang

’ and Cohen (1996).
r(u') = Z ri(u) = Z ri(u’ — 1) (2)
i=0 i=0

wherer;(u" — 1) is nonzero foru in [0,1] or equallyu’ in  Assume that a set of different curves (i.e., sets of sample
[4,4+1]. Using (1), (2) can be written in a more convenient points) is available in a database. After having modeled these

The CL method is based on the fact that the chord length
between any two points is a very close approximation to the
arc length of the curve, and it assumes of constant speed of a
particle onto the curve. It is robust to uniformly distributed

3.2 Knot point reallocation

form as: sets of points with closed cubic B-splines, it can be seen that
n+3 their control points cannot decide shape similarity between
r(u') = Zci N; (W) () the curves, since generally different sets of control points
=0 may describe the same curve. For this reason, it is comfort-

able to derive for each curve the knot poipisi =0,1,.. .,
n, using the estimated control points. For closed cubic B-
splines, this is achieved from (4), or in matrix form:

whereC; are defined foi =0,...,n,andC_, =C,,,C,+1 =

Co, C,+2 = C1, andC,,43 = C,. By N;(u’) we denote the
so-called blending functions, which are simple functions of
Qr(u) (Watt and Watt 1992). Along with the control points, Py =ACy (8)
the knot points are also defined as the connection ppints wherep, is the (+ 1) x 2 matrix containing the knot points
between curve segments. Generafly,= r;(0) =r;_1(1).  andA is the (o + 1) x (n + 1) circulant matrix:

Given he fonirl pois e koot pots e be unel 123 16 0 0. 0 1/
ete ed, assuming uniform placement of the knots, since: 1/6 2/3 1/6 0... 0 O
1 2 1 A= . . . 9)
p;, = éci—l + éci + 6Ci+1 (4) : : :
1/6 0 0 0...1/6 2/3
forz =0, ..., n. In view of the above theoretical review,

It must be pointed out here that the knot points belong
he derived B-spline. However, it can be seen that for any
two curves, it is not certain that their estimated knot points
correspond, even if they are equal in number. For this reason,
they must be reallocated on each curve (Cohen et al. 1995).

one can deduce that different pairs of control and knot pointsEO ¢
may define the same B-spine curve.

Once we are given a dense setofdata curve points;,
7 =0,...,m—1, the control point€; must be determined in
order to fit an appropriate B-spline. The approach followed ; . .
in this work tries to find an approximate B-spline such thatIn particular, we place knot points equally spaced with

!/ 1 T -
the error between the observed data and their correspondir{ggpelgtcgi‘or?gtr? t?]icg ﬁtri:ave\}vvr\]lgz EEZ Egsrtnla(cntoéti[rtﬁ]n argi'm
B-spline curve is minimized. In this sense, the metric trary | . piine. vyvhen g point

is estimated during the normalization process, reallocation is

m—1 ) again performed, as described in the sequel. The underlying
=" s —r())]| (5)  reason for this method is that for any input sample curve in
§=0 the system, the reallocated knot points should always cor-
respond. Finally, a classifier based on the reallocated knot

.. B . :
where uj, j =0, ..., m —1, are appropriate parametric points could be based on minimizing a metric such as

values ofu’, should be minimized. If appropriate parametric
values ofu’ were allocated on the curve, then the minimum , l ®)
=3 :
=1

p{® — pf ]2

(10)

mean-squared error solution for the control points would be
given in matrix form as

T 1T wherea, b denote thesth andbth splines subjected to com-
Cy=(PP) P (6) parison. Other metrics can also be employed.
wheref andC; are of sizem x 2 and @ + 1) x 2, respec-
tively, and contain the given data poirgs and the control
points C;, respectively. Then x (n + 1) matrix P contains
appropriate values for the blending functions, estimated orwhat has been achieved so far by the use of B-splines for
the pointsr(u}) (Watt and Watt 1992). For the allocation the representation of a 2-D (planar) closed curve is simplifi-
of parametric values ofi/, the chord length (CL) method cation of the curve shape, reduction of segmentation noise,

4 Curve orthogonalization
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and obtaining uniform curve sampling in terms of the arcn,(s) = N(s)(s — u(9))
Iength. Acurve orthogonallzatlon procedur_e is presented in _1(r0 1-1] [0, O X — [l
this section, as the first stage of normalization. This proce- = _ (16)
! : c : V207|111 0 oy Y — ly
dure effectively normalizes a curve with respect to possi-
ble translation, skewing, and scaling, and reduces an affinehere 1(s) = [mio(S) mox(S)]" and N(s) denotes the X
transformation to an orthogonal one, i.e., a transformatior2 normalization matrix of s. Although the dependence of
that involves only rotation or reflection. parametersgu,, [, oy, 0y, Ty, andr, on sis omitted for
simplicity, the normalization matrix is still a function ef It
can be seen that curgg obtained from step 2 above satisfies
4.1 Orthogonalization procedure mio(Sz) = mo(Sz) = 0 andmao(sz) = moz(sz) = 1. The extra
rotation and scaling of steps 3 and 4 are required so that
mi1(nq(S)) = 0. The following proposition summarizes the
necessary and sufficient conditions for curve normalization
(see Appendix A for the proof).

