
ivl documentation

Version 0.22

iva

June 20, 2013

Contents

Introduction . 2

Part A 2

1 Fundamentals 2

1.1 Simple C++ Expressions . 2
1.2 Introducing ivl; the type ivl::scalar . 3
1.3 Algebra on single elements . 4
1.4 Operators between elements . 6
1.5 Complex numbers in ivl . 6
1.6 Type Abstraction . 9
1.7 Type Evolution . 10

2 Arrays 12

2.1 Array; a class for storing linear data . 12
2.2 Streaming an array . 13
2.3 Algebra on arrays . 13
2.4 Array non-element operations . 16
2.5 Ranges . 16
2.6 Indices . 18

3 Multidimensional arrays 18

3.1 The class array_2d . 18
3.2 Algebra on two-dimensional arrays . 19
3.3 Matrix Operators . 20
3.4 The class array_nd . 21
3.5 Algebra on array_nd . 22
3.6 Nested arrays . 23

1

4 Subscripting arrays 24

4.1 Accessing elements of an array . 24
4.2 Subarray of an array . 25
4.3 The subscript all. 26
4.4 Accessing elements of a multidimensional array 28
4.5 Multidimensional subarray . 28

5 Tuples and functions 28

5.1 The tuple . 28
5.2 Calling functions . 28
5.3 Linear algebra example . 28

6 Images 28

6.1 The class image . 28
6.2 Saving, loading and image preview . 28

7 Array class inheritance 28

8 Functional programming within sequential programming 28

Introduction

Ivl is a template C++ library for scientific processing and mathematics including image
processing.

1 Fundamentals

As any mathematic book begins by defining the fundamental types and then extends them
with various operations, so do we in this manual.

1.1 Simple C++ Expressions

All ivl functions and classes operate on objects of specific types. We will begin by enumer-
ating the basic types of the mathematic objects to be used in our processing. These in our
case would be all the numbers consisting of the sets of integers, reals, complex numbers and
booleans.
The native types of C++ are used to represent these numbers. In particular, Table 1.1 shows
all the C++ types that we use and the according numeric set they represent.

2

integers char, short, int, long long

unsigned integers unsigned char, unsigned short, unsigned

int, unsigned long long

machine dependant integers size_t, ptrdiff_t
machine independant integers int8_t, uint8_t, int16_t, uint16_t,

int32_t, uint32_t, int64_t, uint64_t
real numbers float, double
boolean numbers bool

complex numbers std::complex<float>, std::complex<double
>, std::complex<int>, std::complex<...>

Table 1.1: The numeric types of C++ that are used in ivl

As we know, mathematic expressions based on the above types are supported natively by
C++. For instance the addition between two numbers. To complicate things a little we may
state that additions are allowed between different types as well. The addition between an
integer and a double,

int a = 1;

double b = 2;

is done like this:

int y = a + b;

Furthermore, we will see more uses of the operator + which stands for the algebric addition.
The meaning of this operator always stays the same however in ivl it is possible to use it on
other objects as well.

1.2 Introducing ivl; the type ivl::scalar

Every function and class of ivl belongs to the ivl namespace.

#include <ivl/ivl>

using namespace ivl;

Simple integer, real, complex and boolean types can be used in ivl as they are. However
they lack certain few extra properties of ivl that are not compatible with the basic types. To
strengthen the basic C++ types with those extra properties we need to use the ivl::_[.]

expression.
The expression _[.] converts any type T to ivl::scalar<T>. For example if we have a
variable x of type int,

3

int x = 2;

We can get a corresponding ivl::scalar<int> with:

_[x]

The expression _[x] is essentially equivalent to x and it can be used like x since the value
of _[.] is automatically converted back to its initial form. The backward conversion is done
implicitly, when needed, by a conversion operator. In our example in which x is an int, the
expression _[x] is converted back to int as shown below. The box under the line of the
code shows the result of the program at the standard output.

std::cout << "_[x] = " << _[x] << std::endl;

std::cout << "_[x] + 1 = " << _[x] + 1 << std::endl;

_[x] = 2

_[x] + 1 = 3

In the above example the use of _[.] is redundant and practically meaningless. However,
as we did mention, once converted from x the expression _[x] supports some extended ivl
operations. One of them is the operator ->* which raises a number to a specified power.

std::cout << "x^3 = " << _[x] ->* 3 << std::endl;

x^3 = 8

Another reason for using _[x] is to explicitly state that x is a simple element as opposed to
something else, i.e. an array. This will be shown useful later on.

