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1 Introduction

Social media reflect underlying social dynamics. The numerous examples make
for some rather convincing cases. LinkedIn often determines who shall fill a job
vacancy. During the Arab Spring of 2011 Egyptian protesters would commu-
nicate in Twitter [32][47]. In July 2016, the Turkish premier issued a dramatic
public address in Skype while a coup was in progress -and failing. Besides the
advantage for marketers and political campaign planners among others, social
media enable the investigation on a scale considered prohibitive of questions
such as social coherence [28], social graph partitioning [30], expansion potential
[45], stable evolutionary strategies [12], or meme diffusion [7].

Determining influential accounts is paramount in social network analysis.
Currently, the majority of influence metrics relies either on structural proper-
ties of the social graph itself [27] or on the spectral properties of the associated
adjacency matrix [2][13][16][20]. Prime examples of the former are respectively
the number of neighbors and the decay rate of the graph eigenvalues. Both
metrics are generic enough to be applied to virtually any social graph. How-
ever, they are oblivious to functionality, a severe limitation as social networks
were precisely set up in order to perform specific tasks. Facebook is well known
for the like button, in Twitter accounts follow each other, Foursquare is es-
sentially a closely interwoven fabric of check-ins, and social login is supported
across diverse Web portals as an authentication scheme.

Valuable insight is obtained by harvesting information from Twitter data,
namely tweets, hashtags, follows, and mentions. Due to the connection oriented
nature of social data, Neo4j [40][43] was selected. It is intended to provide
reliable and scalable graph storage and, potentially, analytics engines such as
NetworkX1, Google Pregel [33], and Spark GraphX2 can run on top of it.

The primary contribution of this article is twofold. First, a linear alge-
braic strategy for deriving higher order Twitter influence rankings from first
order ones is considered, extending these proposed in [18]. Second, in order
to evaluate their performance, these metrics are compared in a higher order
probablistic framework. Specifically, the first order metrics proposed in [23][24]
are extended to higher order ones by taking into consideration the interaction
of the accounts within the particular social graph using techniques from [18].

This article is structured as follows. Section 2 summarizes work in digital
influence. The influence metrics and the evaluation framework are outlined in
section 3. Section 4 interprets the results, while section 5 examines performance
aspects. The article concludes with the discussion in section 6. Article notation
is summarized in table 1. Finally, given the number of institutions and entities
maintaining a strong Twitter presence, it makes sense to write about Twitter
accounts rather than users.

1 https://networkx.github.io
2 http://spark.apache.org/graphx
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Defining And Evaluating Twitter Influence Metrics 3

Table 1 Article notation.

Symbol Meaning
4
= Definition or equality by definition
{x1, . . . , xn} Set containing elements x1, . . . , xn
|S| Cardinality of set S
S1 \ S2 Asymmetric set difference S1 minus S2

τS1,S2
Tanimoto similarity coefficient of sets S1 and S2

νS1,S2
Asymmetric Tversky index for sets S1 and S2

ρx1,x2 Correlation coefficient of vectors x1 and x2

E [X] Mean value of random variable X
Var [X] Variance of random variable X
κ3 (p) Pearson skewness coefficient of distribution p
κ4 (q) Pearson kurtosis coeffcient of distribution p
〈p || q〉 Kullback-Leibler divergence between distributions p and q
µ1 � µ2 Metric µ1 always outperforms µ2

µ1 � µ2 Metric µ1 is at least as good as µ2

1n n× 1 vector of ones
ϕ (·) Sigmoid or logistic function
sgn (·) Sign function

2 Related Work

Quoting [11] social influence is

“the ability of a person to influence the thoughts or actions of others.”

Well before the advent of social media, scientific literature was already
abounding with influence metrics based either on tangible factors, such as to-
tal income, or on abstract concepts, like the quadruple of the Roman values of
gravitas, pietas, dignitas, and virtus [34][49][52]. In [27] a combinatorial met-
ric based on connectivity patterns of the underlying social graph is proposed.
Similar rankings include betweeness- [36], degree- [9], and closeness centrality
[37]. Algebraic metrics include the eigenvector centrality [16], the Estrada in-
dex [31], and the matrix power series [15][19][42]. For the relationship between
combinatorial and algebraic rankings, both of structural nature, see [3].