Lets, = [z; »]",i=0,1,..., N — 1, be N curve points
obtained through B-spline modeling. A2 N matrix no-
tations = [$S; - .. Sy—1] will be used next to represent the
curve, permitting convenient notation of transformations thatProposition 1. For every initial curve s, the normalized
involve multiplication by 2x 2 matrices. In a similar fash- curve n,(s) defined in (12)<15) has the following proper-
ion, the horizontal and vertical coordinates of the points will ties;

be represented by theXd N vectorsx = [zg x1...2n_1]

andy = [yo y1 . ..yn_1], respectively. For each cune the m10(na(9)) = mo1(na(9)) = mui(na(9) =0,

(p,q)-order moments m20(1a(9)) = moz(na(9)) = 1 17)
1 V-1 Moreover, the above conditions can only be achieved if

Mpg(S) = — Z aPy? (11) the rotation angle Ao used in normalization step 3 is equal to
N kr/2+m/4, k€ Z.

of order up to two are used for the construction of the corre-  Conditions (17) actually imply that the matrix rep-
spondingnormalized curve n,(s). Without loss of generality, resentation of a normalized curve is orthogonal; that is,
it is assumed from now on thatdoes not represent a line 7a(9(n4(9))" = 12, wherel, is the 2x 2 identity matrix.
segment, so thatyg(s) # 0 andmoz(s) # 0. In such a case, As a consequence, it will be seen below that this kind of

normalization steps involving division by these quantitiesnormalization also reduces an affine transformation to an
may be omitted. orthogonal one, thereby removing translation, scaling, and

The orthogonalization procedure comprises a set of lin-skew transformations. Moreover, the orthogonalization pro-

ear operations (translation, scaling, and rotation) that do nogedure is itself an affine transformation, as shown in (16);
depend on the selected starting point of the closed curve (otherefore no information on curve shape is lost, and so the
in general, on the order of the points on the curve). For simOriginal curve can always be recovered by applying the in-
plicity, in the subsequent analysis the addition or subtractiorverse transformation.

of a scalar from a vector (or from a row vector of a matrix)

denotes addition or subtraction of all its elements. ] ] . ]
4.2 Invariance to trandation, scaling, and skewing

1. The center of gravity of the curve is normalized so as

to coincide with the origin: Let us now consider two curvess' related through an affine
transformation:
Xy =X —=maos), Y1 =Y —mos) 12) y b1 Ix .
_ _ _|a z
s[5 ]
2. The curve is scaled horizontally and vertically so that o )
its second-order moments become equal to one: where matrixA is assumed to be of full rank. Otherwise,
in the degenerate case of det= 0, any 2-D data set is
X2 = 0zX1, Yo =0yYq (13) mapped onto a line and normalization is impossible. Then
_ _ p(S) = Ap(s) +1, 50 thats) = § — p(S) = A(s— (9)) = Asy.
whereo, = 1/vmao(S), oy = 1/v/moa(sy). _ Thus, after step 1 for translation normalization, curegs
3. The curve is rotated counterclockwise fay= /4: ands, are only related through the multiplication of a2
1 [x—vy, matrix. In this case, the relation between the moments of the
=R =—— 14 i
S =Rrja% =75 [Xz +y, } (14)  two curveszls 2
whereRy is a 2x 2 matrix corresponding to a counter- mao(Sy) = a*mao(s1) + b mea(sy) + 2abmas(s:) (193)
clockwise rotation by radians. moa(S)) = 2mao(Sy) + d®moa(sy) + 2cd ma(sy) (19b)

4. Finally, the curve is scaled again, exactly as in step 2:
ma1(S)) = acmao(sy) + bd mo(sy) + (ad + be) mai(s)) (19c)

Xa = TyX3,  Ya=TyY3 (15) _ _ . o _
It is then observed is that # is normalized, i.e., satisfies
wherer, = 1/v/mao(Ss), 7y = 1/v/moa(Ss). (17), then the above equations reduce to

The normalized curve,(s) = &4 can also be written as  mpo(s)) = a® + b? (20a)
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moa(s)) = ¢ +d? (20b) For this purpose, complex vector notation is used for curve
_ 5 representation instead of matrices. The horizontal and ver-
maa($;) = ac +bd (20€)  tical coordinates of the points on the curve are still rep-

This means, for example, that when a normalized curvg€Sented by theV x 1 vectorsx = [zo @1...2n-1]" and
is rotated or reflected — in which cadeis orthogonal — it Y = [Yoy1...yn—1]", respectively; however, a curve is
remains normalized. Inversely, if both curves are normal-fepresented by the compleX x 1 vectorz = x + jy =
ized, thenA should be orthogonal. In this sense Proposition[2021 .- zv-1]", Wherez; = z; +jy;, i = 0,1,...,N — 1,

2 establishes the relation of two curves in terms of theirdénotes a single curve point.
normalized counterparts (see Appendix B for the proof).