1.3 Algebra on single elements

In C++ the evaluation of a simple expression may be written in the form:

<variable> = <expression>;

The standard C++ library already provides several math functions in the according headers.
In other words C++ already supports a basic background for mathematic processing.

4

#include <cmath>

#include <iostream>

int main()

{

using namespace std;

double x = 2.0, y;

y = exp(pow(x, 2) + sqrt(x));

cout << "e^(x^2 + sqrt(x)) = " << y << endl;

}

e^(x^2 + sqrt(x)) = 224.576

Ivl is based on the assumption that the native C++ libraries are optimal and therefore their
code is to be reused instead of it being rewritten into custom ivl functions. So ivl functions
are based on the standard C++ <cmath> and stl library. However ivl extends that library
by adding new overrides to the existing functions and by having its own new functions and
constants. All single element math functions of ivl exist in the namespace ivl::math but
they should be used through the namespace ivl. This is because they are redefined in the
namespace ivl with more ways to be used than the standard mathematic expressions.
The following example introduces two sample additions of ivl. The function sqr and the
constant pi.

#include <ivl/ivl>

#include <iostream>

int main()

{

using namespace std;

using namespace ivl;

double y = 2.0 * sqr(pi);

cout << "2.0 * pi^2 = " << y << endl;

}

2.0 * pi^2 = 19.7392

5

isinf(x) Returns true if x is infinite

isnan(x) Returns true if x is not-a-number

sign(x) Returns the sign of x multiplied by one

round(x) Returns the floating number x rounded to the

closest integer value

conj(x) Returns the conjugate of x

angle(x) Returns the angle of a complex number x

Table 1.2: Unary math functions of ivl that do not exist in standard C++

The above constant ivl::pi is nothing else than the mathematics pi constant. The function
ivl::sqr(x) returns the square of x which is equal to x * x. Several more unary functions
unique to ivl are listed in Table 1.2.
Whenever possible ivl uses the same function names as standard C++ math when they have
the same behaviour.
Some new overloads for the existing stl functions are added in ivl allowing functionality
that was, purposely or not, missing. For example some functions that only existed for real
numbers now exist for complex numbers too.

1.4 Operators between elements

The list of C++ operators and the list of ivl operators for elements is pretty much the same.
Ivl includes the operator ->* with highest priority for raising to a power.
Table 1.3 shows a list of all the ivl operators for elements.

1.5 Complex numbers in ivl

6

a = b Assignment
a + b Addition
a - b Subtraction
+a Unary plus
-a Additive inverse
a * b Multiplication
a / b Division
a % b Modulo
++a Increment
a++ Increment after
--a Decrement
a-- Decrement after
a == b Equal to
a != b Not equal to
a > b Greater than
a < b Less than
a >= b Greater than or equal
a <= b Less than or equal
!a Logical NOT
a && b Logical AND
a || b Logical OR
~a Bitwise NOT
a & b Bitwise AND
a | b Bitwise OR
a \^ b Bitwise XOR
a << b Bitwise left shift
a >> b Bitwise right shift
a ->* b Raise to power (a should be extended)
a += b Addition assignment
a -= b Subtraction assignment
a *= b Mupliplication assignment
a /= b Division assignment
a %= b Modulo assignment
a &= b Bitwise AND assignment
a |= b Bitwise OR assignment
a \^= b Bitwise XOR assignment
a <<= b Bitwise left shift assignment
a >>= b Bitwise right shift assignment

Table 1.3: List of ivl element-wise operators

7

As mentioned, ivl makes use of the class std::complex<T> for complex numbers. Some of
the C++ math functions have been overloaded to extend support to complex numbers which
they did not. Many trigonometric functions fall under this case. For example, the cosine
function ivl::cos(x) is defined for a real but also for a complex argument as we can see
below:

#include <ivl/ivl>

int main()

{

using namespace std;

using namespace ivl;

complex<double> x(pi / 4, 1);

cout << "cos(pi/4 + i) = " << cos(x) << endl;

cos(pi/4 + i) = (1.09112,-0.830993)

Instead of writing the full constructor when creating a complex number one may also use
the imaginary unit j or the synonym i. These two constants are defined in the namespace
ivl::math and are equal to std::complex<double>(0, 1).

