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Abstract

In this paper we propose an algorithm to improve the re-
sults of knowledge-assisted image analysis, based on con-
textual information. In order to achieve this, we utilize fuzzy
algebra, fuzzy sets and relations, towards efficient manipu-
lation of image region concepts. We provide a novel context
modelling, based on the OWL language, using RDF reifi-
cation. Initial image analysis results are enhanced by the
utilization of domain-independent, semantic knowledge in
terms of concepts and relations between them. The novelty
of the presented work is the context-driven re-adjustment
of the degrees of confidence of the detected concepts pro-
duced by any image analysis technique, utilizing a domain-
independent ontology infrastructure to handle the knowl-
edge, as well as multiple application domains.

1. Introduction
In content-based image search and retrieval, more and

more researchers are looking beyond low-level colour, tex-
ture, and shape features in pursuit of more effective search-
ing methods. Natural object detection in indoor or outdoor
scenes, i.e. identifying key object types such as sky or
ground, can facilitate content-based applications, ranging
from image enhancement to coding. Contextual informa-
tion in terms of specific concepts, objects and events, typi-
cally present in a beach, mountain or city scenery, could be
a considerable source of useful information [6]. A signifi-
cant number of misclassifications usually occur because of
the similarities in colour and texture characteristics of var-
ious object types and the lack of such context information,
which is a major limitation of individual object detectors.
Generic algorithms for automatic object recognition and/or
scene classification [7] are unfortunately not producing reli-
able results and restricting the problem to a specific domain
does not provide a global, satisfactory solution.

The notion of visual (scene) context is introduced in [6]
as an extra source of information for both object detection
and scene classification. The truth is that the idea behind
the use of such additional information refers to the fact that
not all events are relevant in all situations and this holds also
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when dealing with image analysis problems. Visual context
is a difficult notion to grasp and capture and thus we re-
strict it herein to the notion of ontological context, defined
as part of the fuzzy OWL ontology presented in subsection
2.2. Our choice is aligned with the clear research trend that
exists in the literature [5] towards ”fuzzification” of ontol-
ogy description languages, like fuzzy DL and fuzzy OWL,
as the representation and reasoning capabilities of fuzzy go
clearly beyond classical.

In the following we propose our initial research progress
in implementing an OWL-based context representation ap-
proach to use on top of any knowledge-assisted image anal-
ysis methodology. The ultimate goal is to be able to apply
our approach on top of any given image domain; currently,
we present preliminary experimental results focused on a
limited set of possible domain datasets. The classification
output of the specific image under consideration may be
used optionally as a refinement step to the final contextual-
ized results. Consequently, the only restriction that applies
to the input image, is the fact that it should lie within the
broad set of domains supported by the contextual ontology.

During the proposed contextualization process, we intro-
duce a methodology to improve the results of image seg-
mentation, in terms of each region’s concepts, based on
the introduced contextual information; in comparison to
our previous research efforts [1] a novel multiple domain
ontological representation for context is introduced, com-
bining fuzzy theory and fuzzy algebra [3] with OWL [9]
and RDF reification [10]. In this process, the membership
degrees of the regions’ concepts are re-estimated appro-
priately, according to a context-based membership degree
readjustment algorithm.

The outline of this work is as follows: section 2 is dedi-
cated to the multiple domain fuzzy context knowledge rep-
resentation used, including some necessary notation used
throughout the paper. Section 3 describes the proposed con-
textualization in terms of visual context algorithm steps and
section 4 presents some preliminary experimental results,
whereas section 5 concludes our work.

2. Fuzzy Context Knowledge Representation
The proposed context-based knowledge model can be

expressed formally with the use of basic elements, such



as concepts, relations between concepts and domains, that
build an ontology structure [2]. Since relations among real-
life concepts are always a matter of degree, they are best
modelled using principles from fuzzy relational algebra [3],
summarized in the following.

2.1. Background and notation
Given a universe U , a crisp set S of concepts on U is

described by a membership function µS : U → {0, 1}. The
crisp set S is defined as S = {si}, i = 1, .., N , si ∈ S,
whereas a fuzzy set F on S is described by a membership
function µF : S → [0, 1]. Given the set of all fuzzy sets
on S, FS , then F ∈ FS . We define the crisp set of (crisp)
relations between concepts as {ri}, where ri : S × S →
{0, 1}, i = 1, ..,M and M ≤ N !