Functional metrics, as their name suggests, focus on the functionality of
a social network and, consequently, facilitate interpretation at the expense of
universal applicability. Regarding Twitter, personality models have been used
for community discovery [23][24], probabilistic analysis predict the most trend-
ing authors for a given topic [39]. Concerning the digital influence of a Twitter
account, it can be derived by PageRank extensions [50][48], by its importance
compared to that of the remaining network [35], or by a nonlinear combination
of features3 [41]. Real time influence analytics were proposed in [51]. The dis-
crimination between authoritative and non-authoritative accounts in Yahoo!

3 www.influencetracker.com
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4 Drakopoulos, Kanavos, Mylonas, Sioutas

Answers can be achieved through modeling authority as a mixture of gamma
distributions [10]. Influence is examined in light of the current technological
evolution, which eventually led to the creation of social media [44]. Under plau-
sible assumptions the most influential accounts are the cost effective, where
cost is a function of communication complexity [1].

The same ranking may yield different results to the same set of accounts
across social media [46]. Moreover, the border between structural and func-
tional may not always be clear as in the case of PageRank [38]. Moving beyond
the structural and functional metric distinction, fusion strategies for creating
improved influence rankings based on tensor algebra are proposed in [13][14].

More recently, the issue of online trust has been tied to that of influence.
In [22] influence is mainly a matter of trust. Signed networks for modeling
account trustworthiness have been proposed in [29]. Alternatively, agents for
collecting and evaluating trust-related data are designed in [6]. Features for
trusting players in networks of online gamers are extracted in [21]. Online news
validity is augmented with account trustworthiness in [8]. In [4] social media
are regarded as pylons of an open society and of government accountability.

3 Twitter Influence Metrics

In order to differentiate between the existing metrics of [23] and [24] and the
proposed ones, the following definitions are necessary.

Definition 1 First order metrics compute the digital influence of any account
based only on data concerning this account.

Definition 2 Higher order metrics derive the digital influence of any account
as a function of the influence of other accounts. Consequently, the data regard-
ing a specific account alone are insufficient for computing its digital influence.

3.1 First Order Metrics

Seven first order Twitter influence rankings and their formulation as Cypher
queries are overviewed. Six have been already proposed [18][23][24][25][26],
whereas the last one is new. Table 2 summarizes the features, which can be
either directly collected from Twitter or computed by these rankings.

Table 2 Data for the k-th account.

Feature Meaning Feature Meaning Feature Meaning
Tk Tweet set Φk Follower set Ck Reply set
Rk Retweet set Ψk Followee set Mk Mention set
Hk Hashtag set Vk Favorites set Fk Frequency
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Defining And Evaluating Twitter Influence Metrics 5

The difference between Ck and Mk is that the @ handle is respectively at
the beginning and anywhere but the beginning of the tweet. Frequency Fk is
defined as the sum of tweets and retweets every eight hours.

First order metric 1 Conversational accounts have a high number of tweets,
retweets, conversations, favorites, and mentions. Thus, they relay a significant
amount of information. The conversational metric µc is calculated as

µck
4
= |Tk|+ |Rk|+ |Ck|+ |Vk|+ |Mk| (1)

First order metric 2 Multisystemic accounts have a high number of hash-
tags in their tweets, retweets, and conversations. These accounts are probably
proficient in a broad range of topics and they are a likely point of reference.
The multisystemic metric is denoted by µm and is calculated as follows

µmk
4
= |Hk| (2)

First order metric 3 Active accounts have a high number of tweets over
a given time interval. This behavior pattern likely indicates knowledge of or
strongly opinion about a particular topic. Thus, anyone seeking to know about
this topic might consider an active account an authority. The account/ener-
getic metric is denoted by µe and is calculated as

