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Abstract. A novel method for two-dimensional curve nor-
malization with respect to affine transformations is presented
in this paper, which allows an affine-invariant curve repre-
sentation to be obtained without any actual loss of infor-
mation on the original curve. It can be applied as a pre-
processing step to any shape representation, classification,
recognition, or retrieval technique, since it effectively decou-
ples the problem of affine-invariant description from feature
extraction and pattern matching. Curves estimated from ob-
ject contours are first modeled by cubic B-splines and then
normalized in several steps in order to eliminate translation,
scaling, skew, starting point, rotation, and reflection transfor-
mations, based on a combination of curve features including
moments and Fourier descriptors.
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1 Introduction

The recent growth of interest in multimedia applications has
led to an increasing demand for efficient storage, manage-
ment, and browsing of multimedia databases. Browsing has
been given considerable attention after the guidelines of the
Moving Pictures Expert Group regarding the MPEG-4 and
MPEG-7 standards (ISO 1997, 1998; Sikora 1997). Content-
based query, indexing, and retrieval capabilities are of major
importance in browsing digital image and video databases,
due to the large amount of information involved (Avrithis
et al. 1998; Doulamis et al. 1999; Xirouhakis et al. 1999b).
Several prototype systems have been implemented to pro-
vide content-based image query and retrieval capabilities,
including VIRAGE (Hamrapur et al. 1997), QBIC (Flickner
et al. 1995), Photobook (Pentland et al. 1996), VisualSEEk
(Smith et al. 1996), Netra (Ma and Manjunath 1997), MARS
(Rui et al. 1997), VideoQ (Chang et al. 1998), Excalibur,
CIIR, and C-BIRD. Some of these systems are already at the
stage of commercial exploitation, while the current trend is
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to extend retrieval capabilities to video sequences separately
from still images.

Content information in content-based retrieval systems is
usually modeled in terms of low-level features such as color
and texture composition (Avrithis et al. 1998), motion field
and depth maps (Doulamis et al. 2000), as well as shape at-
tributes (Xirouhakis et al. 1998). Higher-level attributes such
as semantic objects can be obtained by appropriate fusion of
low-level features, especially in the context of specific ap-
plications. As claimed in Persoon and Fu (1986), if the main
information for description or classification of an object can
be found from its boundary (contour) shape, it is natural to
retain only the boundary for further analysis. Such situations
may arise, for example, in the classification of silhouettes of
airplanes or satellites, in character recognition, and in doc-
ument processing (Jiang et al. 1999). However, the study of
shape for the purpose ofgeneral object classification, recog-
nition, or retrieval, either by itself or in combination with
other object features, is an active field of current research
(Swanson and Tewfik 1997; Yang and Cohen 1999).

There are two main reasons for this increased interest in
shape analysis. First, object shape can provide a very pow-
erful tool for visual image retrieval, by means of aquery-
by-sketch mechanism (Bimbo and Pala 1997), where user-
sketched templates are used for similarity matching over ob-
ject shapes in an image or video database. The process of
matching is performed between prototype templates and the
rough sketch of the desired object provided by the user.
Second, content-based functionalities will be embedded in
new multimedia coding standards (ISO 1998). Towards this
goal, second-generation coding techniques have been pro-
posed (Torres and Kunt 1996), where video coding is based
on segmentation and allows content-based object manipu-
lation (Salembier et al. 1997). Thus, shape information is
included in video object planes in the form of binary im-
age sequences, and can be used for the prediction of image
partitions with applications to partition interpolation or ex-
trapolation (Marques et al. 1998).

Several methods have been proposed in the literature for
shape analysis, modeling, and representation, ranging from
chain coding (Freeman 1970) to polygonal approximation
(Pavlidis and Ali 1975), medial axis transform (skeleton)
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(Blum 1967), Fourier descriptors (Persoon and Fu 1986),
curve moments (Hu 1962), B-splines (Cohen et al. 1995),
curvature scale spaces (Mokhtarian 1995), interest points
(Wang et al. 1998), sinusoidal transform (Pratt 1996), and
Legendre descriptors and Zernike moments (Khotanzad and
Hong 1990). Basically, most approaches exploit geometric
features of curves, either global (e.g., moments, length, prin-
cipal axes, elongation, or compactness) or local (e.g., interest
points, curvature measures, or implicit polynomials) in or-
der to achieve shape matching, recognition, or classification.
Whatever the application, all shape analysis methods share
a common problem: object shapes can change drastically as
the point of view changes due to perspective transforma-
tion. Most studies have approximated the viewpoint change
by anaffine transformation, which is a pretty good approx-
imation when the object is far from the camera, since the
slight distortion that may result from the more general pro-
jection can be regarded as part of a deformation. In order to
avoid storing or matching several “prototype” shapes corre-
sponding to different affine transformations (e.g., different
rotation, translation, or scaling) one has to defineaffine in-
variants, i.e., properties that remain constant under arbitrary
affine transformations.

One property that most affine-invariant techniques in
the literature have in common is that invariance is “em-
bedded” in the process of matching, recognition, or sim-
ilarity measure estimation. For example, a similarity met-
ric invariant to rotation, translation, and scaling based on
turning functions for comparing polygonal shapes has been
proposed in Arkin et al. (1991), and a similarity distance
based on modified Fourier descriptors was introduced in Rui
et al. (1998). For the same purpose, moment invariants are
employed in Balslev (1998). Object recognition using nor-
malized Fourier descriptors and neural networks has been
presented in Wang and Cohen (1994), while genetic algo-
rithms for affine-invariant shape recognition have been pro-
posed in Tsang (1997). Techniques based on local curve fea-
tures include local grayscale invariants based on automati-
cally detected points of interest for image retrieval (Schmid
and Mohr 1997), affine invariants based on convex hulls for
image registration (Yang and Cohen 1999), and local de-
formation invariants for curve recognition based on implicit
polynomials (Rivlin and Weiss 1995). Another approach is
to match two given curves by optimally evaluating the affine
parameters that maximize their similarity measure. This op-
timization is based, for example, on curve moments (Huang
and Cohen 1996) or Fourier descriptors (Persoon and Fu
1986).

The main disadvantage of the first approach – embedding
invariance in the matching or recognition process – is that
in most cases some information about the original curve is
lost. Meanwhile, the second approach – evaluating the affine
parameters between two instances of an object – requires a
priori knowledge of both instances, thus it can only be used
for matching a particular pair of curves and not, for exam-
ple, for recognition using a neural network or some other
means of classification. Moreover, it usually involves a very
high computational cost. To this end, the method ofnor-
malization has been recently introduced as an alternative to
dealing with invariance. An image or curve can be normal-
ized to a “standard” position, which is defined in such a

way that all affine transformations of the same object are
also normalized to the same position. Apart from the affine
transformation parameters, to which the normalization is in-
variant, no other information is discarded; the normalization
process consists in fact of an affine (linear) transformation
and the shape of the original curve remains unchanged. A
generalized normalization process for determining invariants
is given in Rothe et al. (1996), image normalization is tack-
led in Shen and Ip (1997), while normalization of affinely
distorted shapes is discussed in Taubin and Cooper (1992).