using ivl::math::i;

cout << "cos(pi/4 + i) = " << cos(pi/4 + i) << endl;

cos(pi/4 + i) = (1.09112,-0.830993)

In this second approach in our example, we see that the number

pi / 4 + i

is essentially

std::complex<double>(pi / 4, 1)

Complex numbers also support the extended ivl operators, for instance

cout << "(1 + i)^2 = " << _[1.0 + i] ->* 2 << endl;

(1 + i)^2 = (0,2)

}

8

1.6 Type Abstraction

Mathematic expressions can always be applied to user-defined symbolic items as long as the
meaning for the various operations are defined for them. C++ makes no exception for this
as user-defined classes support overloaded operators and functions so that they can be used
as objects in complicated mathematic expressions. Ivl furthermore supports custom classes
as elements. All functions and primitives like arrays etc have abstract element types.
This means that the various operations of ivl accept elements of any class and are not limited
to the basic C++ types.
This is achieved using template programming and the basic principles of the stl library are
followed.
We will use a custom class as an example where we will call the ivl function min(x, y) which
returns the minimum between two elements x and y. Since min uses the comparison operator
¡ between the two objects this operator needs to be defined for the objects x and y for the
code to compile. Even though the function ivl::min already exists in stl as std::min does
exactly the same, it was merely used as a trivial example and the general idea applies for
every ivl function.

//Tutorial sample samples/manpage/s2.cpp

#include <ivl/ivl>

#include <iostream>

// a custom class that holds two integers

class B

{

public:

int key, val;

B(int k, int v) : key(k) , val(v) { }

// the class elements are compared by comparing the first

integer

bool operator <(const B& o) const { return key < o.key; }

};

// we overload the output of the class members to a stream

std::ostream& operator <<(std::ostream& out, const B& b)

{

return out << "(key = " << b.key << ", val = " << b.val << "

)";

}

int main()

{

9

using namespace std;

using namespace ivl;

B x(1, 5);

B y(2, 15);

cout << "minimum of x, y = " << ivl::min(x, y) << endl;

}

minimum of x, y = (key = 1, val = 5)

Among other operations the _[.] expression is also valid for elements of custom class. The
extended ivl operators apply to them the usual way. Of course in order to be able to raise
a custom class object x to the power y using _[x] ->*(y) the underlying power function
needs to be overriden. In our case this function is ivl::pow(x, y).

1.7 Type Evolution

Since the types of the participating elements are the basis of any operation, we insist on a
few more properties of these types.
There are cases when the types that we use are unknown. These might be the cases of
template programming. In template programming we may need to use information from
template types to our aid. Particularly we may need to produce new types Y based on
certain properties of template types T. The namespace ivl::types includes tools to this
end. We use the name type evolution to indicate the production of types based on already
known types from which they evolve.
One example is to produce a floating-point number of type Y, depending on a type T, i.e., Y
is complex only when T is complex itself.
The struct to_floating, defines a dependant type as below.

typename types::to_floating<T>::type

Table 1.4 shows many of the possible type transitions that occur with to_floating. In other
words, to_floating<int>::type is a double and so on.
An example where we may use to_floating is to write a template function that returns the
mean of two numbers. The mean of two ints may be a decimal number, so we want it to be
a double. But the mean of two floats is a float. Instead of writing several specializations
to achieve this we use to_floating and we only write one function. The following example
has almost the same code as the actual ivl::mean.

template<class T>

typename types::to_floating<T>::type mean(T a, T b)

{

10

original type → resulting type

int → double

float → float

double → double

std::complex<float> → std::complex<float>

std::complex<int> → std::complex<double>

Table 1.4: Type transitions made when using ivl::types::to_floating<T> on a type.

to_complex<T> Changes the type to a complex number

to_real<T> Changes any complex number type to real

to_signed<T> Changes any unsigned type to signed

to_unsigned<T> Changes any signed type to unsigned

promote<T> Makes the type larger in size if possible

Table 1.5: Other type evolution classes of ivl::types

typedef typename types::to_floating<T>::type result_type;

return (result_type(a) + result_type(b)) / 2.0;

}

int main()

{

using ivl::math::i;

// The produced type is double

cout << "mean(1, 2) = " << mean(1, 2) << endl;

mean(1, 2) = 1.5

// The produced type is std::complex<double>

cout << "mean(1+i, 2.5-2i) = "

<< mean(1.0 + i, 2.5 - 2.0 * i) << endl;

mean(1+i, 2.5-2i) = (1.75,-0.5)

}

Other similar structs useful for type evolution are shown in Table 1.5
Note that the usage of the above types is based solely on template code, which only runs at
compile time. All that the mentioned structs do is provide type definitions, not instructions.
As a result they do not affect performance however complicated they might be.