µek
4
= Fk (3)

First order metric 4 Popular accounts have a high number of followers. Al-
though Twitter popularity does not necessarily correspond to optimal diffusion,
highly followed users exert limited influence since they are often read. The po-
pularity metric µp is computed as

µpk
4
= |Φk| (4)

First order metric 5 Active accounts maintain a relative balance between
the sets of accounts that follow and the accounts who are followed by them.
This is expressed by the Tanimoto similarity coefficient for sets Φk and Ψk. In
this case, ranking µa is computed as

µak
4
= τΦk,Ψk

=
|Φk ∩ Ψk|
|Φk ∪ Ψk|

=
|Φk ∩ Ψk|

|Φk|+ |Ψk| − |Φk ∩ Ψk|
(5)

Notice that the second form is computationally appealing compared to the
first, as |Ψk| and |Φk| are readily available, while set intersection queries typi-
cally return fewer items than the corresponding union queries.

First order metric 6 Another way to define active accounts is to consider
the ranking µs which relies on the sigmoid function ϕ (·)

µsk
4
= ϕ (s) =

1

1 + e−s
, s

4
=

log (1 + |Φk|)
1 + log (1 + |Ψk|)

(6)
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6 Drakopoulos, Kanavos, Mylonas, Sioutas

First order metric 7 The atomic influential metric, denoted by µi, com-
putes the geometric mean of many of the above features

µik
4
= (|Tk||Rk||Hk| log10 (1 + |Φk|))

1
4 (7)

in order to capture the total online presence of an account.

3.2 Higher Order Metrics

Since graphs are primarily about connectivity and interaction, it makes sense
to seek influence rankings which fall under definition 2. Such is the case of
Katz centrality [27] which relies on the directed adjacency matrix Ã of the
social graph of acquaintances among n individuals to compute the score

µZk
4
=

+∞∑
p=1

n∑
j=1

αp0Ã
p [j, k] (8)

By means of the Neumann identity and provided that the spectral radius of
α0Ã, the largest in absolute value eigenvalue, is strictly less than one

+∞∑
p=0

(
α0Ã

)p
=
(
In − α0Ã

)−1
(9)

the score formula can be recast as the matrix equation

µZ =

((
In − α0Ã

T
)−1
− In

)
1n =

(
In − α0Ã

T
)−1

1n − 1n (10)

Within the context of the analysis by Katz, the meaning of the direction,
namely the fact that Ã may in the general case be non-symmetric, is that
a person may know another indirectly, for instance through rumors or by a
random mention from mutual acquaintances whereas the converse need not
be true. Ã expresses who knows who, while ÃT represents who is known by
whom and, therefore, is a metric of fame.

Along similar lines, the TunkRank algorithm [48] is a functional higher or-
der influence ranking designed for Twitter. For a given account the TunkRank
metric µR connects the set of followers Φk, the number |Ψj | of their followers,
and the network average retweet probability p0 in the succinct formula

µRk
4
=

∑
j∈Φk

1 + p0 µ
R
j

|Ψj |
, 0 ≤ p0 ≤ 1 (11)

which essentially states that µRk is a linear combination of that of its followers
which in turn is another linear combination of their respective followers and
so forth. If µRk are stacked to a column vector µR, then

µR = BµR ⇔ (In −B)µR = 0, B ∈ Rn×n (12)
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Defining And Evaluating Twitter Influence Metrics 7

which, like PageRank, can be cast either as a linear system or as an eigenvector
problem. In either case the solution lies in the non-trivial nullspace of In−B.

Because of their popularity in literature and also because of the fact that
the former is a purely structural metric whereas the latter is solely functional,
the Katz and the TunkRank were selected as baselines.

