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Abstract 

Extracting molecular descriptors from chemi-
cal compounds is an essential preprocessing 
phase for developing accurate classification 
models. Supervised machine learning 
algorithms offer the capability to detect 
“hidden” patterns that may exist in a large 
dataset of compounds, which are represented 
by their molecular descriptors. Assuming that 
molecules with similar structure tend to share 
similar physicochemical properties, large 
chemical libraries can be screened by applying 
similarity sourcing techniques in order to 
detect potential bioactive compounds against 
a molecular target. However, the process of 
generating these compound features is time-
consuming. Our proposed methodology not 
only employs cloud computing to accelerate 
the process of extracting molecular descriptors 
but also introduces an optimized approach to 

utilize the computational resources in the most 
efficient way. 
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28.1 Introduction 

Machine learning algorithms can play a crucial 
role in solving problems related with classifica-
tion [3] and object detection [23]. The precise 
capability of these algorithms to detect essential 
motifs in data and classify them in a meaningful 
way makes them applicable to different scientific 
fields. Artificial Intelligence and machine 
learning are highly bound with the demanding 
process of discovering and developing new 
drugs [6, 10, 13, 20]. 

Knowing the structure of a molecular target 
and a chemical compound is a prerequisite for 
studying their potential interactions [7]. To this 
purpose, mathematical approaches and computa-
tional methods are being used for the determina-
tion of quantitative relationships between the 
structural features of chemical compounds and 
their biological activities. This approach, known 
as Quantitative Structure Activity Relationship 
(QSAR), could be applied for numerous
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purposes, such as the prediction of bioactivity of 
new compounds [9, 14]. However, its drawback 
is that it is time-consuming and usually requires 
high availability of computational resources. 
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Building a QSAR model is frequently based 
on the use of molecular descriptors. As it has been 
defined earlier, a molecular descriptor is “the final 
result of a mathematical procedure which 
transforms chemical information encoded within 
a symbolic representation of a molecule into a 
useful number or the result of some standardized 
experiment” [19]. The selection of the suitable 
physicochemical properties as well as theoretical 
molecular descriptors in a QSAR study is of par-
amount importance to maximize the accuracy of 
prediction [18]. 

Machine learning algorithms are very efficient 
and effective in recognizing patterns in a given 
dataset. As a part of a virtual screening study 
[17, 21], “hidden patterns” in a dataset of 
compounds, represented by molecular 
descriptors, could offer valuable information for 
their classification in sub-classes based on their 
estimated binding affinity on a molecular target 
[11]. Usually, virtual screening studies involve 
large chemical datasets consisting of thousands 
of compounds. Consequently, extracting mean-
ingful descriptors for datasets of this size may 
be not only an extremely time-consuming process 
but also a key preliminary step of a new drug 
discovery campaign [8]. 

In our initial methodology [5], we employed 
Dask framework, which is based on Python for 
distributed computing and Amazon Web Services 
(AWS) as the cloud services provider. Our 
approach successfully accelerated the process of 
extracting molecular descriptors; in some cases, 
approximately 73 times faster. The initial 
approach proved that using a cluster with multiple 
nodes is more performant for large dataset, but for 
medium sized dataset a cluster with less nodes is 
more efficient. However, the exact number of 
nodes that are required for different data sizes 
was not clearly defined. 

In this study, we aim to prove that the execu-
tion time of extracting descriptors is dependent on 
the size of the compound, which is relative to the 
length of the compound’s SMILES 

representation. A dataset with a predefined 
SMILES length is used as a template. We initially 
extract the descriptors for a different number of 
rows of this template using a different number of 
nodes. The required time for the cluster formation 
and the extraction of the descriptors is then calcu-
lated for various combinations of data sizes and 
cluster sizes. These calculations are used as a 
template for the identification of the suitable, 
based on their performance, number of nodes 
that should be used for a dataset given different 
sizes of dataset. It has been proven that our new 
optimized approach can maximize the perfor-
mance of the initially proposed process. 

28.2 Material and Methods 

The molecular weight is a one-dimensional 
descriptor which describes a compound. Simi-
larly, the Balaban index J and Bertz’s complexity 
index are presented. Both of these indexes are 
transformations of the available knowledge 
which is related to the structure of a compound. 
The Balaban index J [2] is a descriptor which is 
based on graph theory. The standard distance 
matrix of D of a graph G is a matrix (D)ij as 
described below: 

ðDÞij = 
ℓij, if  i≠ j 

0, if i= j 
ð28:1Þ 

where ℓij is the shorter path which can be 
described as the minimum number of edges 
between the vertices i and j. Given a four-node 
cycle C4, as it is illustrated in Fig. 28.1, the 
distance matrix D can be defined as the following 
matrix: 

0 1 2 1  

1  0 1 2  

2 1 0 1  

1 2 1 0  

The Balaban index J is defined as



E
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Fig. 28.1 Labeled four-membered cycle C4 

J = 
μþ 1 

edges 

ðdidjÞ- 1∕2 ð28:2Þ 

where E is the number of edges in a graph G, μ is 
the cyclomatic number of G, and di is the distance 
sum of vertex i (it is a sum of all entries in the ith 
row or column of the distance matrix). The 
cyclomatic number μ of a polycyclic graph G is 
equal to the minimum number of edges necessary 
to be removed from G in order to convert G into 
the related acyclic graph. As an example, the 
Balaban index J for the graph illustrated in 
Fig. 28.1 is equal to 2 [1]. 