11

2 Arrays

2.1 Array; a class for storing linear data

The ivl container for one dimensional arrays that similates std::vector is called ivl::array.
We will make a superficial presentation of ivl::array in this section focusing more on its
use in algebra. The details of the class are explained in later sections. Like all other classes
ivl::array is a template class. It has two template parameters however only the first one
will be discussed for now since the second one is optional.
The first template argument T of ivl::array<T> is the class of the elements of the array.
There are a few ways to construct an ivl::array<T>. One way is from an existing C array.
This is an example.

#include <ivl/ivl>

using namespace ivl;

using namespace std;

int main()

{

double values[] = { 0.1, 0.2, 0.3, 0.2, 0.1 };

array<double> a(values);

A synonym to the two above lines of code can be written on a single line using ivl::arr.
The template function ivl::arr<T> constructs an array with a few given elements, while
detecting the type.

array<double> a2 = arr(0.1, 0.2, 0.3, 0.2, 0.1);

An array can also be constructed via copy from another array, of the same or different type.

array<double> a3 = a2;

Arrays do not need to be initialized at first. An uninitialized array has zero size at first. At
any point assigning it means copying to it. When assigning to an array any values it holds
are lost. Also its size may be changed accordingly.

array<double> a4;

a4 = a;

12

2.2 Streaming an array

An ivl array can be streamed to any C++ stream including the cout. The result is the array
elements formatted.

cout << a << endl;

[0.1000 0.2000 0.3000 0.2000 0.1000]

2.3 Algebra on arrays

Now suppose that a was of a standard C++ type. As mentioned above the evaluation of a
simple expression may be written in the form:

<variable> = <expression>;

It is possible to evaluate expressions between ivl arrays the exact same way as if they were
standard types.
For instance the C++ expression for adding 1 to a would be a + 1. and the return type of
the expression would be the same as the type of a. Here is the example of this addition.

array<double> y;

y = a + 1;

cout << y << endl;

[1.1000 1.2000 1.3000 1.2000 1.1000]

The number is added to every element of a. We call this an element wise operation because
it is repeated for each element. Doing the same with the number on the left side of the
expression requires a scalar conversion

y = _[1] + a;

cout << y << endl;

[1.1000 1.2000 1.3000 1.2000 1.1000]

Obviously this produces the same result. We can also have binary operations between two
arrays. The constraint is that the size of the arrays must be the same.

13

array<double> b = arr(1.1, 1.2, 1.3, 1.2, 1.1);

cout << "a = " << a << endl << "b = " << b << endl;

a = [0.1000 0.2000 0.3000 0.2000 0.1000]

b = [1.1000 1.2000 1.3000 1.2000 1.1000]

The addition of two numbers a and b in C++ is done by the expression (a + b).

y = a + b;

cout << "a+b = " << y << endl;

a+b = [1.2000 1.4000 1.6000 1.4000 1.2000]

As we can see the addition is an element-wise expression, meaning that the addition is done
on all the elements of both arrays, producing an array with the individual results.
Finally a last way to make an addition is to do it in-place with the operator +=.

cout << "y = " << y << endl;

cout << "a = " << a << endl;

y = [1.2000 1.4000 1.6000 1.4000 1.2000]

a = [0.1000 0.2000 0.3000 0.2000 0.1000]

y += a;

cout << "y = " << y << endl;

y = [1.3000 1.6000 1.9000 1.6000 1.3000]

We have focused on the addition operation. All the ivl element-wise operators shown in
Table 1.3 can be applied to arrays. The same holds for functions that operate on elements.
The main principle is that when an operation that is defined for a single element is be applied
to an array, the operation is done to all its elements.
Also we may note that arrays of different element types can be combined in expressions the
same way different types of C++ numbers can be mixed in them.
The sample below contains the line y = sin(y). Ivl always does overlapping checks when
assigning to arrays making such expressions safe. They may also be done optimally when
this is possible. Here the ivl::sin function is applied to the array y.