At the same time, a number of approaches have been
proposed in the literature for curve matching under arbi-
trary deformations, which are based on deformable tem-
plates (Bimbo and Pala 1997). The deformable templates
are obtained by imposing parametric transforms to the pro-
totype curve, while the template curve variability is achieved
in a probabilistic manner (Jain et al. 1996). Active contour
models (snakes) are also appropriate in this sense (Lai and
Chin 1995). Although deformable templates deal success-
fully with both image noise and local contour deformations
(due to object local dissimilarities or even occlusion), local
deformations can often be mixed with global changes due
to rigid motion or affine transformations. In this sense, their
performance is limited. However, improved results can be
obtained when normalization is performed before employing
deformable templates or active contour models, as pointed
out in Ip and Shen (1998).

In the context of this paper, a novel method for two-
dimensional (2-D) curve normalization with respect to affine
transformations is presented, making it possible to obtain an
affine-invariant curve representation without any actual loss
of information on the original curve. In the case of closed
contours, the representation is also invariant to the starting
point. In particular, a 2-D closed curve representing the con-
tour shape of an object is first modeled by a cubic B-spline
so that the shape is simplified and segmentation noise is re-
duced, and uniform curve sampling in terms of arc length
is obtained by estimating the B-spline knot points. Then
the sampled curve is normalized in several steps in order
to eliminate translation, scaling, skew, starting point, rota-
tion, and reflection transformations. Normalization is based
on a combination of curve features including moments and
Fourier descriptors. All such features are globally estimated
from all curve samples and no local information is used.
The computational complexity involved is particularly low,
so that the method can be easily integrated in a real-time
system for image retrieval or video coding. Some of the
main ideas of the approach followed in this paper have been
introduced in Avrithis et al. (2000).

It is proved that each normalized curveuniquely corre-
sponds to a set of curves that are related through an arbitrary
affine transformation. Moreover, the normalized representa-
tion, together with the estimated affine parameters that re-
late the original curve with the normalized one,completely
describe the original curve, since the latter can then be re-
constructed exactly. Based on the above completeness and
uniqueness properties, the curve is decomposed into global,
affine-transformation-related position, and local shape infor-
mation. Consequently, the proposed method can be applied
as a preprocessing step to any shape representation, classifi-
cation, recognition, or retrieval technique, since it efficiently
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decouples the problem of affine-invariant description from
feature extraction and pattern matching. Several well-known
curve similarity measures are employed to demonstrate the
ability of the proposed representation to maintain all curve
information except for arbitrary affine transformations, to
which it is invariant. In all cases, it is experimentally shown
to be considerably robust to shape deformations and noise.

The paper is organized as follows. Section 2 introduces
the details of the environment where the proposed method
can be applied, the assumptions made, and the known lim-
itations. Section 3 presents the procedure of B-spline curve
modeling and the extraction of uniform curve samples by
means of knot points. Section 4 describes the curve orthogo-
nalization procedure employed to eliminate translation, scal-
ing, and skew transformations, while the remaining normal-
ization with respect to starting point, rotation, and reflection
is provided in Sect. 5. Finally, experiments on several real-
life and simulated images and video sequences are presented
in Sect. 6 to evaluate the performance, efficiency, and robust-
ness of the proposed curve normalization, and conclusions
are drawn in Sect. 7.

2 Problem statement

In the following, it is assumed that the contour shape of
an object is available and represented by a set of ordered
points forming a 2-D, planar, and closed curve. This set
of sampled points is obtained from image data by means
of manual or automatic segmentation. In practice, any seg-
mentation algorithm can be applied, based for example on
color or motion homogeneity, edge detection, or morpho-
logical tools (Salembier and Pardas 1994). The M-RSST
algorithm (Avrithis et al. 1999) – a multiresolution imple-
mentation of the recursive shortest spanning tree algorithm
– was used in our experiments for color segmentation, as
described in Sect. 6. In the case of video sequences included
in a video database, each sequence is first partitioned into
video shots corresponding to a continuous action of a sin-
gle camera operation, and segmentation is applied to video
frames. In this case, segmentation is enhanced by exploit-
ing motion information. In particular, 2-D parametric mo-
tion models were utilized for motion segmentation (Tekalp
1995; Odobez and Bouthemy 1997) and main mobile object
detection techniques (Xirouhakis et al. 1999a). Although the
starting point normalization presented in Sect. 5 is applica-
ble to closed curves only, the remaining normalization steps
remain valid for open curves too.

It is further assumed that curves correspond to nonover-
lapping object boundaries that are completely known. This
may lead to problems related to object occlusion, which can
only be overcome by means of local invariants, whereas
global features are only employed in the proposed method.
Unfortunately, no method is known in the literature for nor-
malization that can retain all curve information and at the
same time deal successfully with occlusion problems, al-
though considerable efforts have been made – see for exam-
ple (Huang and Cohen 1996). In cases where the occlusion is
“small” enough, however, it can be treated as a small shape
deformation and tackled in the subsequent process of curve
matching.

Each input curve is supposed to be subjected to two
kinds of transformations: parameter and coordinate trans-
formations. Parameter transformations are due to the fact
that curves are obtained through image segmentation, hence
discretization of continuous objects is involved, leading to
segmentation noise and nonuniform sampling in terms of
arc length. Also, since object contours correspond to closed
curves, a point moving along the contour generates curve
coordinates that are actually periodic functions of the arc
length, and so an arbitrary starting point may be selected for
the description of a single period. Moreover, the curve ori-
entation might be either clockwise or counterclockwise. On
the other hand, coordinate transformations are due to the fact
that images are produced by projection of three-dimensional
(3-D) objects onto a 2-D plane, leading to nonlinear perspec-
tive transformation. Assuming that an object is far enough
from the camera, this could be approximated by a linear
affine transformation. The problem is to normalize a curve
and extract a representation that is invariant to both parame-
ter and coordinate transformations, and yet maintains all the
remaining curve information.

Parameter transformations due to nonuniform sampling
and segmentation noise are tackled by means of a B-spline
curve model, as described in Sect. 3. Some information is
actually lost during this procedure, since this is necessary
for noise removal and curve simplification, but the remain-
ing normalization steps are completely reversible. Coordi-
nate (affine) transformations are decomposed into transla-
tion, skewing, scaling, rotation, and reflection. A curve or-
thogonalization procedure is proposed for the elimination
of translation, skew, and scaling transformations based on
curve moments. Then, a normalization procedure based on
Fourier descriptors is followed for elimination of starting
point, rotation, reflection, and orientation.

3 B-spline representation

3.1 Curve modeling

B-splines have been widely employed for shape analysis and
modeling, since they possess a number of important prop-
erties such as smoothness and continuity, built-in bounded-
ness, local controllability, and shape invariance under affine
transformation (Cohen et al. 1995). In this work, B-splines
have been employed in order to obtain a smooth and contin-
uous representation of curves, available as dense sets of data
points, which in turn are generally obtained using nonuni-
form sampling. In our case, such data sets are provided by a
motion and/or color segmentation scheme. In the rest of this
section we cover some of the common background in fit-
ting B-splines to data sets; for more details, see for example
Cohen et al. (1995).