Proposition 2. If two curves s, S are related through an

affine transformation, there exists an orthogonal 2 x 2 matrix 5.1 Starting-point normalization

such that: o . .
Q The normalization procedure with respect to the starting
nq(8) = Qnq(9) (21)  point is based on the discrete Fourier transform of the com-

Moreover, the same relation holds between n,(s) anda  PIEX Vectorz representing a curve:

normalized curve 7, (S) obtained by any possible normaliza- w0 w® .. WO 2
tion procedure based on (17). wW®  wl ... N1 2

Thus, the proposed normalization procedure reduced = (@) =Wz=| . S : . |22
affine transformations to orthogonal transformations that 0 N_1 ' (1\} 12 '

. . . . w* w'— e Y T ZN-1

may contain only rotation and/or reflection (depending on

whether de_Q = 1_ or detQ = —1)3 and the_refore normalized wherew = e27/N | so thatw!™ = 1, £ € Z. Equivalently,
curves are invariant to translation, scaling, and skew trans-
formations. It is very important to note that normalization N-1 ‘

is performedwithout knowledge of the affine parametera ug = Z zw™* k=01,...,.N—-1 (23)
andt, andwithout one-to-one matching between curvesand =0

s; i.e., s is normalized W|thqut knowledge of, and vice For each element of the Fourier transform we will
versa. Note that transformation parametgis, p,,, oy, oy, employ its primary argument, or phase, defined asa;, =
Ty, Ty} are directly estimated from first- and second-orderargu =0 ¢ [0,27): uy = el® Wherer c R®*. The corre-
statistics of curve data. Furthermore, it can be seen that thigponlzjingphasévectbr i’; thena = argu = [a e ]

set of parameters along with,(S) contain all the informa- Consider now a second cuna = [ Z/g ' .12/ i\f{r;l.at
t!on about the o_riginal curve; althoughr,(s) sa_tisfies the is the same agz except for its start(i)nglpoiné\'[ 7i.1e. it is
five constraints in (17), the parameters are six becayse circularly shifted with respect ta by m samplés v;/here
andr, are related by A7 + 1/77 = 1. Theuniquenessand = (0,1 N -1} '
completeness of n,(s) is thus verified, since it contains all ey )

information abous except for the transformation for which ' = 5,,,(2) : 2} = ZG+mymodn, ¢=0,1,...,N -1 (24)

it is invariant. Since normalization is not based on match- . - g , ,
ing, any classification mechanism could be used, including _'"eMN. if we similarly defines” = 5(z) anda’ = argu’,
neural networks for instance. Finally, as demonstrated in thdt €&" be shown that), = w*"ux, k=0,1,...,N —1, or
experiments,(s) is robust to noise (caused by segmen- 4! = (q; + 2rkm/N) mod 2r, k=0,1,...,N—1 (25)
tation or sampling) and to curve dissimilarities, since it is

based on g|0ba| properties such as curve moments. Hence the circular shift betweemandZz is reduced to a

very simple relation betweemanda’. If both curvesz and

Z were known, matching between them would be feasible
5 Starting point and rotation normalization by estimatingn from (25) and then applying a circular shift

on Z'. This, however, is not possible for a normalization
At this point we have achieved the reduction of affine trans-scheme, since at any time only one curve is known. Even
formations to orthogonal ones; thus it would suffice to pro-when both curves are knowm, can be estimated only if
vide a transformation that is invariant to rotation and reflec-they correspond to exactly the same curve (apart from the
tion. The overall normalization (orthogonalization and nor- starting-point difference). In any other case, Fourier phases
malization with respect to rotation and reflection) would thenare so noisy that (25) can give no useful information. For this
be affine invariant. However, the latter normalization proce-reason we estimate siandard circular shift for each curve,
dure comprises operations that do depend on the selectdshsed on the difference between the first and last Fourier
starting point of a closed curve and, in general, on the ordephases:
of points on the curve. For example, rotation normalization
depends on the starting point while reflection normalization,z) = {N(al _ aN—l)J mod N/2 (26)
depends on rotation. For this reason, starting point normal- 4r
i;ation is presented first — rotation and reflection normaliza—and then apply the opposite shift in order to normalize the
tion then follows. curve:

In the subsequent discussion, normalization is based on

the discrete Fourier transform instead of curve momentsn,(z) = S_,(2) (27)
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It is evident from (25) that a difference between two the corresponding experiments were not extensive. However,
successive elements af (e.g.,a’, — a) is related to the re-  such cases are rare in real-world applications, and the per-
spective difference, — a; by a simple addition of 2n/N, formance of the proposed normalization is satisfactory for
modulo 2r. Thus, ifa, —ay = 0, it is straightforward to ob-  natural images.
tain an estimate of: by dividing this difference by (2/N)
and taking modulaV. For the selection of the first and last
phases, however (which is explained below), elements 52 Rotation and reflection normalization
anday_; are not successive — they differ by two samples

since the Fourier coefficients are periodic with peridd Assume that two original curves have been first orthogonal-
An extra division by 2 is necessary in this case. This ex-. 9 9

plains the above definition gf(z), where the integer part is ized and then normalized with respect to their starting point,

necessary for subsequently applying a circular shift in (27).?2?j di;hai()thljeron%rsrnit%ﬁezd t(r:llénﬁ)srrr?éﬁz(ejgncolj?\?essbgv.ilI'A;Ztisfy
It can be shown that ifV is even, the above normal- 9 P )

ization is invariant to the starting point, except for an un- s= Qs whereQ is an orthogonal & 2 matrix. We can then

certainty in the standard circular shift, which may cause anumquely decompos® as

extra shift of N/2. If N is not eye_n, an additional shift afl (g1 qi2] _ [cost —sing s, O -
sample between,(z) andn,(Z) is obtained (see Appendix Q= = |sing  cosd (29)

C for the proof). 21 G22

0 sy

wheref € [0, 7), s, = £1, s, = £1, so that there is one-to-
one relation between these parameters and the elements of
Q. In other wordsQ uniquely corresponds to a rotation be-

Proposition 3. If two curves z, 7' are related through a cir-
cular shift transformation, then

p(Z) = (p(z) + m) mod N/2 (28a) tween 0 andr degrees, as well as a horizontal and a vertical
reflection. For simplicity, we adopt again the complex vector
p(np(2)) = p(ny(2)) = 0 (28b)  notationz and Z' for the two curvess and s, respectively,
and rewrite their relation as
) = np(2), 0<p@)+m < N/2 (280 5 _ 0
T Saalin@), N/2 < p@ e < N 27 aXTagy)e (59)

» ) This brings us to the normalization procedure with re-

It can be observed that the additive relation (28a) leadspect to rotation and reflection, which comprises two steps
to starting-point normalization since we force — through thegt attempting to normalize rotation first and then reflection.
circular shift of (27) — the normallz_ed curves to satisfy (28b), The procedure is defined for curze and can be similarly
exactly as curves are orthogonalized when they are forcegpplied toz'. As in the starting-point case, normalization is
to forcing Fourier coefficients;; anduy_1 to have equal \yherea = arg3(2) = [ap a1+ - - an—1:
phases. It will be seen below that if these phases are also
set to zero, so that; andu_1 become real and positive, 1. The rotation of the initial curve is normalized according
then rotation normalization can also be achieved. However, to the average value afi anday_1:
since (28a) holds moduld//2, and not modulaV, exact 1
starting-point normalization can only be achieved wheq 0 r(z) = ((al + aN_1)> mod 7 (31a)
p(z) +m < N/2. In the opposite case, normalization results 2
in an additional shift ofN/2 in (28c). This uncertainty is

caused by the selection of coefficiemtsandu_1, and can z=ze @ (31b)
only be removed after rotation normalization, as described ) ) o ]
below. 2. The horizontal and vertical reflection is normalized ac-

Although the selection of two successive coefficients, cording to the third-order moments of:
such asa; and ap, would lead to complete starting-point _ :
invariance, the proposed selection (22‘; has two sigﬁificant V() = val21) +]U”(Zl,)
advantages: it can detemflection curve symmetries and, as = sgMmaa(21) + jsgnmai(z1) (32a)
demonstrated in the experiments, it is also robust to noise — o = ;
and to curve dissimilarities. For example, selectionagf nr(2) =22 = a2+ juy(21)s (32b)
anda;, for normalization leads to completely different — ac- where sgn denotes the signum function. Note that it would
tually random — starting points for two curves that differ be equally sufficient to define(z) = a1. The above def-
only slightly. The proposed selection ef andax_; has inition, however, leads to elimination of the starting-point
also been employed in Persoon and Fu (1998) for the deteeffect seen in (25), so that the rotation normalization pro-
tion of the starting point of curves describing line patterns;cedure presented here is invariant to the starting point, as
e.g., character boundaries. The use of other Fourier coeffiexplained below. Similarly with the curve orthogonalization
cients is also possible (Marques et al. 1998). Automatic deprocedure, theniqueness and completeness of n.,.(z) can be
tection of appropriate coefficients is usually based on theimproved (i.e., that,.(z) is invariant to rotation and reflection
magnitude separately from their phase and can deal morgansformations), and that it retains all information absut
efficiently with cases of rotational symmetries (Shen and Ipexcept for the transformations for which it is invariant (see
1997). The proposed method may fail in such cases, althoughAppendix D the proof).
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Proposition 4. If two curvess, s’ are related through an or-
thogonal transformation, i.e.,, s= Qs where Q is an orthog-
onal 2 x 2 matrix decomposed into a rotation and a reflection
matrix, then for their complex vector counterparts z, z' the
following hold:

r(Z) = (\r(2) +0) mod = (33a) a . b

(@) = n,(2) (33b) JEm———
r(n,(2)) = r(n,(2)) = 0, T ¥
v2(nr(Z) = vy (0, (Z)) = v2(n:(2)) = v, (nr(2)) =1 (33c) L SO L

where A = sgs,, = £1. c d

. . . Fig. 1la—d. Indicative color segmentation results for an image of a aar.
Note that as in (17) and (28b)’ rotation and reerCtlonOriginal image b Segmented image (first stage)Segmented image (final

transformations are removed so that normalized curves Sakesuit).d Obtained object contour
isfy (33c). Furthermore, as in curve orthogonalization, the
set of parameter$r(z), v,(2), v,(2)} together withn,(z)
contain all information about the original cunz It can
also be deduced from the proof of Proposition 4 that the As mentioned in Sect. 2, color and motion segmentation
normalization procedure presented above is independent aesults substantially affect the performance of the normal-
the starting point; that isp,(S,.(2)) = S..(n.(2)) for any ization schemes. The latter is generally true for any con-
m € {0,1,..., N — 1}, exactly asn,(S,()) = Sm(n.(9). tour modeling and curve-matching approach based on natu-
Thus rotation and reflection normalization can even be ap+al data. In the present study existing color and motion seg-
plied before starting-point normalization. In this case, it is mentation algorithms in the literature were tested in order to
very important to note that combining the results of Proposi-obtain the best possible object contours from static images
tions 2 aml 4 — curve orthogonalization followed by rotation and image sequences. In this context, the M-RSST approach
and reflection normalization, i.en,.(n.(2)) —isinvariantto  yielded adequate results for color objects in high resolu-
any affine transformation. Finally, the robustness af,.(2) tion images, while motion segmentation was performed on
to curve deformations and noise is demonstrated in the exthe basis of 2-D parametric motion models. Some indicative
periments. Note also that similar efforts have been madeolor segmentation results for a still image of a car are illus-
for rotation normalization based on higher-order momentstrated in Fig. 1. Figure 1a depicts the original image, while
(Taubin and Cooper 1992). the results of the first and final steps of the segmentation
Two final normalization steps are required after rotationscheme (M-RSST) are depicted in Fig.1b and c, respec-
and reflection normalization. First, recall that starting-pointtively. The obtained contour in terms of sample points is
normalization leaves us with an ambiguity 8%/2. It can be  depicted in Fig. 1d.
seen that after rotation normalization, the detected starting The derived object contours are next fed to the proposed
point (zo, yo) lies very close to ther-axis (o = 0) and far  orthogonalization scheme. It must be pointed out that the
from they-axis, on either side. The starting-point ambiguity proposed algorithm is employed straightforwardly, in the
is thus resolved by applying an additional circular shift of sense that no human interaction is needed with respect to the
N/2 samples ifrg < 0; otherwise the normalized curve is particular contour and any parameters are initialized once,
left intact. Second, the curve orientation is normalized to bewhen the system is set on-line. Results of the algorithm’s
ing counterclockwise. At this point the entire normalization performance on the basis of sample points on the obtained
procedure is complete. contour are illustrated in Fig.2. A sample contour consist-
ing of 100 sample points, obtained from color segmentation
on a still image containing a fish, is depicted on the upper
6 Experimental results right-hand side of Fig.2a. Two other sample curves con-
sisting of 100 points are included in the same figure, which
In this section, the performance of the proposed algorithmwere obtained through direct arbitrary affine transformations
is illustrated and appropriate algorithmic guidelines are in-of the original sample points. Following the above-described
cluded. Initially, indicative results are provided on color methodology, the sample points of all three curves were sub-
and motion segmentation to obtain object contours. Norqected to translation, skewing, scaling, rotation, and starting-
malization results are then given for all proposed normal-point normalization. In this sense, the resulting sample sets
ization steps; i.e., translation, skewing, scaling, rotation, andare depicted in Fig. 2b—d after translation, skewing/scaling,
starting-point normalization. The algorithm’s efficiency is and rotation/starting-point normalization, respectively. In all
then discussed employing affine transformations of: (a) thecases, the starting point and orientation of the curves are de-
same object, (b) the same object under nonuniform samplingioted by an arrow. It can be seen that the final sample curves
(c) similar objects, and (d) substantially different objects. At match perfectly when the initial curves are affine transfor-
the same time, the closed cubic B-splines framework is im-mations of the same sample curve, verifying the results of
plemented in order to counteract matching difficulties due toSects. 4 and 5. The computational cost of the normalization
sampling and noise problems. procedure is negligible: for curves consisting of 100 sample
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Fig. 2a—d. Intermediate and final results of the proposed orthogonalizationFig. 3a—d. Results of the proposed orthogonalization scheme on the samples
scheme on the samples of a fish contour (no resampling scheme was emof a fish contour after nonuniform resampling on input cung&riginal
ployed).a Original contour and a pair of arbitrary affine transformatidns. contour and arbitrary affine transformatiottisc,d Mismatching of curves
Curves after translation normalizatianCurves after scaling normalization. after translation, scaling, and rotation normalization, respectively