14

cout << "y = " << y << endl;

y = sin(y);

cout << "y = " << y << endl;

y = [1.3000 1.6000 1.9000 1.6000 1.3000]

y = [0.9636 0.9996 0.9463 0.9996 0.9636]

In C++ we are allowed to combine different types in expressions, e.g. we can combine double
and int:

{

double a = 0.5;

int c = 1;

double y = a + c;

cout << "y = " << y << endl;

}

y = 1.5

The same rule applies to ivl arrays. Considering the previous example, we can use the
addition operator between an array of double and an array of int. The same thing applies
for operations between array and scalar. This is the analogous example:

array<int> c = arr(1, 2, 3, 2, 1);

y = a + c;

cout << "y = " << y << endl;

y = [1.1000 2.2000 3.3000 2.2000 1.1000]

We end this section by adding that ivl expressions can be nested as many times as we
want in any way we want. In fact nesting expressions is the preferred way to do a series
of computations on arrays. That is because nesting is implemented in a way which enables
a possible optimization of the combined expression, which is done per element. Here is an
example of a nested expression:

y = log(sin(a + power(a, c) ->* 2) - sin(c));

cout << "y = " << y << endl;

y = [-2.2093 -1.6083 -1.2167 -1.6083 -2.2093]

15

2.4 Array non-element operations

The element operations we discussed above are similarly defined for single elements and
arrays. Apart from these operations, there is a large set of functions involving arrays in ivl.
The function sum returns the sum of all elements of an array.

cout << "y = " << y << endl;

y = [-2.2093 -1.6083 -1.2167 -1.6083 -2.2093]

cout << "sum(y) = " << sum(y) << endl;

sum(y) = -8.852

There are quite a few many-to-one functions for arrays. For example the ivl::min. This
function is essentialy an override of the std::min that returns the minimum of two elements.
The principle of using the names of C math functions as overrides also holds for arrays. The
function ivl::min(a) where a is an array<T> returns the minimum element of that array:

//to resolve the ambiguity between ivl::min and std::min

using ivl::min;

cout << "min(y) = " << min(y) << endl;

min(y) = -2.209

The library of ivl functions is large. However we will see more about ivl functions when
tuples are discussed.

}

2.5 Ranges

Arrays in ivl exist in several variants. Each have different properties. One significant variant
is an ivl::range<T>. This class represents an array with elements in a specific range, e.g.
1, 2, . . . , n. Ranges are arrays but do not take space to store all the elements. Constructing
a range of double is done like this:

range<double> r(1.0, 5.0);

std::cout << "r = " << r << std::endl;

16

r = (1:5)

array<double> a = r;

std::cout << "a = " << a << std::endl;

a = [1.0000 2.0000 3.0000 4.0000 5.0000]

The element type of a range may be of any type. Ranges may also have a step, positive or
negative. For example a range of int with a step 2:

range<int> r2(1, 2, 10);

std::cout << "r2 = " << r2 << std::endl;

r2 = (1:2:10)

array<int> a2 = r2;

std::cout << "a2 = " << a2 << std::endl;

a2 = [1 3 5 7 9]

std::cout << array<double>(range<double>(5, -2, -3)) << std::endl;

[5.0000 3.0000 1.0000 -1.0000 -3.0000]

Ranges can be created by the rng function which constructs a range<T> by autodetecting
the type of elements. The following examples have the same result as the previous ones:

a = rng(1.0, 5.0);

std::cout << "a = " << a << std::endl;

a = [1.0000 2.0000 3.0000 4.0000 5.0000]

a2 = rng(1, 2, 10);

std::cout << "a2 = " << a2 << std::endl;

a2 = [1 3 5 7 9]

17

2.6 Indices

The type size_t has a special meaning in ivl: To hold indices. This type has size equal to
the pointer size, i.e. 32-bit for 32-bit executables, 64-bit for 64-bit executables etc. It has
the ability to hold any size that could possibly fit into the program memory and thus is ideal
for storing indices. Similarly it is ideal for storing sizes.
There are times when an array of sizes or indices is needed in order to be supplied to certain
functions. Thus there is a shorthand for constructing an array<size_t> named idx. The
function idx is practically the same as the function arr<size_t>.

std::cout << "idx(1, 3, 4, 5) = " << idx(1, 3, 4, 5) << std::endl;

idx(1, 3, 4, 5) = [1 3 4 5]