Cubic B-splines are composite curves consisting of a
large generally number of curve segments withC2 continuity
on the connection points. Generally, akth order B-spline
is Ck−1 continuous. We will hereon consider the case of
closed cubic B-splines. Assuming that a closed cubic B-
spline consists ofn + 1 connected curve segmentsri, i = 0,
. . ., n, with ri(u) = (xi(u), yi(u)), each of these segments
is a linear combination of four cubic polynomialsQk(u),
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k = 0,1,2,3 (commonly known as basis functions) in the
parameteru ∈ [0,1]:

ri(u) = Ci−1 Q0(u) + Ci Q1(u)

+Ci+1 Q2(u) + Ci+2 Q3(u), i = 0, . . . , n (1)

It can be seen that the whole B-spliner, consisting of
n+ 1 connected curve segmentsri, is characterized byn+ 1
parameters, namely the control pointsCi. A parameterization
of the whole curve is essential to the description of the B-
spline, considering that the variableu′ ∈ [0, n + 1]. Then,
for the ith segment,u′ = u + i, whereu is defined in [0,1].
The B-spline curve is then given on the basis of the curve
segments as:

r(u′) ≡
n∑

i=0

ri(u) =
n∑

i=0

ri(u
′ − i) (2)

whereri(u′ − i) is nonzero foru in [0,1] or equallyu′ in
[i, i + 1]. Using (1), (2) can be written in a more convenient
form as:

r(u′) =
n+3∑
i=0

CiNi(u
′) (3)

whereCi are defined fori = 0, . . . , n, andC−1 = Cn, Cn+1 =
C0, Cn+2 = C1, and Cn+3 = C2. By Ni(u′) we denote the
so-called blending functions, which are simple functions of
Qk(u) (Watt and Watt 1992). Along with the control points,
the knot points are also defined as the connection pointspi
between curve segments. Generally,pi = ri(0) = ri−1(1).
Given the control points, the knot points can be uniquely
determined, assuming uniform placement of the knots, since:

pi =
1
6

Ci−1 +
2
3

Ci +
1
6

Ci+1 (4)

for i = 0, . . ., n. In view of the above theoretical review,
one can deduce that different pairs of control and knot points
may define the same B-spine curve.

Once we are given a dense set ofm data curve pointssj ,
j = 0, . . ., m−1, the control pointsCi must be determined in
order to fit an appropriate B-spline. The approach followed
in this work tries to find an approximate B-spline such that
the error between the observed data and their corresponding
B-spline curve is minimized. In this sense, the metric

d2 =
m−1∑
j=0

∥∥sj − r(u′
j)

∥∥2
(5)

where u′
j , j = 0, . . ., m − 1, are appropriate parametric

values ofu′, should be minimized. If appropriate parametric
values ofu′ were allocated on the curve, then the minimum
mean-squared error solution for the control points would be
given in matrix form as

Cf = (PTP)−1PTf (6)

wheref andCf are of sizem × 2 and (n + 1) × 2, respec-
tively, and contain the given data pointssj and the control
points Ci, respectively. Them × (n + 1) matrix P contains
appropriate values for the blending functions, estimated on
the pointsr(u′

j) (Watt and Watt 1992). For the allocation
of parametric values ofu′, the chord length (CL) method

is employed. Specifically, foru′
1 = 0 andu′

max = n − 2, u′
j

associated with the sample pointsj is estimated by

u′
j = u′

j−1 + u′
max · ‖sj − sj−1‖∑m

l=2 ‖sl − sl−1‖ (7)

wherej = 0, . . ., m − 1.
The CL method is based on the fact that the chord length

between any two points is a very close approximation to the
arc length of the curve, and it assumes of constant speed of a
particle onto the curve. It is robust to uniformly distributed
noise, but suffers from nonuniform noise and nonuniform
sampling. Alternatively, the inverse chord length method
(ICL) could be used for robust results, as reported in Huang
and Cohen (1996).

3.2 Knot point reallocation

Assume that a set of different curves (i.e., sets of sample
points) is available in a database. After having modeled these
sets of points with closed cubic B-splines, it can be seen that
their control points cannot decide shape similarity between
the curves, since generally different sets of control points
may describe the same curve. For this reason, it is comfort-
able to derive for each curve the knot pointspi, i = 0,1, . . .,
n, using the estimated control points. For closed cubic B-
splines, this is achieved from (4), or in matrix form:

pf = ACf (8)

wherepf is the (n+1)×2 matrix containing the knot points
andA is the (n + 1)× (n + 1) circulant matrix:

A =




2/3 1/6 0 0 . . . 0 1/6
1/6 2/3 1/6 0 . . . 0 0

...
...

...
1/6 0 0 0. . . 1/6 2/3


 (9)

It must be pointed out here that the knot points belong
to the derived B-spline. However, it can be seen that for any
two curves, it is not certain that their estimated knot points
correspond, even if they are equal in number. For this reason,
they must be reallocated on each curve (Cohen et al. 1995).
In particular, we placel knot points equally spaced with
respect tou′ onto each curve, with the first knot at an arbi-
trary location on the spline. When the correct starting point
is estimated during the normalization process, reallocation is
again performed, as described in the sequel. The underlying
reason for this method is that for any input sample curve in
the system, the reallocated knot points should always cor-
respond. Finally, a classifier based on the reallocated knot
points could be based on minimizing a metric such as

d2 =
l∑

i=1

∥∥∥p(a)
i − p(b)

i

∥∥∥2
(10)

wherea, b denote theath andbth splines subjected to com-
parison. Other metrics can also be employed.

4 Curve orthogonalization

What has been achieved so far by the use of B-splines for
the representation of a 2-D (planar) closed curve is simplifi-
cation of the curve shape, reduction of segmentation noise,
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and obtaining uniform curve sampling in terms of the arc
length. Acurve orthogonalization procedure is presented in
this section, as the first stage of normalization. This proce-
dure effectively normalizes a curve with respect to possi-
ble translation, skewing, and scaling, and reduces an affine
transformation to an orthogonal one, i.e., a transformation
that involves only rotation or reflection.

4.1 Orthogonalization procedure

Let si = [xi yi]T, i = 0,1, . . ., N − 1, beN curve points
obtained through B-spline modeling. A 2× N matrix no-
tation s = [s0s1 . . . sN−1] will be used next to represent the
curve, permitting convenient notation of transformations that
involve multiplication by 2× 2 matrices. In a similar fash-
ion, the horizontal and vertical coordinates of the points will
be represented by the 1× N vectorsx = [x0 x1 . . . xN−1]
andy = [y0 y1 . . . yN−1], respectively. For each curves, the
(p,q)-order moments

mpq(s) =
1
N

N−1∑
i=0

xp
i y

q
i (11)

of order up to two are used for the construction of the corre-
spondingnormalized curve na(s). Without loss of generality,
it is assumed from now on thats does not represent a line
segment, so thatm20(s) /= 0 andm02(s) /= 0. In such a case,
normalization steps involving division by these quantities
may be omitted.