d Final curves

ferring to orthogonalized curves we will hereon assume that

points, the average execution time is of the order of 2 msB-spline modeling and knot point reallocation is performed
using a nonoptimized Matlab implementation on a 266 MHztwice, along the lines of the aforementioned methodology.
Pentium 1l PC. The execution time increases linearly with  Maybe the most important property of the proposed
sample size, as only two of the FFT coefficients are requiredapproach is its ability to align curves that appear to be
in the computations. spatially “similar”. The latter was tested over several ob-

The resulting (orthogonalized) sample sets are identicaject contours belonging to distinct object classes, such as
only when derived from affine transformations of one partic-fish, airplanes, cars, glasses, and hammers. Figure 5 illus-
ular sample curve. In this context, Fig. 3 demonstrates mistrates orthogonalization results for three distinct airplanes
matching of orthogonalized curves derived from a particularobtained through color segmentation, and consequently un-
initial contour of a fish under different (and nonuniform) der substantially different sampling. The proposed approach,
sampling. In Fig. 3a, the initial sample curve is transformedalong with the closed cubic B-spline framework, success-
using a pair of arbitrary affine transformations and the resultfully aligned spatially relative object contours. The orthog-
ing curves are then resampled using nonuniform samplingonalization results in Fig.5 should be directly compared to
The results obtained from the normalization steps are subsehose of Fig. 6, where three sample curves belonging to dis-
quently depicted in Fig. 3b—d. It can be seen that the resultsinct object classes are employed. It can be seen that, com-
are not far from the desired ones, even for significant differ-pared to those of Fig.6d, the final curves of Fig.5d yield
ences in the sampling process. However, the observed dis better resemblance on the basis of almost any matching
similarities can be annoying when the particular applicationscheme.
requires high accuracy in the curve matching. The proposed approach yields adequate results even in

The obtained results can be significantly improved bythe presence of significant amount of noise in the sample
performing a resampling scheme along with the proposedurves. In order to model noise in object contours due to
normalization schemes. Cubic B-splines have been utilizeadolor/motion segmentation pitfalls, random noise with rel-
for this purpose, as knot point fitting and reallocation ap-atively large variance values was atrtificially induced into
peared to yield adequate results in terms of uniform samplinghe available object contours. The algorithm’s performance
(see Sect. 3). Figure 4 illustrates the improvement in matchproved to be adequate even in this case, as long as the
ing between orthogonalized curves by performing B-splineobject contour was not severely deformed. Indicative ex-
modeling and knot point reallocation twice; namely, before perimental results are provided in Fig. 7. In Fig. 7a, an ob-
translation normalization and before starting-point/rotationject contour corresponding to an airplane along with two
rejection. A final resampling step is taken on the basis ofnoisy counterparts are depicted, one of which is contami-
the final curves, so as their knot points correspond andhated with twice the amount of noise (in terms of standard
the matching technique is enhanced. The plots illustrated imeviation) as the other. The respective normalization results
Fig. 4 are directly comparable with that of Fig. 3. When re- are given in Fig. 7b. It must be pointed out here that arti-
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Fig. 6a—d. Alignment of orthogonalized contours for substantially different
object contoursa Original contours of a hammer, car, and airplabe,d
Curves after translation, scaling, and rotation normalization, respectively

a Original contour and arbitrary affine transformatiobsc,d Curves after
translation, scaling, and rotation normalization, respectively

Fig. 7a—d. Orthogonalization results in the presence of random noise in
the initial curve samplesa,b Initial and final curves for three instances of
the same contourc,d Initial and final curves for spatially (semantically)
relative objects

Fig. 5a—d. Immediate alignment of orthogonalization results for seman-

tically similar (spatially similar) object contours Original contours for .
three distinct airplanesa,c,d Curves after translation, scaling, and rotation Fid. 8. Both the prototype contour 1 and the example_ con-
normalization, respectively tour 2 have been subjected to the proposed normalization

procedure. Their “normalized” counterparts were compared

on the basis of three simple metrics, namely the Euclidean
ficial noise was induced to the nonuniform samples of thedistance of. (a) the respective point sets, (b) the estimated
initial curves prior to B-spline modeling. As can be seen in Fourier descriptors, and (c) the modified Fourier descriptors
Fig. 7b, the “less” noisy instance yields superior matchingproposed in Rui et al. (1998). As was both intuitively ex-
results than the “more” noisy one. In Fig. 7c and d, relevantpected and experimentally verified, all three metrics fail for
results are depicted employing three spatially similar objectghe initial data sets. On the contrary, they prove to be indica-
(airplanes). tive of the normalized curve resemblance (see Fig. 8). Each

As stated in the Introduction, object classification basedset of distances was normalized so that 0 and 1 values denote

on contour information has been tackled by several authorsabsolute resemblance and no resemblance, respectively.
and thus it is not analyzed thoroughly in this paper. However,  Finally, the proposed algorithm’s performance was suc-
some indicative classification results have been included ircessfully tested for content-based retrieval purposes based on
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Contour 1 Contour 2 Points FD __MFD trieval or even video coding, since its computational cost is
\3 i\ﬁf low.