(N−2)! and in a similar way,
we let R be the crisp set of fuzzy relations between concepts:
R = {Ri}, where Ri : S × S → [0, 1], i = 1, ..,M .
Let Z be the crisp set of all subdomains, that at the same
time are considered to be concepts as well, then Z ⊆ S
and Z = {zi}, i = 1, .., L, L ≤ N , zi ∈ S. Finally, the
current subdomain (dis-)similarity is denoted by pi ∈ [0, 1],
defined a priori by domain experts and characterizing the
sub-domain. Index i denotes the particular subdomain and
we let |Z| identify the number of distinct subdomains zi.

As the definition of a knowledge model based on fuzzi-
ness is proved to be the most suitable for the modeling of
real-life information, a fuzzy ontology is constructed [1],
containing subdomains, concepts and fuzzy relations to-
gether with degrees of membership for any given concept-
to-concept relation. The latter can be formalized as: O =
{S,R,Z}, where O denotes a fuzzy ontology, S is the crisp
set of concepts described by the ontology, R is the crisp set
of all fuzzy relations amongst these concepts and Z is the
crisp set of subdomains available in O.

Let also C be the fuzzy set of contexts on S and C be the
set of all contexts on O, C ⊂ FS . We consider one fuzzy
set of contexts C, associated to each subdomain zi ∈ Z
of the ontology, or in other words we define the notion of
context for one subdomain zi ∈ Z as the fuzzy set Czi

=∑

j

cj/wj = {c1/w1, c2/w2, . . . , cn/wn}, n ≤ N of all

concepts cj ∈ S that are directly related to the subdomain
zi itself, together with the degrees of membership wj of
their relations. The membership degree wj describes the
membership function µF (cj), i.e. wj = µF (cj), or for the
sake of simplicity wj = F (cj). The term directly is used
with respect to the distance measure utilized (e.g. concepts
located less than two nodes from the subdomain concept).

In order to define, extract and use each context C on top
of an arbitrary set of concepts S, we rely on the semantics
of their fuzzy semantic relations. Based on the relations
Ri we construct relation I as a combination of relations,
which further enhances the definition of fuzziness between
concepts in the ontology O: I = ∪

i
Rqi

i , qi ∈ {−1, 0, 1},

i = 1 . . . M . The qi value is determined according to the
semantics1 of each relation Ri, as the latter are defined
in the MPEG-7 standard [8], such as specialization, part,
property, etc. As the construction of relation I implies,
care must be taken in avoiding possible cycles, that may be
present due to the cross-subdomain links between any two
concepts. Cycles are avoided by not taking into considera-
tion concepts that at the same time are subdomains as well,
thus calculating the fuzzy set of contexts for all concepts
other than the subdomains ones. Relation I is of great im-
portance, as it allows us to define, extract and use contexts
C out of any given set of concepts S.

2.2. Knowledge model and representation

The proposed contextual knowledge representation pro-
vides the means to exploit contextual information within
an image analysis framework. In the past, we were moti-
vated by RDF’s flexible approach to representing data and
modeled contextual knowledge with respect to the RDF lan-
guage. In this paper we propose the enhanced use of OWL
instead of RDF, since the former describes better the prob-
lem’s requirements and is also expected to allow performing
of useful reasoning tasks on the existing knowledge. On top
of that we use OWL reification to represent the fuzzy de-
grees of membership.

The proposed context model can be seen as a graph, in
which every node represents a concept and each edge be-
tween two nodes a contextual relation between the respec-
tive concepts. Additionally each edge has a related degree
of confidence, expressing the desired fuzziness within the
context model. One of the main differences to previous ap-
proaches and one of the main reasons to use OWL instead
of RDF, is the fact that now a new set of ”special” con-
cepts exists, i.e. the crisp set of subdomains Z ⊆ S. These
<rdf:RDF
xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#" ... >

<owl:Class rdf:ID="beach"> <rdfs:subClassOf rdf:resource="#holidays" />
...