The orthogonalization procedure comprises a set of lin-
ear operations (translation, scaling, and rotation) that do not
depend on the selected starting point of the closed curve (or,
in general, on the order of the points on the curve). For sim-
plicity, in the subsequent analysis the addition or subtraction
of a scalar from a vector (or from a row vector of a matrix)
denotes addition or subtraction of all its elements.

1. The center of gravity of the curve is normalized so as
to coincide with the origin:

x1 = x − m10(s), y1 = y − m01(s) (12)

whereµχ = m10(s), µy = m01(s).
2. The curve is scaled horizontally and vertically so that

its second-order moments become equal to one:

x2 = σxx1, y2 = σyy1 (13)

whereσx = 1
/√

m20(s1), σy = 1
/√

m02(s1).
3. The curve is rotated counterclockwise byθ0 = π/4:

s3 = Rπ/4s2 =
1√
2

[
x2 − y2
x2 + y2

]
(14)

whereRθ is a 2× 2 matrix corresponding to a counter-
clockwise rotation byθ radians.

4. Finally, the curve is scaled again, exactly as in step 2:

x4 = τxx3, y4 = τyy3 (15)

whereτx = 1
/√

m20(s3), τy = 1
/√

m02(s3).

The normalized curvena(s) ≡ s4 can also be written as

na(s) = N(s)(s − µ(s))

=
1√
2

[
τx 0
0 τy

] [
1 −1
1 1

] [
σx 0
0 σy

] ([
x − µx

y − µy

])
(16)

where µ(s) = [m10(s) m01(s)]T and N(s) denotes the 2×
2 normalization matrix of s. Although the dependence of
parametersµχ, µy, σχ, σy, τχ, and τy on s is omitted for
simplicity, the normalization matrix is still a function ofs. It
can be seen that curves2 obtained from step 2 above satisfies
m10(s2) = m01(s2) = 0 andm20(s2) = m02(s2) = 1. The extra
rotation and scaling of steps 3 and 4 are required so that
m11(na(s)) = 0. The following proposition summarizes the
necessary and sufficient conditions for curve normalization
(see Appendix A for the proof).

Proposition 1. For every initial curve s, the normalized
curve na(s) defined in (12)–(15) has the following proper-
ties:

m10(na(s)) = m01(na(s)) = m11(na(s)) = 0 ,

m20(na(s)) = m02(na(s)) = 1 (17)

Moreover, the above conditions can only be achieved if
the rotation angle θ0 used in normalization step 3 is equal to
kπ/2 +π/4, k ∈ Z.

Conditions (17) actually imply that the matrix rep-
resentation of a normalized curve is orthogonal; that is,
na(s)(na(s))T = I2, where I2 is the 2× 2 identity matrix.
As a consequence, it will be seen below that this kind of
normalization also reduces an affine transformation to an
orthogonal one, thereby removing translation, scaling, and
skew transformations. Moreover, the orthogonalization pro-
cedure is itself an affine transformation, as shown in (16);
therefore no information on curve shape is lost, and so the
original curve can always be recovered by applying the in-
verse transformation.

4.2 Invariance to translation, scaling, and skewing

Let us now consider two curvess, s′ related through an affine
transformation:

s′ = As + t =

[
x′
y′

]
=

[
a b
c d

] [
x
y

]
+

[
tx
ty

]
(18)

where matrixA is assumed to be of full rank. Otherwise,
in the degenerate case of detA = 0, any 2-D data set is
mapped onto a line and normalization is impossible. Then
µ(s′) = Aµ(s) + t, so thats′

1 = s′ −µ(s′) = A(s −µ(s)) = As1.
Thus, after step 1 for translation normalization, curvess1
ands′

1 are only related through the multiplication of a 2× 2
matrix. In this case, the relation between the moments of the
two curves is

m20(s′
1) = a2m20(s1) + b2m02(s1) + 2abm11(s1) (19a)

m02(s′
1) = c2m20(s1) + d2m02(s1) + 2cdm11(s1) (19b)

m11(s′
1) = acm20(s1) + bdm02(s1) + (ad + bc)m11(s1) (19c)

It is then observed is that ifs1 is normalized, i.e., satisfies
(17), then the above equations reduce to

m20(s′
1) = a2 + b2 (20a)
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m02(s′
1) = c2 + d2 (20b)

m11(s′
1) = ac + bd (20c)

This means, for example, that when a normalized curve
is rotated or reflected – in which caseA is orthogonal – it
remains normalized. Inversely, if both curves are normal-
ized, thenA should be orthogonal. In this sense Proposition
2 establishes the relation of two curves in terms of their
normalized counterparts (see Appendix B for the proof).

Proposition 2. If two curves s, s′ are related through an
affine transformation, there exists an orthogonal 2×2 matrix
Q such that:

na(s′) = Qna(s) (21)

Moreover, the same relation holds between na(s) and a
normalized curve ña(s) obtained by any possible normaliza-
tion procedure based on (17).

Thus, the proposed normalization procedure reduces
affine transformations to orthogonal transformations that
may contain only rotation and/or reflection (depending on
whether detQ = 1 or detQ = −1), and therefore normalized
curves are invariant to translation, scaling, and skew trans-
formations. It is very important to note that normalization
is performedwithout knowledge of the affine parametersA
andt, andwithout one-to-one matching between curvess and
s′; i.e., s is normalized without knowledge ofs′, and vice
versa. Note that transformation parameters{µχ, µy, σχ, σy,
τχ, τy} are directly estimated from first- and second-order
statistics of curve data. Furthermore, it can be seen that this
set of parameters along withna(s) contain all the informa-
tion about the original curves; althoughna(s) satisfies the
five constraints in (17), the parameters are six becauseτχ

andτy are related by 1/τ2
x + 1/τ2

y = 1. Theuniqueness and
completeness of na(s) is thus verified, since it contains all
information abouts except for the transformation for which
it is invariant. Since normalization is not based on match-
ing, any classification mechanism could be used, including
neural networks for instance. Finally, as demonstrated in the
experiments,na(s) is robust to noise (caused by segmen-
tation or sampling) and to curve dissimilarities, since it is
based on global properties such as curve moments.

5 Starting point and rotation normalization

At this point we have achieved the reduction of affine trans-
formations to orthogonal ones; thus it would suffice to pro-
vide a transformation that is invariant to rotation and reflec-
tion. The overall normalization (orthogonalization and nor-
malization with respect to rotation and reflection) would then
be affine invariant. However, the latter normalization proce-
dure comprises operations that do depend on the selected
starting point of a closed curve and, in general, on the order
of points on the curve. For example, rotation normalization
depends on the starting point while reflection normalization
depends on rotation. For this reason, starting point normal-
ization is presented first – rotation and reflection normaliza-
tion then follows.

In the subsequent discussion, normalization is based on
the discrete Fourier transform instead of curve moments.