9} = RS Nj 0.01 0.02 0.01 Enhancement and generalization of this normalization

VV \4 procedure is possible in several directions. First, it could

be modified to handle sets of connected or unconnected,

?J & 019 012 0.1 open or closed curves for the purpose of optical character

v recognition or indexing of technical line-drawing databases.

Normalization of 2-D image data apart from object contours,

SL/D @ 075 041 057 or even 3-D models and multidimensional data is also desir-

able, while a very active field of research is normalization
o\ )
& 1/,? 0.89 0.62 0.65

with respect to perspective transformation. Such subjects are
oL Appendix A: Proof of Proposition 1
V C;g 076 025 032

currently under investigation.
The restriction thas does not represent a straight-line seg-
Fig. 8. Indicative estimated contour distances for classification purposesment IS requ'.red so that under any translat_lon, rotation or
(FD, Fourier DescriptorsMFD, Modified Fourier Descriptors) nonzero scaling transformatiors, does not lie on ther
or y axis, thusmao(s) # 0, mpa(s) # 0 and all quanti-
ties involved in (12)—(15) can be defined. It can be seen
contour similarity on a small database containing 50 still im- that mio(s1) = moi(s1) = 0. This property is also retained
ages of 5 visually distinct object classes: namely, airplanesfor n.(s) = s, since the remaining normalization steps
cars, fish, hammers, and glasses. To obtain best results, pagnly involve scaling and rotation. It is also evident that
ticular care was taken so that the main object contours werg20(S2) = mo2(Sz) = m20(S4) = mo2(Ss) = 1. It is thus ob-
successfully extracted. In Fig. 9, relevant experimental reserved that
sults are illustrated for an input image containing a airplane. 1 T
The input image is depicted in Fig. 9a, its extracted contour”11(Ss) = Xay3 = E(Xz —Yo)(X2 +Yy)
is shown in Fig. 9b, while the retrieved images are given in 1
descending contour similarity in Fig.9c. Similar results for = é(mzo(sz) —mo2(S)) =0 1)
an input image containing a car are given in Fig. 10. It must
be pointed out for Fig.9a that by utilizing only the object SO thatmii(ss) = maa(Ss)/(mao(Ss)moz(ss))/? = 0, and
contour attribute, a fish could yield higher resemblance to arthereforen,(s) satisfies (17). If angl&y = 7/4 is substi-
F-15 aircraft than a Stealth aircraft would. For such reasonstuted by an arbitrary anglé in (14), then
the proposed methodology could be employed along with
other image attributes such as color and texture informatiorss = RyS; =
in an integrated content-based retrieval system. It should be
noted finally that the proposed technique concentrates onland (1) is rewritten as
on curve normalization and does not treat the shape retrieval

= T
problem by itself; therefore, the results presented in thismll(s(”) = X3Y3

X COSY — Y, sind @)
X2 SinY +y, cosy

section can be characterized as indicative. Apart from the = sinJ cosy (szg - Yzyg)
normalization scheme, a real-world shape retrieval system +(cog ¥ — sirf ) (xay3)
would also require a suitable shape-matching algorithm. T
= c0s(2) (x2y) (3)
_ so in order formji(s3) to be always equal to zero for any
7 Conclusions — further work initial curve, # must satisfy cos@ = 0 and therefore take

valueskr /2 +7 /4, k € Z.
Using the curve normalization procedure presented in this
paper it is possible to obtain an affine-invariant curve repre-
sentation without any actual loss of information on the orig- Appendix B: Proof of Proposition 2
inal curve. The procedure can be applied as a preprocessing
step to any shape representation, classification, recognitiof;rom (16),74(s) = N(S)(s — u(9)) = N(9)s1 and n,(s) =
or retrieval technique, since it effectively decouples the probN(s)s; = N(s)As;. Sinces and s’ are not line segments,
lem of affine-invariant description from feature extraction detN(s) = o,.0,7,7,/v2 # 0 (and similarly forN(s)), so
and pattern matching. This is verified by employing a num-the two normalization matrices are nonsingular and we can
ber of well-known curve-matching methods in the contextdefine
of content-based retrieval from image and video databases.
In all cases, the proposed normalization is experimentallyQ = N(S)A[N(9)] * = [
shown to be considerably robust to shape deformations and
noise. Moreover, the technique is very efficient and can beso thatn,(s) = Qn,(s). Now since bothn,(s) and n,(s)
integrated into any real-time system for content-based reare normalized, we obtain from (19)

q11 fhz] )
q21 g22
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F-15

Supermrry Fghier

mao(na(s)) = ¢f1 + ¢, = 1 (38a)
moAna(S)) = 631+ g5 = 1 (38b)
mo2(na(S)) = q11g21 + q12g22 = 0 (38¢c)