</owl:Class> <owl:Class rdf:ID="holidays"/> ...
<owl:Class rdf:ID="sand"/> <rdf:Description rdf:about="s1">
<rdf:subject rdf:resource="#sand"/>
<rdf:predicate rdf:resource="#isRelated"/>
<rdf:object rdf:resource="#beach"/>
<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement"/>
<context:isRelated rdf:datatype="http://www.w3.org/2001/XMLSchema
#float">0,85</context:isRelated>

</rdf:Description> ... </rdf:RDF>

Fig. 1: OWL reification representation.

subdomain concepts are manually inserted into the graph
model by domain experts and do function as intermediaries
between the root element and the rest of concepts. Subdo-
mains are not considered to be part of the set of concepts an
image analysis module may have provided, but are indica-
tive of the domains supported by the context knowledge.

Representing the above graph model in OWL is not a
trivial or straightforward task, due to the complexity as well

1direct (i.e. qi = 1) semantic interpretation of a relation may not
be meaningful, whereas its inverse may be (i.e. qi = −1) and qi = 0
eliminates a relation.



variety of its constraints and validation rules. Nevertheless,
our context model is fully OWL-validated, as it is built with
respect to the entire set of OWL syntactic rules. The fuzzy
degree of confidence associated to each relation between
any two concepts is described using the well-known from
RDF reification technique, only this time implemented in
OWL. Reification makes a statement about the statement,
which contains the degree information and is ideal for rep-
resenting fuzziness in a meaningful way, as the reified state-
ment should not be asserted automatically. For instance,
having a statement, such as ”water isRelatedTo mountain”
and a degree of confidence of 0,85 for this statement, does
obviously not entail, that water is always related to a moun-
tain scene/image. A representative example, using isRe-
lated as the representation of combined relation I is illus-
trated in Fig. 1; concepts beach and sand are provided.

2.3. Graph model and representation
In the current approach and provided the utilization of

the notion of subdomains, the root element plays an impor-
tant role, in terms of calculating all contextual information
with respect to it, however, it is not the one that character-
izes the application domain. Quite on the contrary, it is the
amount and type of subdomains that defines the latter, so
as to be able to apply the proposed technique to multiple
application domains.

Fig. 2: Ontology graph sample - beach, mountain, city subdomains

Given the sample graph illustrated in Fig. 2, all possi-
ble routes in the graph are taken into consideration form-
ing an exhaustive approach, with respect to the facts that
routes between concepts may be reciprocal and routes be-
tween any two concepts is prohibited to include a subdo-
main (concept). Thus, estimation of each concept’s con-
text value is initially bound to the specific subdomain the
concept belongs initially and is derived from relationships
of the concept with other concepts, belonging either to the
same or even different subdomains, always with respect to
their weighted links. Of course, a meaningful compatibil-
ity indicator or distance metric is used in the process. De-
pending on the nature of the domains under consideration,
the best indicator could be selected among various opera-
tors found in the literature, like for instance the standard

t-norm or t-conorm. In general, the ideal distance metric
for two concepts is one that quantifies their semantic cor-
relation and given the three subdomains beach, mountain
and city presented in Fig. 2, the max value is a meaningful
measure of correlation.

3. Visual Context Analysis
Based on the previous principles and mathematical foun-

dations, we now present the visual context algorithm. Its
core functionality is the meaningful readjustment of the
membership degrees of each concept associated to a region
or segment of an image, obtained from any kind of image
analysis module. The novelty introduced herein deals with
the context value introduced in subsection 2.1, which is uti-
lized in order to tackle cases where one concept is related
to more than one concepts, lying either within its original
subdomain or even in other subdomains, as well. In any
case, a concept’s context value refers to the overall rele-
vance of the concept to the related subdomain and thus to
the root element of the entire ontology. For instance, in Fig.
2 the root element is holidays, whereas beach, mountain
and city are the considered subdomains and concept water
is related to both beach and mountain ones. The role of sub-
domains is to act as a barrier when considering all possible
routes in the graph during each concept’s context value es-
timation: no route is allowed to cross through a subdomain
concept, since this would incorrectly mix the semantics of
each subdomain. Using the standard t-conorm and the alge-
braic product as the t-norm, we have (see notation in 2.1):

1. for each subdomain zi ∈ Z identify the set of its con-
texts Czi

.
2. for each concept sk ∈ S associated to an image region

with a membership degree µ(sk), identify its existing
relations to the set of contexts: {Rsk,cj

: cj ∈ Czi
}.