For this purpose, complex vector notation is used for curve
representation instead of matrices. The horizontal and ver-
tical coordinates of the points on the curve are still rep-
resented by theN × 1 vectorsx = [x0 x1 . . . xN−1]T and
y = [y0y1 . . . yN−1]T, respectively; however, a curve is
represented by the complexN × 1 vector z = x + jy =
[z0 z1 . . . zN−1]T, wherezi = xi + jyi, i = 0,1, . . . , N − 1,
denotes a single curve point.

5.1 Starting-point normalization

The normalization procedure with respect to the starting
point is based on the discrete Fourier transform of the com-
plex vectorz representing a curve:

u = 
(z) = W z =



w0 w0 · · · w0

w0 w1 · · · wN−1

...
...

...
...

w0 wN−1 · · · w(N−1)2







z0
z1
...

zN−1


(22)

wherew = ej2π/N , so thatw�N = 1,  ∈ Z. Equivalently,

uk =
N−1∑
i=0

ziw
−ki, k = 0,1, . . . , N − 1 (23)

For each element of the Fourier transform we will
employ its primary argument, or phase, defined asak =
arguk = θ ∈ [0,2π): uk = r ejθ wherer ∈ �+. The corre-
spondingphase vector is thena = argu = [a0 a1 · · · aN−1].
Consider now a second curvez′ = [z′

0 z′
1 · · · z′

N−1] that
is the same asz except for its starting point; i.e., it is
circularly shifted with respect toz by m samples, where
m ∈ {0,1, . . . , N − 1}:

z′ = Sm(z) : z′
i = z(i+m)modN , i = 0,1, . . . , N − 1 (24)

Then, if we similarly defineu′ = 
(z′) and a′ = argu′,
it can be shown thatu′

k = wkmuk, k = 0,1, . . . , N − 1, or

a′
k = (ak + 2πkm/N ) mod 2π, k = 0,1, . . . , N − 1 (25)

Hence the circular shift betweenz andz′ is reduced to a
very simple relation betweena anda′. If both curvesz and
z′ were known, matching between them would be feasible
by estimatingm from (25) and then applying a circular shift
on z′. This, however, is not possible for a normalization
scheme, since at any time only one curve is known. Even
when both curves are known,m can be estimated only if
they correspond to exactly the same curve (apart from the
starting-point difference). In any other case, Fourier phases
are so noisy that (25) can give no useful information. For this
reason we estimate astandard circular shift for each curve,
based on the difference between the first and last Fourier
phases:

p(z) =

⌊
N

4π
(a1 − aN−1)

⌋
mod N/2 (26)

and then apply the opposite shift in order to normalize the
curve:

np(z) = S−p(z)(z) (27)
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It is evident from (25) that a difference between two
successive elements ofa′ (e.g.,a′

2 − a′
1) is related to the re-

spective differencea2 −a1 by a simple addition of 2πm/N ,
modulo 2π. Thus, ifa2 − a1 = 0, it is straightforward to ob-
tain an estimate ofm by dividing this difference by (2π/N )
and taking moduloN . For the selection of the first and last
phases, however (which is explained below), elementsa1
andaN−1 are not successive – they differ by two samples
since the Fourier coefficients are periodic with periodN .
An extra division by 2 is necessary in this case. This ex-
plains the above definition ofp(z), where the integer part is
necessary for subsequently applying a circular shift in (27).

It can be shown that ifN is even, the above normal-
ization is invariant to the starting point, except for an un-
certainty in the standard circular shift, which may cause an
extra shift ofN/2. If N is not even, an additional shift of±1
sample betweennp(z) andnp(z′) is obtained (see Appendix
C for the proof).

Proposition 3. If two curves z, z′ are related through a cir-
cular shift transformation, then

p(z′) = (p(z) + m) mod N/2 (28a)

p(np(z′)) = p(np(z)) = 0 (28b)

np(z′) =

{
np(z), 0 ≤ p(z) + m < N/2

SN/2(np(z)), N/2 ≤ p(z) + m < N
(28c)

It can be observed that the additive relation (28a) leads
to starting-point normalization since we force – through the
circular shift of (27) – the normalized curves to satisfy (28b),
exactly as curves are orthogonalized when they are forced
to satisfy (17). It is also observed that (28b) is equivalent
to forcing Fourier coefficientsu1 and uN−1 to have equal
phases. It will be seen below that if these phases are also
set to zero, so thatu1 anduN−1 become real and positive,
then rotation normalization can also be achieved. However,
since (28a) holds moduloN/2, and not moduloN , exact
starting-point normalization can only be achieved when 0≤
p(z) + m < N/2. In the opposite case, normalization results
in an additional shift ofN/2 in (28c). This uncertainty is
caused by the selection of coefficientsu1 anduN−1, and can
only be removed after rotation normalization, as described
below.

Although the selection of two successive coefficients,
such asa1 and a2, would lead to complete starting-point
invariance, the proposed selection (22) has two significant
advantages: it can detectreflection curve symmetries and, as
demonstrated in the experiments, it is also robust to noise
and to curve dissimilarities. For example, selection ofa1
anda2 for normalization leads to completely different – ac-
tually random – starting points for two curves that differ
only slightly. The proposed selection ofa1 and aN−1 has
also been employed in Persoon and Fu (1998) for the detec-
tion of the starting point of curves describing line patterns;
e.g., character boundaries. The use of other Fourier coeffi-
cients is also possible (Marques et al. 1998). Automatic de-
tection of appropriate coefficients is usually based on their
magnitude separately from their phase and can deal more
efficiently with cases of rotational symmetries (Shen and Ip
1997). The proposed method may fail in such cases, although

the corresponding experiments were not extensive. However,
such cases are rare in real-world applications, and the per-
formance of the proposed normalization is satisfactory for
natural images.

5.2 Rotation and reflection normalization

Assume that two original curves have been first orthogonal-
ized and then normalized with respect to their starting point,
and that the normalized curves are denoted bys, s′. Ac-
cording to Proposition 2, the normalized curves will satisfy
s = Qs′, whereQ is an orthogonal 2×2 matrix. We can then
uniquely decomposeQ as

Q =

[
q11 q12
q21 q22

]
=

[
cosθ − sinθ
sinθ cosθ

] [
sx 0
0 sy

]
(29)

whereθ ∈ [0, π), sx = ±1, sy = ±1, so that there is one-to-
one relation between these parameters and the elements of
Q. In other words,Q uniquely corresponds to a rotation be-
tween 0 andπ degrees, as well as a horizontal and a vertical
reflection. For simplicity, we adopt again the complex vector
notationz and z′ for the two curvess and s′, respectively,
and rewrite their relation as

z′ = (sxx + jsyy) ejθ (30)

This brings us to the normalization procedure with re-
spect to rotation and reflection, which comprises two steps
of attempting to normalize rotation first and then reflection.
The procedure is defined for curvez, and can be similarly
applied toz′. As in the starting-point case, normalization is
based on the first and last Fourier phasesa1 andaN−1 of z,
wherea = arg
(z) = [a0 a1 · · · aN−1]:

1. The rotation of the initial curvez is normalized according
to the average value ofa1 andaN−1:

r(z) =

(
1
2

(a1 + aN−1)

)
mod π (31a)

z1 = z e−jr(z) (31b)