Bertz’s complexity index is a topological 
index which tries to quantify “complexity” of 
molecules. It consists of a sum of two terms: the 
first one representing the complexity of the bond-
ing and the second representing the complexity of 
the distribution of heteroatoms [4, 15]. Bretz’s 
molecular complexity index C(n) is defined as 
follows: 

CðnÞ= 2n log 2n- ni log 2ni ð28:3Þ 

where n denotes a graph invariant and ni is the 
cardinal number of the ith set of equivalent struc-
tural elements on which the invariant is defined. 
The summation goes over all sets of equivalent 
structural elements. 

Additionally, molecular fingerprints are an 
essential category of descriptors. Molecular 
fingerprints try to encode a molecular structure. 
This structure is represented as a vector. Actually 
it is a sequence of binary digits which represents 
the 3D structure of the compound. 1 https://zenodo.org/record/3732262. 

28.3 Implementation 

28.3.1 Dataset 

The dataset that was used in our study is a pandas 
dataframe of 80, 000 compounds. There are two 
different columns: the first one is the PubChem 
ID of the compound and the second is the 
SMILES representation of the compound 
[22]. The average SMILES length is 59.5 
characters. Eight different datasets of 20, 001 
rows were used at the phase of searching whether 
there is a relationship between the SMILES 
length and the execution time of extracting 
descriptors. For that purpose, each dataset 
consisted of the same compound. The comparison 
took place between two datasets having 25 and 
118 SMILES length and two datasets of 26 and 
112 SMILES length, respectively. 

28.3.2 Dask Framework 

Dask is a powerful Python framework which 
offers a pythonic way to execute code in parallel 
[16]. The code can be executed in multiple CPUs 
of a single machine or even in multiple nodes of a 
cloud cluster. Amazon Web Services were used 
as a cloud provider to scale up our computations 
and the coiled framework that enables the setting 
up of a cloud cluster. 

28.3.3 Methodology 

The extraction of molecular descriptors was 
achieved using the RDKIT framework.1 RDKIT 
is a Python scientific framework related to 
computational chemistry. The proposed method 
generated four different groups–categories of 
descriptors (mostly 1D, 2D, 3D, Morgan 
Fingerprints) and saved the output in CSV format 
as a binary file (.pkl).

https://zenodo.org/record/3732262
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In our approach, we calculated the time which 
is needed to extract molecular descriptors using a 
large combination of different cluster sizes and 
different dataset sizes. In more detail, we 
computed 170 different execution times in terms 
of extracting molecular descriptors using datasets 
having varying sizes, e.g., equal to 5, 000, 
10, 000, 15, 000, 20, 000, 25, 000, 30, 000, 
35, 000, 40, 000, 45, 000, 50, 000 compounds. 

The different “architectures” of the cloud clus-
ter were set equal to 25, 35, 45, 55, 65, 75, 85, 95, 
105, 115, 125, 135, 145, 155, 165, 175, 
185 nodes. Each of these datasets consisted of 
the same SMILES with length equal to 
57 characters as this was the median SMILES 
length of the initial dataset. We had to take into 
consideration the length of the SMILES as we 
proved that there is a relationship between the 
SMILES length and the execution time of 
generating molecular descriptors (more time is 
required for larger compounds). 

It is usually known that the SMILES length of 
a drug is between 20 and 90 characters [12]. As a 
result, all these 170 calculations were used as a 
template. Our proposed method used this tem-
plate to estimate the best number of nodes related 
to the size of the dataset. Finally, we compared 
the execution time needed using the proposed 
method (using the number of nodes based on the 
template) and the best performance, which was 
observed from the initial approach in [5]. Our 
proposed method was proved to be the optimized 
one as it overpasses the initial approach. Based on 
the template, it offers the capability to estimate 
the best number of nodes related to the size of the 
dataset and the median number of SMILES 
length. 

28.4 Results 

As we can observe in Fig. 28.2, the time needed 
to extract molecular descriptors is larger for 
compounds with bigger SMILES length com-
pared to compounds with smaller SMILES 

length. Although in some cases the SMILES 
length is the same, each dataset consists of differ-
ent chemical compounds. 

In Tables 28.1 and 28.2, the execution time is 
displayed for a variety of nodes for different 
cluster sizes. These calculations are used as a 
template in order to estimate the number of 
nodes that could be the most performant choice. 
The template that is displayed in these tables is 
compatible with the results of our previous study 
[5]. In more detail, when the number of rows in 
the dataset is relatively small, a cluster with a 
small number of nodes is the most efficient 
option. However, when the number of 
compounds is being increased, the solution of 
using more cloud nodes tends to be the most 
efficient. For a given number of compounds, our 
approach proposes a number of nodes that could 
have the maximum impact of extracting the 
molecular descriptors as fast as possible. 