3. iffRsk,cj
�= 0, then obtain the particular contextual

information in the form of a new degree of member-
ship µ(sk) associated to the image region, according
to the recursive formula:

µt(sk) = µt−1(sk) − pi · (µt−1(sk) − wj) (1)

where t denotes the iteration used.
4. prune the set of concepts that are not directly related

to the subdomain zi the image belongs to, according to
its original classification output2.

The physical meaning of (1) is that pi controls whether or
not context will be applied, i.e. pi = 0 denotes no context
influence, whereas pi = 1 indicates a strong context lever-
age and ignoring of initial degrees µ(sk). Equivalently to
(1), for an arbitrary iteration i, we have:

µt(sk) = (1 − pi)t · µ0(sk) + (1 − (1 − pi)t)wj (2)
where µ0(sk) represents the initial degree of membership.
Typically, the iteration stops when t equals 3 or 5.

2in order to decrease the influence of context, this step may be omitted
and thus the application domain “smoothened”.



4. Experimental Results

In order to test the implementation and efficacy of the
presented algorithm, we carried out experiments utilizing
573 images evenly distributed to the three supported subdo-
mains of interest, i.e. 193 beach, 184 mountain and 196 city
images acquired from personal collections and the Internet.
In the following we present a representative set of both in-
dicative and overall quantitative results. A ground truth was
manually constructed, consisting of a number of connected,
non-overlapping regions associated to a unique concept.

Initially, two versions of an indicative beach image are
presented (Fig. 3): (a) the original input image and (b) the
segmented set of regions of the image. In order to obtain the
segmented output, we implemented segmentation using the
RSST algorithm [4] and a distance threshold for termination
in a meaningful number of regions. Utilizing 100 images
(merely 20% of the dataset) as a training set, we selected
the values for pi that resulted in the best overall evaluation.

(a) Input image (b) Segmented regions

Fig. 3: Indicative beach image example.

Table 1 summarizes the final degrees of membership be-
fore and after applying visual context for the beach image
example. Boldface degrees indicate the ground truth infor-
mation of the image regions, whereas the first column of the
Table indicates the specific region ID under consideration.
For the sake of space, concepts that are totaly unrelated to
the beach subdomain (as indicated in Fig. 2) are omitted.

Further, overall precision scores on a per concept basis,
from the application of the proposed methodology to the
entire dataset of the 573 images and for the entire holidays
domain, are presented in Table 2. Each concept’s row dis-
plays the scores before and after the use of context.

5. Conclusions

The methodology presented herein can be exploited to-
wards the development of a more efficient, context-based
image analysis environment. Its core contribution has been
the implementation of a novel, multi-domain visual con-
text interpretation utilizing a fuzzy, OWL-based, ontolog-
ical representation of knowledge, as well as a visual context
algorithm. Early research results were presented, indicating
a significant aid (i.e. 3%-15% per concept - 9,38% overall)
of visual context to the image analysis chain and it is the
authors’ belief that better results can be achieved with an
optimized contextualization approach.

Table 1: Final degrees of membership before and after applying visual
context for the beach image example of Fig. 3

ID
Concepts

rock wave sky boat sea sand
before after before after before after before after before after before after