2. The horizontal and vertical reflection is normalized ac-
cording to the third-order moments ofz1:

v(z1) = vx(z1) + jvy(z1)

= sgnm12(z1) + jsgnm21(z1) (32a)

nr(z) = z2 = vx(z1)x1 + jvy(z1)y1 (32b)

where sgn denotes the signum function. Note that it would
be equally sufficient to definer(z) = a1. The above def-
inition, however, leads to elimination of the starting-point
effect seen in (25), so that the rotation normalization pro-
cedure presented here is invariant to the starting point, as
explained below. Similarly with the curve orthogonalization
procedure, theuniqueness andcompleteness of nr(z) can be
proved (i.e., thatnr(z) is invariant to rotation and reflection
transformations), and that it retains all information abouts
except for the transformations for which it is invariant (see
Appendix D the proof).
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Proposition 4. If two curves s, s′ are related through an or-
thogonal transformation, i.e., s = Qs′ where Q is an orthog-
onal 2×2 matrix decomposed into a rotation and a reflection
matrix, then for their complex vector counterparts z, z′ the
following hold:

r(z′) = (λr(z) + θ) mod π (33a)

nr(z′) = nr(z) (33b)

r(nr(z′)) = r(nr(z)) = 0,

vx(nr(z′)) = vy(nr(z′)) = vx(nr(z)) = vy(nr(z)) = 1 (33c)

where λ = sxsy = ±1.

Note that as in (17) and (28b), rotation and reflection
transformations are removed so that normalized curves sat-
isfy (33c). Furthermore, as in curve orthogonalization, the
set of parameters{r(z), vx(z), vy(z)} together withnr(z)
contain all information about the original curvez. It can
also be deduced from the proof of Proposition 4 that the
normalization procedure presented above is independent of
the starting point; that is,nr(Sm(z)) = Sm(nr(z)) for any
m ∈ {0,1, . . . , N − 1}, exactly asna(Sm(s)) = Sm(na(s)).
Thus rotation and reflection normalization can even be ap-
plied before starting-point normalization. In this case, it is
very important to note that combining the results of Proposi-
tions 2 and 4 – curve orthogonalization followed by rotation
and reflection normalization, i.e.,nr(na(z)) – is invariant to
any affine transformation. Finally, the robustness ofnr(z)
to curve deformations and noise is demonstrated in the ex-
periments. Note also that similar efforts have been made
for rotation normalization based on higher-order moments
(Taubin and Cooper 1992).

Two final normalization steps are required after rotation
and reflection normalization. First, recall that starting-point
normalization leaves us with an ambiguity ofN/2. It can be
seen that after rotation normalization, the detected starting
point (x0, y0) lies very close to thex-axis (y0

∼= 0) and far
from they-axis, on either side. The starting-point ambiguity
is thus resolved by applying an additional circular shift of
N/2 samples ifx0 < 0; otherwise the normalized curve is
left intact. Second, the curve orientation is normalized to be-
ing counterclockwise. At this point the entire normalization
procedure is complete.

6 Experimental results

In this section, the performance of the proposed algorithm
is illustrated and appropriate algorithmic guidelines are in-
cluded. Initially, indicative results are provided on color
and motion segmentation to obtain object contours. Nor-
malization results are then given for all proposed normal-
ization steps; i.e., translation, skewing, scaling, rotation, and
starting-point normalization. The algorithm’s efficiency is
then discussed employing affine transformations of: (a) the
same object, (b) the same object under nonuniform sampling,
(c) similar objects, and (d) substantially different objects. At
the same time, the closed cubic B-splines framework is im-
plemented in order to counteract matching difficulties due to
sampling and noise problems.

Fig. 1a–d. Indicative color segmentation results for an image of a car.a
Original image.b Segmented image (first stage).c Segmented image (final
result).d Obtained object contour

As mentioned in Sect. 2, color and motion segmentation
results substantially affect the performance of the normal-
ization schemes. The latter is generally true for any con-
tour modeling and curve-matching approach based on natu-
ral data. In the present study existing color and motion seg-
mentation algorithms in the literature were tested in order to
obtain the best possible object contours from static images
and image sequences. In this context, the M-RSST approach
yielded adequate results for color objects in high resolu-
tion images, while motion segmentation was performed on
the basis of 2-D parametric motion models. Some indicative
color segmentation results for a still image of a car are illus-
trated in Fig. 1. Figure 1a depicts the original image, while
the results of the first and final steps of the segmentation
scheme (M-RSST) are depicted in Fig. 1b and c, respec-
tively. The obtained contour in terms of sample points is
depicted in Fig. 1d.

The derived object contours are next fed to the proposed
orthogonalization scheme. It must be pointed out that the
proposed algorithm is employed straightforwardly, in the
sense that no human interaction is needed with respect to the
particular contour and any parameters are initialized once,
when the system is set on-line. Results of the algorithm’s
performance on the basis of sample points on the obtained
contour are illustrated in Fig. 2. A sample contour consist-
ing of 100 sample points, obtained from color segmentation
on a still image containing a fish, is depicted on the upper
right-hand side of Fig. 2a. Two other sample curves con-
sisting of 100 points are included in the same figure, which
were obtained through direct arbitrary affine transformations
of the original sample points. Following the above-described
methodology, the sample points of all three curves were sub-
jected to translation, skewing, scaling, rotation, and starting-
point normalization. In this sense, the resulting sample sets
are depicted in Fig. 2b–d after translation, skewing/scaling,
and rotation/starting-point normalization, respectively. In all
cases, the starting point and orientation of the curves are de-
noted by an arrow. It can be seen that the final sample curves
match perfectly when the initial curves are affine transfor-
mations of the same sample curve, verifying the results of
Sects. 4 and 5. The computational cost of the normalization
procedure is negligible: for curves consisting of 100 sample
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Fig. 2a–d. Intermediate and final results of the proposed orthogonalization
scheme on the samples of a fish contour (no resampling scheme was em-
ployed).a Original contour and a pair of arbitrary affine transformations.b
Curves after translation normalization.c Curves after scaling normalization.
d Final curves

points, the average execution time is of the order of 2 ms
using a nonoptimized Matlab implementation on a 266 MHz
Pentium II PC. The execution time increases linearly with
sample size, as only two of the FFT coefficients are required
in the computations.

The resulting (orthogonalized) sample sets are identical
only when derived from affine transformations of one partic-
ular sample curve. In this context, Fig. 3 demonstrates mis-
matching of orthogonalized curves derived from a particular
initial contour of a fish under different (and nonuniform)
sampling. In Fig. 3a, the initial sample curve is transformed
using a pair of arbitrary affine transformations and the result-
ing curves are then resampled using nonuniform sampling.
The results obtained from the normalization steps are subse-
quently depicted in Fig. 3b–d. It can be seen that the results
are not far from the desired ones, even for significant differ-
ences in the sampling process. However, the observed dis-
similarities can be annoying when the particular application
requires high accuracy in the curve matching.