The general scheme proposed in this article to construct a higher order
influence ranking from a first order one consists of two phases. First, each
original score µ′k is normalized to µk in the range [ϑ0, 1] with the transform

µk = max

{
ϑ0 ,

µ′k −min1≤j≤n
{
µ′j
}

max1≤j≤n
{
µ′j
}
−min1≤j≤n

{
µ′j
}} , 1 ≤ k ≤ n (13)

During the second phase the authority score of each account is computed
as the convex combination of its own score and that of its followers

µauthk = η0µk +
(1− η0)

|Φk|
∑
j∈Φk

µj , 0 < η0 < 1 (14)

Stacking µk, µ
auth
k to vectors µ, µauth ∈ Rn leads to the matrix equation

µauth = η0µ+ (1− η0)M1n (15)

where the matrix M is defined elementwise as

M [i, j]
4
=

{
µj

|Φi| , j ∈ Φi
0, j 6∈ Φi

∈ Rn×n (16)

Likewise the hub score is computed using the followed accounts

µhubk = η1µk +
(1− η1)

|Ψk|
∑
j∈Ψk

µj , 0 < η1 < 1 (17)

resulting in the matrix equation

µhub = η1µ+ (1− η1)MT1n (18)

Finally, the F1 metric of the authority and the hub scores is computed

µF1
k (η2) =

1 + η2
1

µauth
k

+ η2
µhub
k

=
(1 + η2)µauthk µhubk

µhubk + η2µauthk

(19)

Note that the F1 metric is frequently employed in information retrieval prob-
lems as it systematically provides a deeper insight than the precision P or
recall R scores alone. It is defined as the weighted harmonic mean of P and R

F1(P,R; γ0)
4
=

1 + γ0
1
P + γ0

R

= (1 + γ0)
PR

R+ γ0P
(20)

In this way from any of the preceding first order influence metrics a higher
order ranking can be derived. As a convention, the capital letter of the corre-
sponding small letter denoting a first order metric will be used. Thus, µM and
µA are the higher order counterparts of µm and µa respectively.
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8 Drakopoulos, Kanavos, Mylonas, Sioutas

4 Results

4.1 Data Synopsis and Baseline Ranking

In order to evaluate the influence metrics, a Twitter subgraph Gb was col-
lected during November and December of 2016. As in [18] the starting point
of the social crawler, programmed to move along follow relationships to ac-
counts tweeting educational hashtags, was the official Twitter of a major US
university. The vertices of Gb are Twitter accounts and the edges indicate fol-
lowing relationships. Its properties are stated in table 3 and indicate a Twitter
subnetwork that displays considerable activity. For the definitions of density
and completeness see [18].

Table 3 Structural (right) and functional (left) properties of Gb.

Property Value Property Value
Vertices 12731 Distinct hashtags 739
Edges 238992 Hashtags 18221
Triangles 4364 Tweets 21217
Squares 471 Retweets 13445
Density 18.77 Average following 4.33
Completeness 0.0029 Average followers 7.61
Diameter 37 Average tweet length 87.11

By enlisting the aid of a domain expert, the influential accounts shown
in table 4 were identified in Gb, the number of which corroborates the high
activity in Gb as well as the broad flexibility any ranking scheme has on this
dataset, as approximately 16% of the accounts are influential. For the purposes
of this analysis, µZ and µR were the baseline metrics on the grounds that their
Zipf exponents, defined in (23) and (24), were the closest to the exponents
of the ranking derived by the expert. Since µZ is structural whereas µR is
functional, it is of interest to determine which rankings, if any, are closer to
these baselines. The reason for selecting baseline metrics is that an expert may
not be available or there are way too many accounts to rank for a single human
or even for a group of humans. The criteria the domain expert was based on
were the following:

– Institutions and organizations are more influential compared to individuals.
– Official accounts are reference points in the Web.
– In academia, faculty members are traditionally treated with respect.
– Sports associations are mainstays of US academic life.

Let S be the set of accounts in Gb. By partitioning the rankings obtained
by each metric to b bins where

b = 1 +
⌈√
|S|
⌉
, b ≡ 0 (mod 2) (21)

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Defining And Evaluating Twitter Influence Metrics 9

Table 4 Breakdown of known influential accounts in Gb.