3 Multidimensional arrays

3.1 The class array_2d

The class for representing matrices or two-dimensional arrays is array_2d<T>. This class
is very similar to an array<T> in the way it is used. To construct an array_2d<T> with
initial data the sizes, which are the rows and the columns of the array, are required. Given
the number of rows and columns and a C array with the data column by column we may
construct an array_2d as shown below:

double a_v[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0,

10.0, 11.0, 12.0 };

array_2d<double> a(3, 4, a_v);

cout << a << endl;

1.0000 4.0000 7.0000 10.0000

2.0000 5.0000 8.0000 11.0000

3.0000 6.0000 9.0000 12.0000

A more elegant way to construct an array_2d<T> is by using concatenation with conjuction
to the row() and col() function for creating row and column vectors accordingly.

array_2d<double> a2 =

row(1, 2, 3, 4)() &

row(5, 6, 7, 8);

cout << a2 << endl;

18

1.000 2.000 3.000 4.000

5.000 6.000 7.000 8.000

There are many other ways to construct an array_2d<T>. All the constructors are listed in
the ivl reference manual.

3.2 Algebra on two-dimensional arrays

The usual element functions and operators apply to two dimensional arrays as well. For
example:

array_2d<double> y = a2 + 1;

cout << "a2 = " << endl << a2 << endl;

cout << "a2 + 1 = " << endl << y << endl;

a2 =

1.0000 2.0000 3.0000 4.0000

5.0000 6.0000 7.0000 8.0000

a2 + 1 =

2.0000 3.0000 4.0000 5.0000

6.0000 7.0000 8.0000 9.0000

Two-dimensional arrays may also be combined together in element operations, provided they
have the exact same size.

array_2d<double> z;

z = a2 + y;

cout << "z = " << endl << z << endl;

z =

3.0000 5.0000 7.0000 9.0000

11.0000 13.0000 15.0000 17.0000

19

3.3 Matrix Operators

Besides the element operations there are certain operators that are specific to matrices.
Suppose we want to multiply matrices a and a2 from the previous example. We can see that
the number of columns of a is equal to the number of rows of a2:

cout << "a = " << endl << a << endl;

cout << "a2 = " << endl << a2 << endl;

a =

1.0000 4.0000 7.0000 10.0000

2.0000 5.0000 8.0000 11.0000

3.0000 6.0000 9.0000 12.0000

a2 =

1.0000 2.0000 3.0000 4.0000

5.0000 6.0000 7.0000 8.0000

The operator * is already defined for element multiplication, so we need to use something
that is distinct. For example:

cout << a2 * a2 << endl;

1.0000 4.0000 9.0000 16.0000

25.0000 36.0000 49.0000 64.0000

In order to perform matric multiplication we use the operator () on the left matrix followed
by an operator *. The parenthesis operator, operator (), when applied to an array_2d<

T> creates a temporary array object changing the behaviour of operators to behave as matrix
operators. That way, the expression a() * a2 stands for matrix multiplication as opposed
to element multiplication:

cout << a() * a2 << endl;

95.0000 117.0000 139.0000 56.0000

109.0000 135.0000 161.0000 70.0000

123.0000 153.0000 183.0000 84.0000
20

a() || b Horizontal Concatenation
a() & b Vertical Concatenation

a() * b Matrix Multiplication
a() / b Matrix Division
a() | b Matrix Left-Division
a() % b Matrix Modulo
a() ->* b Matrix Power

!a() Matrix Transpose
*a() Matrix Conjugate Transpose

a(!_) (discuss) Matrix Transpose
a(*_) (discuss) Matrix Conjugate Transpose

Table 3.1: List of ivl matrix operators

If we want to do a matrix operation after another matrix operation we need to add the
operator() after the second operand:

f = a() * a2() * a3;

and this could go on for as many matrices as we want, paying attention to the operator
precedence. It is also possible to parenthesize the whole expression to obtain the same
result:

f = (a() * a2())() * a3;

Table 3.1 shows a list of all the ivl matrix operators.
Note that to multiply a

′
∗a the use of operator() is required twice. First time it is required

for the transpose operation and second time for the multiplication:

f = !a()() * a;

3.4 The class array_nd

When we need an array with a specified number of dimensions we use the class array_nd<T>.
The class array_nd<T> is similar to array_2d<T> and in fact is its base class as it is shown
later when arrays are discussed in more detail.