The obtained results can be significantly improved by
performing a resampling scheme along with the proposed
normalization schemes. Cubic B-splines have been utilized
for this purpose, as knot point fitting and reallocation ap-
peared to yield adequate results in terms of uniform sampling
(see Sect. 3). Figure 4 illustrates the improvement in match-
ing between orthogonalized curves by performing B-spline
modeling and knot point reallocation twice; namely, before
translation normalization and before starting-point/rotation
rejection. A final resampling step is taken on the basis of
the final curves, so as their knot points correspond and
the matching technique is enhanced. The plots illustrated in
Fig. 4 are directly comparable with that of Fig. 3. When re-

Fig. 3a–d. Results of the proposed orthogonalization scheme on the samples
of a fish contour after nonuniform resampling on input curves.a Original
contour and arbitrary affine transformations.b,c,d Mismatching of curves
after translation, scaling, and rotation normalization, respectively

ferring to orthogonalized curves we will hereon assume that
B-spline modeling and knot point reallocation is performed
twice, along the lines of the aforementioned methodology.

Maybe the most important property of the proposed
approach is its ability to align curves that appear to be
spatially “similar”. The latter was tested over several ob-
ject contours belonging to distinct object classes, such as
fish, airplanes, cars, glasses, and hammers. Figure 5 illus-
trates orthogonalization results for three distinct airplanes
obtained through color segmentation, and consequently un-
der substantially different sampling. The proposed approach,
along with the closed cubic B-spline framework, success-
fully aligned spatially relative object contours. The orthog-
onalization results in Fig. 5 should be directly compared to
those of Fig. 6, where three sample curves belonging to dis-
tinct object classes are employed. It can be seen that, com-
pared to those of Fig. 6d, the final curves of Fig. 5d yield
a better resemblance on the basis of almost any matching
scheme.

The proposed approach yields adequate results even in
the presence of significant amount of noise in the sample
curves. In order to model noise in object contours due to
color/motion segmentation pitfalls, random noise with rel-
atively large variance values was artificially induced into
the available object contours. The algorithm’s performance
proved to be adequate even in this case, as long as the
object contour was not severely deformed. Indicative ex-
perimental results are provided in Fig. 7. In Fig. 7a, an ob-
ject contour corresponding to an airplane along with two
noisy counterparts are depicted, one of which is contami-
nated with twice the amount of noise (in terms of standard
deviation) as the other. The respective normalization results
are given in Fig. 7b. It must be pointed out here that arti-
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Fig. 4a–d. Improvement of orthogonalization results employing B-spline
knot modeling and reallocation on the nonuniform sampled curves of Fig. 3.
a Original contour and arbitrary affine transformations.b,c,d Curves after
translation, scaling, and rotation normalization, respectively

Fig. 5a–d. Immediate alignment of orthogonalization results for seman-
tically similar (spatially similar) object contours.a Original contours for
three distinct airplanes.b,c,d Curves after translation, scaling, and rotation
normalization, respectively

ficial noise was induced to the nonuniform samples of the
initial curves prior to B-spline modeling. As can be seen in
Fig. 7b, the “less” noisy instance yields superior matching
results than the “more” noisy one. In Fig. 7c and d, relevant
results are depicted employing three spatially similar objects
(airplanes).

As stated in the Introduction, object classification based
on contour information has been tackled by several authors,
and thus it is not analyzed thoroughly in this paper. However,
some indicative classification results have been included in

Fig. 6a–d. Alignment of orthogonalized contours for substantially different
object contours.a Original contours of a hammer, car, and airplane.b,c,d
Curves after translation, scaling, and rotation normalization, respectively

Fig. 7a–d. Orthogonalization results in the presence of random noise in
the initial curve samples.a,b Initial and final curves for three instances of
the same contour.c,d Initial and final curves for spatially (semantically)
relative objects

Fig. 8. Both the prototype contour 1 and the example con-
tour 2 have been subjected to the proposed normalization
procedure. Their “normalized” counterparts were compared
on the basis of three simple metrics, namely the Euclidean
distance of: (a) the respective point sets, (b) the estimated
Fourier descriptors, and (c) the modified Fourier descriptors
proposed in Rui et al. (1998). As was both intuitively ex-
pected and experimentally verified, all three metrics fail for
the initial data sets. On the contrary, they prove to be indica-
tive of the normalized curve resemblance (see Fig. 8). Each
set of distances was normalized so that 0 and 1 values denote
absolute resemblance and no resemblance, respectively.

Finally, the proposed algorithm’s performance was suc-
cessfully tested for content-based retrieval purposes based on



90 Y. Avrithis et al.: Affine-invariant curve normalization for object shape representation, classification, and retrieval

Fig. 8. Indicative estimated contour distances for classification purposes
(FD, Fourier Descriptors;MFD, Modified Fourier Descriptors)

contour similarity on a small database containing 50 still im-
ages of 5 visually distinct object classes: namely, airplanes,
cars, fish, hammers, and glasses. To obtain best results, par-
ticular care was taken so that the main object contours were
successfully extracted. In Fig. 9, relevant experimental re-
sults are illustrated for an input image containing a airplane.
The input image is depicted in Fig. 9a, its extracted contour
is shown in Fig. 9b, while the retrieved images are given in
descending contour similarity in Fig. 9c. Similar results for
an input image containing a car are given in Fig. 10. It must
be pointed out for Fig. 9a that by utilizing only the object
contour attribute, a fish could yield higher resemblance to an
F-15 aircraft than a Stealth aircraft would. For such reasons,
the proposed methodology could be employed along with
other image attributes such as color and texture information
in an integrated content-based retrieval system. It should be
noted finally that the proposed technique concentrates only
on curve normalization and does not treat the shape retrieval
problem by itself; therefore, the results presented in this
section can be characterized as indicative. Apart from the
normalization scheme, a real-world shape retrieval system
would also require a suitable shape-matching algorithm.

7 Conclusions – further work

Using the curve normalization procedure presented in this
paper it is possible to obtain an affine-invariant curve repre-
sentation without any actual loss of information on the orig-
inal curve. The procedure can be applied as a preprocessing
step to any shape representation, classification, recognition,
or retrieval technique, since it effectively decouples the prob-
lem of affine-invariant description from feature extraction
and pattern matching. This is verified by employing a num-
ber of well-known curve-matching methods in the context
of content-based retrieval from image and video databases.
In all cases, the proposed normalization is experimentally
shown to be considerably robust to shape deformations and
noise. Moreover, the technique is very efficient and can be
integrated into any real-time system for content-based re-

trieval or even video coding, since its computational cost is
low.

Enhancement and generalization of this normalization
procedure is possible in several directions. First, it could
be modified to handle sets of connected or unconnected,
open or closed curves for the purpose of optical character
recognition or indexing of technical line-drawing databases.
Normalization of 2-D image data apart from object contours,
or even 3-D models and multidimensional data is also desir-
able, while a very active field of research is normalization
with respect to perspective transformation. Such subjects are
currently under investigation.