Account type Number
Student organizations 693
Faculty members 471
Student leaders 397
Sports 306
Other academia 118
Departments 98
Schools 61
Universities 17

and by counting the number of influential accounts |Sk| in the k-th bin divided
by |S|, then each ranking can be mapped to a discrete distribution. Let p∗ be
the distribution corresponding to µ∗. Therefore

p∗k =
|Sk|∑b
k=1 |Sk|

=
|Sk|
|S|

, 1 ≤ k ≤ b (22)

Then, the quality of each influence metric can be assessed within a probabilistic
framework such as the one outlined in the next subsections. The selection
of b as in (21) keeps both the estimation complexity and the variance low.
To facilitate the analysis, b was intentionally chosen to be even. Also, as a
convention, the distribution will retain the letter denoting the corresponding
metric and, thus, for instance pS and pm correspond to µS and µm respectively.

For the final evaluation of each metric the following two definitions from
[18] will be used.

Definition 3 Assume a fixed set T of influence metric evaluation tests. Metric
µ1 outperforms µ2 with respect to T if and only if µ1 achieves strictly better
evaluation scores than µ2 in each test of T . This case is denoted as µ1 � µ2.

Definition 4 Assume a fixed set T of influence metric evaluation tests. Metric
µ1 is at least as good as µ2 with respect to T if and only if µ1 achieves

– strictly better evaluation score than µ2 in at least one test of T
– the same evaluation score with µ2 in the remaining tests

This case is denoted as µ1 � µ2.

The parameters for deriving the higher order rankings were η0 = 0.4,
η1 = 0.4, and η2 = 0.6. These values of η0 and η1 imply that the network
effect in shaping the authority and the hub scores respectively is 20% larger
compared to the ranking value computed for each account by the first order
metric. This is in accordance to the spirit of higher order metrics, which are
by construction connection-oriented. The value of η2 means that the authority
score contributes 20% more than the hub score to the final influence ranking.
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10 Drakopoulos, Kanavos, Mylonas, Sioutas

4.2 Architecture

Figures 1(a) and 1(b) illustrate the components as well as the information flow
between them in the open loop architecture of [18]. First the social crawler
populates the database and then analysis follows. The social crawler has been
written in Python using Tweepy4 for collecting non-streaming Twitter data.
Neo4j version 3.0 was configured in embedded mode, meaning that a single
JVM was launched. Thus, system memory was conserved at the expense of
making the database accessible only to the client [43].

(a) Twitter subgraph creation. (b) Analytics operation and data flow.

4.3 Ranking Score Clustering

Substantial evidence suggests that influence metric scores of large graphs show
a strong tendency to be clustered according to a Zipf model [30]

pk = α0 k
−γ0 , α0, γ0 > 0 (23)

or to a cutoff Zipf model [45]

pk = α1 k
−γ1 e−β1k, α1, β1, γ1 > 0 (24)

Moreover, a sorted version of the DGX distribution [5] which includes (23) as
a special case was used as a ranking model.

prob {Xdgx = k} =
1

β0k
exp

(
− (ln k − µ0)

2

2σ2
0

)
, β0 > 0

β0 =

b∑
k=1

1

k
exp

(
− (ln k − µ0)

2

2σ2
0

)
(25)

When sorted, the DGX distribution has an initial steep decay followed by a
tail which is heavier than that of the Gaussian distribution but also decays
quicker than a Zipf distribution.

Therefore, comparison any of p and p∗ can be reduced to the distance
between their respective scalar parameters, namely γ0 for (23), γ1 and β1 for
(24), and µ0 and σ2

0 for (25).

4 www.tweepy.org
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Defining And Evaluating Twitter Influence Metrics 11

Linearizing (23) and (24) for each point and stacking the equations row-
wise as in [18] yields respectively the overdetermined linear systems

ln p1
ln p2

...
ln pb

 =


1 0
1 − ln 2
...