In our initial approach [5], for a dataset of 
10, 000 compounds and a cluster of 180 nodes, 
the required time to extract molecular descriptors 
was 198.9 seconds. The proposed method (using 
the template) proposed the usage of 145 nodes, 
and the result of this cloud infrastructure was to 
extract the descriptors in 152.2 seconds. Sequen-
tially, for a dataset of 20, 000 compounds, the 
initial method used a cluster of 100 nodes, and the 
execution time was 263.6 seconds. However, the 
proposed approach, for the same dataset, used a 
cluster of 145 nodes, and the execution time was 
183.1 seconds. Finally, for a dataset of 50, 000 
compounds, the initial method used a cluster of 
180 nodes, and the execution time was 445.3 
seconds. The proposed method used a cluster of 
185 nodes, and the execution time was 
307 seconds. 

In all cases, the use of the template in our 
proposed method offered the capability to use a 
number of nodes that tend to extract the molecular 
descriptors much faster compared to the initial 
approach. All these comparisons are illustrated 
in Fig. 28.3.
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Fig. 28.2 Both datasets consist of 20,001 compounds and 
SMILES length equal to (a) first dataset = 25 characters, 
second dataset = 118 characters (b) first dataset = 
26 characters, second dataset = 112 characters (c) first 
dataset = 25 characters, second dataset = 118 characters 

(although the SMILES length is the same as in case (a), 
each dataset consists of a different compound) (d) first 
dataset = 26 characters, second dataset = 112 characters 
(although the SMILES length is the same as in case (b), 
each dataset consists of a different compound) 

28.5 Conclusions and Future Work 

Our initial approach [5] is highly efficient in 
extracting RDKIT molecular descriptors. This 
offers researchers the capability to handle even a 
bigger number of compounds in computational 
chemistry approaches [21]. More to the point, 
the proposed method offers an optimized 
approach that extracts molecular descriptors in a 
more efficient way, e.g., in terms of time that is 
required. 

Regarding future work, the proposed methodol-
ogy could be enriched using a larger number of 
templates for different SMILES lengths. This could 
give the capability to the researchers to extract 
molecular descriptors of a dataset based on the 
median SMILES length of the dataset. As the exe-
cution time of extracting molecular descriptors 
varies regarding the SMILES length, the usage of 
a large number of templates could offer the capabil-
ity to extract descriptors using the most performant 
cloud infrastructure based on SMILES length.
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Table 28.1 Execution time (sec) for a variety of cloud infrastructures 1/2 

Number of nodes 5K rows 10K rows 15K rows 20K rows 25K rows 

25 169,55 211,74 371,77 476,84 568,92 
35 171,38 212,75 288,31 288,19 397,3 
45 170,92 211,78 209,89 250,09 382,3 
55 151,84 199,87 200,64 239,43 296,24 
65 133,91 187,78 180,44 238,09 251,37 
75 130,62 165,74 183,49 236,41 250,26 
85 134 155,7 215,73 238,37 254,56 
95 137,81 158,37 189,36 217,29 255,59 

105 142,98 155,15 176,36 198,76 253,42 
115 147,65 155,93 179,09 195,91 253,2 
125 152,56 152,81 198,74 192,62 242,59 
135 154,38 153,03 193,77 187,45 236,16 
145 140,89 152,2 184,07 183,19 228,92 
155 146,92 161,05 186,25 201,25 229,86 
165 145,26 170,19 178,08 211,94 222,94 
175 149,1 170,79 176,77 216,76 214,26 
185 159,8 170,61 178,14 220,62 212,91 

Table 28.2 Execution time (sec) for a variety of cloud infrastructures 2/2 

Number of nodes 30K rows 35K rows 40K rows 45K rows 50K rows 

25 469,3 829,06 607,89 1043 794,42 
35 467,2 533 500,8 637,9 706,5 
45 458,55 361,52 395,54 414,51 681,63 
55 389,11 358,62 389,12 413,23 580,6 
65 362,46 355,71 386,91 408,91 435,98 
75 290,99 314,75 368,41 407,4 429,4 
85 259,93 297,48 307,4 409,1 383,37 
95 256,14 295,27 295,36 396,36 357,57 

105 246,72 269,87 280,3 378,58 349,17 
115 249,75 269,88 279,69 378,69 343,35 
125 249,03 265,58 263,66 382,69 328,69 
135 251,47 265,41 360,07 315,47 319,07 
145 248,68 263,3 251,3 297,45 315,45 
155 253,3 258,86 256,22 313,12 319,97 
165 242,96 239,73 253,36 337,2 315,7 
175 242,88 239,73 253,56 332,46 309,42 
185 245,25 239,94 256,17 332,04 307,57
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Fig. 28.3 Initial vs Proposed Approach with 
characteristics: (a) Dataset size = 10K rows, Initial 
Approach = 180 nodes, Proposed Approach = 
145 nodes (b) Dataset size = 20K rows, Initial Approach 

= 100 nodes, Proposed Approach = 145 nodes (c) 
Dataset size = 50K rows, Initial Approach = 
180 nodes, Proposed Approach = 185 nodes 
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