Appendix A: Proof of Proposition 1

The restriction thats does not represent a straight-line seg-
ment is required so that under any translation, rotation or
nonzero scaling transformation,s does not lie on thex
or y axis, thusm20(s) /= 0, m02(s) /= 0 and all quanti-
ties involved in (12)–(15) can be defined. It can be seen
that m10(s1) = m01(s1) = 0. This property is also retained
for na(s) = s4, since the remaining normalization steps
only involve scaling and rotation. It is also evident that
m20(s2) = m02(s2) = m20(s4) = m02(s4) = 1. It is thus ob-
served that

m11(s3) = x3yT
3 =

1
2

(x2 − y2)(x2 + y2)T

=
1
2

(m20(s2) − m02(s2)) = 0 (1)

so that m11(s4) = m11(s3)/(m20(s3)m02(s3))1/2 = 0, and
thereforena(s) satisfies (17). If angleθ0 = π/4 is substi-
tuted by an arbitrary angleθ in (14), then

s3 = Rϑs2 =

[
x2 cosϑ − y2 sinϑ
x2 sinϑ + y2 cosϑ

]
(2)

and (1) is rewritten as

m11(s3) = x3yT
3

= sinϑ cosϑ
(
x2xT

2 − y2yT
2

)
+(cos2 ϑ − sin2 ϑ)

(
x2yT

2

)
= cos(2ϑ)

(
x2yT

2

)
(3)

so in order form11(s3) to be always equal to zero for any
initial curve, θ must satisfy cos(2θ) = 0 and therefore take
valueskπ/2 +π/4, k ∈ Z.

Appendix B: Proof of Proposition 2

From (16),na(s) = N(s)(s − µ(s)) = N(s)s1 and na(s′) =
N(s′)s′

1 = N(s′)As1. Since s and s′ are not line segments,
detN(s) = σxσyτxτy/

√
2 /= 0 (and similarly forN(s′)), so

the two normalization matrices are nonsingular and we can
define

Q = N(s′)A[N(s)]−1 =

[
q11 q12
q21 q22

]
(4)

so thatna(s′) = Qna(s). Now since bothna(s) and na(s′)
are normalized, we obtain from (19)
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Fig. 9a–c. Image retrieval results (query-by-
example) based on contour similarity for an
input image containing an airplane.a Input im-
age.b Extracted contour.c Retrieved images

Fig. 10a–c. Image retrieval results for an input
image containing a car.a Input image.b Extracted
contour.c Retrieved images

m20(na(s′)) = q2
11 + q2

12 = 1 (38a)

m02(na(s′)) = q2
21 + q2

22 = 1 (38b)

m02(na(s′)) = q11q21 + q12q22 = 0 (38c)

Thus QQT = QTQ = I2 and Q is an orthogonal ma-
trix, meaning thatna(s) andna(s′) differ only in a rotation

transformation (if detQ = 1), plus a possible reflection trans-
formation when detQ = −1.

Now let Ñ(s) be another normalization scheme fors
yielding a normalized curve ˜na(s) = Ñ(s)s1. In this case
we can defineQ̃ = Ñ(s)[N(s)]−1 so that ña(s) = Q̃na(s),
and since bothna(s) andña(s) are normalized, we can sim-
ilarly conclude thatQ̃ is orthogonal. Therefore all possible
normalization schemes based on (17) result in a curve that
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is related to the proposedna(s) by a mere rotation (or re-
flection).

Appendix C: Proof of Proposition 3

If z′ = Sm(z), then (25) holds and we can substitutea′
1 =

(a1 + 2πm/N ) mod 2π anda′
N−1 = (aN−1 − 2πm/N ) mod

2π into

p(z′) =

⌊
N

4π
(a′

1 − a′
N−1)

⌋
mod N/2 (39)

Moreover, ifN is even,N/2 is integer and we can in-
terchange the integer part�·� and modN/2 operators. This
gives

p(z′) =

(⌊
N

4π
(a1 − aN−1)

⌋
mod N/2 +m

)
mod N/2 (40)

which leads to (28a). Now considering thatnp(z) is obtained
from z through a circular shift ofN −p(z), we can use (28a)
for z andnp(z):

p(np(z)) = p(SN−p(z)(z))

= (p(z) + (N − p(z))) modN/2 = 0 (41)

and a similar argument forz′ andnp(z′) leads to (28b). Next,
consider thatnp(z) = S−p(z)(z) and np(z′) = S−p(z′)(z′) =
Sm−p(z′)(z), so thatnp(z′) = Sp(z)+m−p(z′)(np(z)). But then
we can substitute

p(z′) = (p(z) + m) modN/2

=

{
p(z) + m, 0 ≤ p(z) + m < N/2

p(z) + m − N/2, N/2 ≤ p(z) + m < N
(42)

into the previous relation, which leads to (28c). Finally, note
that if N is not even, interchanging the integer part�·� and
mod N/2 operators in (39) may lead to an error of±1
sample in the estimation ofp(z′) from p(z), possibly causing
an additional shift of±1 sample betweennp(z) andnp(z′).

Appendix D: Proof of Proposition 4

If s = Qs′ andQ is decomposed as in (29), then (30) holds
and we can find a relation between the discrete Fourier trans-
forms u = 
(z) andu′ = 
(z′):

u′
k =

N−1∑
i=0

z′
iw

−ki = sxe
jθ

N−1∑
i=0

(xi + jλyi)w
−ki

=

{
sxe

jθuk, λ = 1

sxe
jθu∗

N−k, λ = −1
(43)

for k = 0,1, . . . , N−1, whereλ = sxsy = ±1. If we evaluate
the phasesa = argu anda′ = argu′, (43) leads to

a′
1 =

{
a1 + θ + argsx, λ = 1

−aN−1 + θ + argsx, λ = −1

a′
N−1 =

{
aN−1 + θ + argsx, λ = 1

−a1 + θ + argsx, λ = −1
(44)

Adding the previous two relations, we get (a′
1 + a′

N−1)
mod 2π = (λ(a1 + aN−1) + 2θ) mod 2π, sincesx = ±1 and
thus (2argsx) mod2π = 0. From the definition (31a) of
r(z), (33a) follows immediately.

Now evaluation ofz′
1 from (31b) yieldsz′

1 = z′ e−jr(z′) =
sx(x + jλy)ej(θ−r(z′)). If we define

l(z) =

{
1, λr(z) + θ ∈ [0, π)

−1, λr(z) + θ ∈ [π,2π)
(45)

then from (33a) it follows that

z′
1 = sx(x + jλy)ej(θ−((λr(z)+θ)modπ))

= sxl(z)(x + jλy)e−jλr(z)

=

{
sxl(z)z1, λ = 1

sxl(z)z∗
1, λ = −1

(46)

so that x′
1 = sxl(z)x1 and y′

1 = λsxl(z)y1 = syl(z)y1.
Hencex′

1 and y′
1 differ from x1 and y1 only in their signs,

and calculation of their third-order moments in (32a) gives
vx(z′

1) = sxl(z)vx(z1) andvy(z′
1) = syl(z)vy(z1). Subsequent

normalization (32b) givesx′
2 = (sxl(z))2vx(z1)x1 = x2 and

similarly y′
2 = y2, and (33b) follows. Finally, (33c) can be

directly verified using (32) and (33a).
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