...
1 − ln b


[
lnα0

γ0

]
and


ln p1
ln p2

...
ln pb

 =


1 −1 0
1 −2 − ln 2
...

...
...

1 −b − ln b


lnα1

β1
γ1

 (26)

The normal systems for the above cases are respectively[ ∑b
k=1 ln pk

−
∑b
k=1 ln pk ln k

]
︸ ︷︷ ︸

v2

=

[
b −

∑b
k=1 ln k

−
∑b
k=1 ln k

∑b
k=1 ln2 k

]
︸ ︷︷ ︸

Σ2

[
lnα0

γ0

]


∑b
k=1 ln pk

−
∑b
k=1 k ln pk

−
∑b
k=1 ln pk ln k


︸ ︷︷ ︸

v3

=

 b b(b−1)
2 −

∑b
k=1 ln k

b(b−1)
2

b(b+1)(2b+1)
6

∑b
k=1 k ln k

−
∑b
k=1 ln k

∑b
k=1 k ln k

∑b
k=1 ln2 k


︸ ︷︷ ︸

Σ3

lnα1

β1
γ1

(27)

Ignoring the estimators for normalizing constants α̂0 and α̂1, which are
nuisance parameters, the least squares estimators γ̂0, β̂1, and γ̂1 are

γ̂0 =
det
(
Σ

(2)
2 ; v2

)
det (Σ2)

= −
b
(∑b

k=1 ln pk ln k
)
−
(∑b

k=1 ln pk

)(∑b
k=1 ln k

)
b
(∑b

k=1 ln2 k
)
−
(∑b

k=1 ln k
)2

γ̂1 =
det
(
Σ

(3)
3 ; v3

)
det (Σ3)

, det (Σ3) 6= 0

β̂1 =
det
(
Σ

(2)
3 ; v3

)
det (Σ3)

, det (Σ3) 6= 0

(28)

where Σ
(i)
j ; vj is the matrix resulting by replacing the i-th column of Σj with

vj . The determinants of 3 × 3 matrices can be symbolically computed with
the rule of Sarrus, which is a special case of the rule of Leibniz. The finite
sums in (27) involving logarithms can be approximated for large b by the
Euler-McLaurin summation formula

b∑
k=1

lnn k ≈ b
(
lnn b− n lnn−1 b+ n(n− 1) lnn−2 b− . . .+ (−1)

n
n!
)

+
1

2
lnn b+

n

12b
lnn−1 b+ ξ0 + O

(
lnn−1 b

b3

)
, ξ0 ∈ R (29)

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



12 Drakopoulos, Kanavos, Mylonas, Sioutas

When b is large, then alternatively the following approximations may be
used when formulating the systems in (27)

b∑
k=1

kn ≈
∫ b

1

xndx+ ξ1 =
bn+1 − 1

n+ 1
+ ξ1, ξ1 ∈ R

b∑
k=1

ln k ≈
∫ b

1

lnxdx+ ξ2 = (b− 1) ln b+ ξ2, ξ2 ∈ R (30)

where ξ1 and ξ2 are correction constants.
The optimal values for µ0 and σ2

0 can be determined by numerically opti-
mizing with a procedure from [5] the loglikelihood function

`(µ0, σ0) = b lnβ0 −
b∑

k=1

(
− ln pk +

(ln pk − µ0)
2

2σ2
0

)
(31)

The absolute differences of the exponents between µZ and µR and the rank-
ing provided by the expert are shown in table 5, while the absolute differences
for each estimated parameter are shown in table 6. We consider the exponents
γ∗0 and γ∗1 of the ranking provided by the expert as the Zipf exponents of the
true ranking.

Table 5 Differences between µZ (left) and µR (right) and the reference ranking.

|γ∗0 − γ̂0| |γ∗1 − γ̂1| |γ∗0 − γ̂0| |γ∗1 − γ̂1|
µZ 0.4991 0.5513 µR 0.4223 0.5823

Table 6 Parameter differences for the Katz and the TunkRank baselines.