Thus QQ" = Q'Q = I, and Q is an orthogonal ma-
trix, meaning that,(s) andn,(s) differ only in a rotation

Fig. 9a—. Image retrieval results (query-by-
example) based on contour similarity for an
input image containing an airplareelnput im-
age.b Extracted contourc Retrieved images

Fig. 10a—. Image retrieval results for an input
image containing a caa Input imageb Extracted
contour.c Retrieved images

transformation (if de@ = 1), plus a possible reflection trans-
formation when de@ = —1.

Now let N(s) be another normalization scheme fer
yielding a normalized curvey,(s) = N()s;. In this case
we can defineQ = N(S)[N(9)] ! so thatri,(s) = Qnq(9),
and since both,(s) and,(s) are normalized, we can sim-
ilarly conclude thatQ is orthogonal. Therefore all possible
normalization schemes based on (17) result in a curve that
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is related to the proposed,(s) by a mere rotation (or re-

flection).

Appendix C: Proof of Proposition 3

If Z = S,,(2), then (25) holds and we can substitute =
(a1 + 2rm/N) mod 2r anda’y_; = (axy—1 — 27m/N) mod
2w into

)= | 3 (dh — div )| mod /2 (39)

Moreover, if N is even,N/2 is integer and we can in-
terchange the integer part| and modN/2 operators. This

gives
p(Z) = (L]:T(al — aNl)J mod N/2 +m> mod N/2 (40)

which leads to (28a). Now considering thaf(z) is obtained

from z through a circular shift ofV — p(z), we can use (28a)

for z andn,(2):

p(np(2)) = p(Sn—p)(2))

= (@) + (N —p(2))) modN/2=0 (41)

and a similar argument fa andn,, () leads to (28b). Next,

consider thatn,(z) = S_,(2) andn,(Z') = S_,@(Z) =
Sm—pz)(2), S0 thatn,(Z') = Spey+m—p@)(np(2)). But then
we can substitute

p(Z) = (p(2) + m) mod N/2
_ [ @) +m, 0<p(2+m< N/2 "
@ rm-N2 N2<p@rm<n D

into the previous relation, which leads to (28c). Finally, note

that if N is not even, interchanging the integer patt and
mod N/2 operators in (39) may lead to an error fl

sample in the estimation @{z’) from p(z), possibly causing

an additional shift oft1 sample between,(z) andn,(Z').

Appendix D: Proof of Proposition 4

If s= Qs andQ is decomposed as in (29), then (30) holds
and we can find a relation between the discrete Fourier trans-

formsu = 3(2) andu’ = $(2):

N-1 N-1
uj, = E 2wk = 5,lf g (z; + jAy)w ™
=0 =0

szewuk, A=1
- swewu}k\,_k, A=-1
fork=0,1,...,N—1, where\ = s;s, = £1. If we evaluate
the phases = argu anda’ = argu’, (43) leads to

(43)

, ap + 60 +args,, A=1
a, =
! —an-1t+6+args,, A=-1
A=1

an—1+6+args,,
0,9\/'_1 = { (44)

—ag + 0 +args,, =-1

Adding the previous two relations, we get; (+ a’y_;)
mod 2r = (A\(a1 + ay_1) + 20) mod 2r, sinces, = +£1 and

thus (2arg,) mod2r = 0. From the definition (31a) of

r(2), (33a) follows immediately. _
Now evaluation ofz; from (31b) yieldsz; = z/ e 1"®) =
sz (X +jAy)ell?="@) | If we define

1 Ar(2) +0 € [0,7)
l(z) = (45)
-1, M(@2+0¢€|[n2r)
then from (33a) it follows that
Z, = 5, (x + Ay)el@ —(Or@+o)modm)
= 5,12 (x +jAy)e V@
s:l(2)z2, A=1
_ [z s)
sxl(@)z7, A=-1
so thatx] = s,l(2)xx and y; = Aszl(2)y; = s,l(2)y;.

Hencex) andy] differ from x; andy, only in their signs,
and calculation of their third-order moments in (32a) gives
v5:(Z4) = $xl(2)v5(21) andvy(Z'1) = s, l(2)vy(z1). Subsequent
normalization (32b) gives, = (s.1(2))?v.(z1)x1 = X and
similarly y, = y,, and (33b) follows. Finally, (33c) can be
directly verified using (32) and (33a).
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