21

The difference from array_2d<T> in the construction of an array_nd<T> is that we supply an
array<size_t> of the dimensions instead of the rows and the columns. The dimensions are
given in order. The first dimension is the rows, then the columns, then the third dimension,
then the fourth and so on. The linear data is ”folded” accordingly, i.e. it is supplied and
stored column by column then by the third dimension, then by the fourth and so on. We
give an example of an array_nd<double> with three dimensions.
Here, instead of supplying the data from a C array we use the more elegant ivl::range.
This is not a unique property of array_nd<double> as every ivl array can be constructed
with a size and another ivl array.

array_nd<double> a(idx(3, 3, 2), rng(1.0, 18.0));

cout << a << endl;

[0]

1.0000 4.0000 7.0000

2.0000 5.0000 8.0000

3.0000 6.0000 9.0000

An array_nd<T> with two dimensions can be copied to or from an array_2d<T>.

array_2d<double> b(3, 3, rng(1.0, 9.0));

a = b;

cout << a << endl;

3.5 Algebra on array_nd

The properties of array_nd are similar to array and array_2d. In element based algebra
array_nd can be mixed with array_2d when the shape is the same. Operations with single
elements is done as in array and array_2d. Here we raise the elements of an array_nd to
the power 2 instead of repeating the usual example with operator +:

cout << a ->* 2 << endl;

[0]

1.0000 4.0000 7.0000

2.0000 5.0000 8.0000

3.0000 6.0000 9.0000

[1]

10.0000 13.0000 16.0000

11.0000 14.0000 17.0000

12.0000 15.0000 18.0000

22

3.6 Nested arrays

We may want to construct a type of multiple-sized arrays in a single array. The principle
that is followed in ivl is that the element type of an array is abstract and may as well be
another array.
More than being allowed the type array<array<T> > has various properties that arise from
the properties of ivl::array.

array<double> a = rng(1.0, 4.0);

array<array<double> > b;

b = a;

cout << b << endl;

[[1.0000] [2.0000] [3.0000] [4.0000]]

b += 1;

cout << b << endl;

[[2.0000] [3.0000] [4.0000] [5.0000]]

b += a;

cout << b << endl;

[[3.0000] [5.0000] [7.0000] [9.0000]]

cout << cast<array<double> >(b) << endl;

[[[3.0000]] [[5.0000]] [[7.0000]] [[

9.0000]]]

cout << cast<int>(b) << endl;

[[3] [5] [7] [9]]

23

4 Subscripting arrays

4.1 Accessing elements of an array

The class array<T> allows us to access its elements using subscripts. The operator [] takes
a size t argument and returns a reference to the according element at the specified index.
The zero-index C convention is used for indices. Hence the elements of an array of size n

are indexed 0, 1, . . . , n− 1. Besides being indexed in order the elements of an array<T> are
also stored in order in the memory.

array<double> x = rng(1.0, 8.0);

cout << x << endl;

[1.0000 2.0000 3.0000 4.0000 5.0000

6.0000 7.0000 8.0000]

cout << x[0] << endl;

1

Trying to access anything outside the array bounds in Release mode is like accessing an
illegal pointer address. When in Debug mode ivl throws an ivl::exception.

array<double> x = rng(1.0, 8.0);

cout << x[8] << endl;

s2: /usr/local/include/ivl/details/array/impl/specialization/

array_class.hpp:253: typename std::vector<T>::reference ivl::array

<T, S>::operator[](size_t) [with T = double; OPTS = ivl::data::mem<>;

typename std::vector<T>::reference = double&; size_t = unsigned int

]: Assertion ‘offset >= 0 && offset < length()’ failed.

The number of elements of an array is determined by the .length() member function.
Taking advantage of the .length() member we may output all its elements like this:

for(int i = 0; i < x.length(); i++)

cout << x[i] << " ";

cout << endl;

1 2 3 4 5 6 7 8

Generally the ivl::array behaves like an std::vector. However for the moment being we
still hide the class members and the class itself to focus on the subscripting. In a following
section we will get into thorough details about the array class and its family.