µZ µC µM µE µP µA µS µI µF1

|γ̂0 − γ̂∗0 | 1.1989 1.0223 1.9055 1.6228 1.4000 1.3000 0.9855 1.0192
|γ̂1 − γ̂∗1 | 1.1313 0.9922 1.5175 1.3981 1.3114 1.2200 0.7022 1.0899∣∣∣β̂1 − β̂∗1 ∣∣∣ 1.6663 1.4991 3.0022 2.5463 2.2878 1.8890 1.2286 1.3316

|µ̂0 − µ̂∗0| 1.6618 1.5512 2.6845 2.2046 2.0332 1.8753 1.3113 1.4824∣∣σ̂2
0 − σ̂2∗

0

∣∣ 1.1742 0.9916 2.1003 1.9000 1.7000 1.3000 0.8236 0.8536
µR µC µM µE µP µA µS µI µF1

|γ̂0 − γ̂∗0 | 1.4529 1.3783 1.8873 1.7842 1.6483 1.1021 0.8916 0.9612
|γ̂1 − γ̂∗1 | 1.2751 1.1222 1.4031 1.3529 1.3011 0.9981 0.6992 0.8733∣∣∣β̂1 − β̂∗1 ∣∣∣ 1.7025 1.5878 2.4767 2.2741 1.9442 1.2503 1.0044 1.1296

|µ̂0 − µ̂∗0| 1.5773 1.3742 2.5590 2.1331 1.7462 1.1998 0.8523 1.1278∣∣σ̂2
0 − σ̂2∗

0

∣∣ 1.6216 1.4332 2.2331 2.1533 2.0023 1.2001 0.9125 1.1161
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Defining And Evaluating Twitter Influence Metrics 13

4.4 Correlation With p∗

A common metric in probability theory for determining the similarity of any
two vectors is the normalized correlation coefficient, which is defined as

ρp,p∗
4
=

∑b
k=1 pk p

∗
k(∑b

k=1 p
2
k

) 1
2
(∑b

k=1 (p∗k)
2
) 1

2

=
pTp∗

‖p‖2‖p∗‖2
(32)

The second form of (32) has the geometric interpretation that ρp,p∗ is the
cosine of the inner angle θ0 formed by p and p∗ in Rb, that is

θ0
4
= arccos (ρp,p∗), θ0 ∈

[
0 ,

π

2

]
(33)

In this case ρp,p∗ ≥ 0 since rankings are positive as a result of (13). Moreover,
ρp,p∗ ≤ 1 because of the Cauchy-Schwartz inequality. Since both p and p∗

are both positive, θ0 can belong only to the first quadrant. Table 7 shows the
correlation between the metrics and the baselines as well as θ0 in degrees.

Table 7 Correlation with the Katz and the TunkRank baselines.

ρp,p∗ µC µM µE µP µA µS µI µF1

µZ 0.5931 0.5933 0.3271 0.3269 0.4551 0.5102 0.6813 0.6619
µR 0.3903 0.4212 0.1844 0.2354 0.2341 0.6845 0.7201 0.6930
θ0 µC µM µE µP µA µS µI µF1

µZ 53.62 53.60 70.90 70.91 62.92 59.32 47.05 48.55
µR 67.02 65.08 79.37 76.38 76.46 46.80 43.93 46.13

4.5 Kullback-Leibler Divergence From p∗

A common divergence metric for measuring the distance between two distri-
butions in terms of information theory is the Kullback-Leibler divergence. The
general formula applied to p and p∗ yields

〈p || p∗〉 4=
b∑

k=1

pk log

(
pk
p∗k

)
=

b∑
k=1

pk log pk −
b∑

k=1

pk log p∗k (34)

and essentially is the cross entropy of p and p∗ minus the entropy of p∗.
Note that p and p∗ are not interchangeable. This happens because, unlike the
normalized correlation coefficient, the Kullback-Leibler divergence can distin-
guish between a reference distribution, p∗ in this case, and a variant, namely
p. Table 8 shows the values of 〈p || p∗〉 for each pair of influence rankings.
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14 Drakopoulos, Kanavos, Mylonas, Sioutas

Table 8 Divergence between metrics and the Katz and the TunkRank baselines.