1 0,26 0,09 0,63 0,54 0,70 0,46 0,34 0,11 0,71 0,79 0,47 0,14
2 0,63 0,42 0,13 0,07 0,67 0,24 0,70 0,28 0,17 0,03 0,77 0,46
3 0,73 0,48 0,82 0,41 0,69 0,25 0,68 0,27 0,37 0,07 0,98 0,59
4 0,33 0,11 0,70 0,59 0,67 0,45 0,31 0,10 0,77 0,85 0,27 0,08
5 0,69 0,59 0,24 0,12 0,11 0,10 0,48 0,32 0,18 0,16 0,85 0,94
6 0,67 0,58 0,25 0,13 0,13 0,12 0,37 0,24 0,29 0,26 0,79 0,87
7 0,62 0,41 0,41 0,21 0,31 0,10 0,69 0,27 0,17 0,04 0,78 0,47
8 0,53 0,35 0,44 0,22 0,37 0,12 0,70 0,28 0,24 0,11 0,77 0,46
9 0,49 0,32 0,48 0,24 0,41 0,14 0,94 0,38 0,09 0,07 0,27 0,16
10 0,23 0,09 0,65 0,55 0,73 0,48 0,39 0,13 0,79 0,87 0,18 0,05
11 0,40 0,24 0,25 0,13 0,22 0,05 0,78 0,34 0,44 0,33 0,92 0,55
12 0,37 0,22 0,36 0,18 0,47 0,11 0,70 0,30 0,67 0,51 0,77 0,46
13 0,53 0,32 0,42 0,21 0,39 0,09 0,68 0,29 0,35 0,26 0,98 0,59
14 0,73 0,62 0,30 0,15 0,27 0,18 0,31 0,20 0,25 0,23 0,69 0,75
15 0,69 0,58 0,34 0,29 0,11 0,07 0,81 0,87 0,18 0,10 0,85 0,73
16 0,67 0,57 0,35 0,30 0,13 0,09 0,67 0,73 0,07 0,04 0,77 0,66
17 0,65 0,55 0,45 0,38 0,21 0,14 0,69 0,74 0,27 0,17 0,61 0,52

ID
person vegetation cloud waterfall water stone

before after before after before after before after before after before after
1 0,21 0,05 0,15 0,02 0,70 0,56 0,36 0,18 0,71 0,68 0,19 0,06
2 0,77 0,92 0,76 0,27 0,37 0,30 0,30 0,15 0,27 0,14 0,76 0,42
3 0,73 0,87 0,82 0,29 0,42 0,34 0,18 0,09 0,36 0,18 0,62 0,34
4 0,14 0,04 0,24 0,04 0,67 0,54 0,50 0,25 0,70 0,63 0,12 0,04
5 0,59 0,53 0,74 0,67 0,31 0,22 0,48 0,24 0,18 0,14 0,74 0,67
6 0,67 0,61 0,75 0,67 0,33 0,23 0,22 0,11 0,14 0,11 0,75 0,67
7 0,95 0,96 0,81 0,28 0,31 0,25 0,29 0,15 0,67 0,22 0,81 0,45
8 0,83 0,87 0,64 0,22 0,67 0,54 0,33 0,17 0,19 0,10 0,45 0,25
9 0,89 0,89 0,88 0,31 0,51 0,41 0,44 0,22 0,09 0,07 0,61 0,34
10 0,13 0,03 0,23 0,03 0,63 0,50 0,43 0,22 0,59 0,56 0,05 0,01
11 0,80 0,88 0,65 0,23 0,72 0,58 0,28 0,14 0,44 0,33 0,65 0,39
12 0,77 0,92 0,76 0,27 0,17 0,14 0,30 0,15 0,26 0,20 0,76 0,46
13 0,73 0,87 0,82 0,29 0,25 0,20 0,48 0,24 0,13 0,10 0,82 0,49
14 0,73 0,62 0,70 0,63 0,67 0,47 0,71 0,35 0,26 0,19 0,70 0,63
15 0,69 0,23 0,74 0,35 0,51 0,41 0,18 0,09 0,38 0,28 0,74 0,56
16 0,67 0,22 0,75 0,36 0,43 0,34 0,24 0,12 0,47 0,34 0,75 0,56
17 0,95 0,31 0,81 0,39 0,36 0,29 0,30 0,15 0,50 0,37 0,81 0,61

Table 2: Overall precision scores per concept on 573 images
Concepts bef. aft. Conc. bef. aft. Conc. bef. aft.
building 0,78 0,87 wave 0,54 0,60 sky 0,75 0,86
lambpost 0,49 0,51 sea 0,74 0,82 sand 0,68 0,74
vegetation 0,78 0,83 person 0,73 0,82 cloud 0,66 0,68
waterfall 0,32 0,33 water 0,37 0,40 snow 0,75 0,79
snowedmountains 0,46 0,49 stone 0,64 0,70 boat 0,67 0,75
driedsnowplants 0,52 0,54 tree 0,56 0,58 roof 0,74 0,83
monument 0,57 0,65 ground 0,69 0,76 car 0,84 0,89
pavement 0,70 0,74 road 0,76 0,82 rock 0,67 0,73
Overall 0,64 0,70
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