24

4.2 Subarray of an array

We may access a subset of elements of an array using a single subscript. When doing this,
the requested subarray behaves like an array. One way of taking a subarray of an array<T>

is with a range. We supply a range of the requested indices at the operator [] to take a
subarray with only those indices.

array<complex<double> > a = rng(1.0, 8.0);

std::cout << a << std::endl;

[(1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0) (8,0)]

std::cout << a[rng(2,4)] << std::endl;

[(3,0) (4,0) (5,0)]

std::cout << a[rng(0,2,4)] << std::endl;

[(1,0) (3,0) (5,0)]

Another way to get a subarray of an array<T> is to explicitly specify the requested indices
in an array<size_t>. Repeating elements or going back and forth is also allowed:

std::cout << a << std::endl;

[(1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0) (8,0)]

std::cout << a[idx(0,1,3,5)] << std::endl;

[(1,0) (2,0) (4,0) (6,0)]

std::cout << a[idx(5,1,3,1,7,7,2)] << std::endl;

[(6,0) (2,0) (4,0) (2,0) (8,0) (8,0) (3,0)]

The subarrays taken with subscript are actually referenced elements. No copies are made
and the subarray itself is writable. For example.

25

a[idx(5,1,3,1,7,7,2)] += 2.0 * ivl::math::i;

std::cout << a << std::endl;

[(1,0) (2,4) (3,2) (4,2) (5,0) (6,2) (7,0) (8,4)]

a[rng(0,2,4)] = -1.0;

std::cout << a << std::endl;

[(-1,0) (2,4) (-1,0) (4,2) (-1,0) (6,2) (7,0) (8,4)]

Subarrays are temporary objects. Getting a non-const reference to a temporary object is
prohibited in C++. We want add an unary operator *, the dereference operator, in front
of a subarray when writing to it, e.g.

*a[idx(5,1,3,1,7,7,2)]

This way we are certain that the subarray may be passed to functionsas a non-const reference.
Passing subarrays to tuples also requires the dereference operator. Simple assignments or
add-assignments etc. do not require this operator however we will use it always in our
examples.
A special value for subarrays is empty. When assigning empty<T> to a subarray, all its
elements are removed from the array. A synonym to empty<T> is the object _.

4.3 The subscript all.

When assigning a single element to an array the array resizes itself to fit a single element.
In other words:

std::cout << a << std::endl;

[(-1,0) (2,4) (-1,0) (4,2) (-1,0) (6,2) (7,0) (8,4)]

a = 1.0;

std::cout << a << std::endl;

[(1,0)]

Subarrays are an exception as assigning them to a single value assigns the requested value
to all the elements. When we want to assign a value to all the elements of an array we use
the subscript all. A synonym to âll is the expression *_:

26

std::cout << a << std::endl;

[(-1,0) (2,4) (-1,0) (4,2) (-1,0) (6,2) (7,0) (8,4)]

a[*_] = 1.0;

std::cout << a << std::endl;

[(1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0)]

The subscript all is also a useful way to view a multi-dimensional array as a single-
dimensional array. This is somehow similar to creating a subarray as it is a reference
and not a copy of the elements. It is also writeable:

array_2d<double> d(3, 3, rng(1.0, 9.0));

std::cout << d << std::endl;

1.0000 4.0000 7.0000

2.0000 5.0000 8.0000

3.0000 6.0000 9.0000

std::cout << d[*_] << std::endl;

[1.0000 2.0000 3.0000 4.0000 5.0000

6.0000 7.0000 8.0000 9.0000]

27

4.4 Accessing elements of a multidimensional array

4.5 Multidimensional subarray

5 Tuples and functions

5.1 The tuple

5.2 Calling functions

5.3 Linear algebra example

6 Images

6.1 The class image

6.2 Saving, loading and image preview

7 Array class inheritance

8 Functional programming within sequential programming

28

	Introduction
	Part A
	Fundamentals
	Simple C++ Expressions
	Introducing ivl; the type ivl::scalar
	Algebra on single elements
	Operators between elements
	Complex numbers in ivl
	Type Abstraction
	Type Evolution

	Arrays
	Array; a class for storing linear data
	Streaming an array
	Algebra on arrays
	Array non-element operations
	Ranges
	Indices

	Multidimensional arrays
	The class array2d
	Algebra on two-dimensional arrays
	Matrix Operators
	The class arraynd
	Algebra on array_nd
	Nested arrays

	Subscripting arrays
	Accessing elements of an array
	Subarray of an array
	The subscript all.
	Accessing elements of a multidimensional array
	Multidimensional subarray

	Tuples and functions
	The tuple
	Calling functions
	Linear algebra example

	Images
	The class image
	Saving, loading and image preview

	Array class inheritance
	Functional programming within sequential programming