〈p || p∗〉 µC µM µE µP µA µS µI µF1

µZ 0.5887 0.6219 0.4418 0.4757 0.5423 0.5411 0.6911 0.6743
µR 0.5108 0.5111 0.4147 0.4374 0.4572 0.5113 0.5583 0.5220

4.6 Tversky Divergence From p∗

Another asymmetric divergence metric for measuring the pairwise distance
between p and p∗ is the Tversky index. The latter is defined for two sets T ,
which is considered as a template, and V , the variant, as

νT,V
4
=

|T ∩ V |
|T ∩ V |+ w1|T \ V |+ w2|V \ T |

∈ [0, 1] , w1, w2 > 0 (35)

Divergence is inversely proportional to νT,V . Hence, a value of 1 denotes full
coincidence of the two sets, whereas a value of 0 implies there is no similarity
at all. Typically, w1 > w2 since an element of T not present in V is a distortion
of the template set. When both weights equal 1, the Tanimoto coefficient is
obtained. Moreover, when w1 + w2 = 1, then the minimum distance between
T and V is maximized. For the purposes of this analysis, w1 = 2w2 and, hence
w1 = 2/3 and w2 = 1/3.

The Tversky index was originally designed for sets but it can be used with
vectors as well with some modifications. If it is applied directly to p and
p∗ by placing their elements to T and V respectively, then the result may
equal 1 even when p and p∗ do not match. For instance, this may happen
if they are a permutation of each other. Instead, to avoid this and to obtain
higher granularity, the b points of p and p∗ are partitioned to s+1 consecutive
segments where the first s ones contain bb/sc points and the last one comprises
of b mod s points. Let Tj and Vj denote the sets containing the elements of
these segments where 1 ≤ k ≤ s + 1. Then the Tversky index is applied to
each pair of Tj and Vj to yield the similarity score

νs+1
4
=

1

s+ 1

s+1∑
j=1

νTj ,Vj
(36)

For the purposes of this analysis s + 1 = db/ log be. This selection guarantees
that there will be a large number of sets each with few but still enough sam-
ples, namely O (log b), so that reliable values for νs+1 can be computed. This
contrasts the balance between the number of sets and the samples in each set
achieved in (21) when b was selected. Table 9 summarizes the νdb/ log be scores.

4.7 Skewness And Kurtosis Compared To p∗

The Pearson skewness coefficient of a random variable X is a higher order
index indicating whether the distribution of X is symmetric or has a high
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Defining And Evaluating Twitter Influence Metrics 15

Table 9 Divergence from the Katz and the TunkRank baselines.

νdb/ log be µC µM µE µP µA µS µI µF1

µZ 0.2791 0.3056 0.1298 0.1318 0.1993 0.2246 0.3337 0.3489
µR 0.2812 0.2687 0.1589 0.2231 0.2240 0.3175 0.3498 0.3536

mass concentration either to the left or to the right of its expected value
E [X]. It is defined as

κ3 (X)
4
=

E
[
(X − E [X])

3
]

E
[
(X − E [X])

2
] 3

2

=
E
[
(X − E [X])

3
]

Var [X]
3
2

(37)

In the present analysis the following approximations are used

E [X] ≈ µb =
1

b

b∑
k=1

pk

Var [X] ≈ σ2
b =

1

b− 1

b∑
k=1

(pk − µb)2 (38)

It is expected that the mass distribution of p∗ will be uneven as the majority
of the true influential accounts will be located in the left part of the distribution
towards the origin point. Therefore, κ3 (X) is expected to be positive. Since
not only the value of the skewness coefficient is important but also its sign,
the following two metrics will be used to assess the deviance of p from p∗ in
terms of symmetry

δ3(p)
4
= |κ3 (p)− κ3 (p∗)| (39)

π3(p)
4
=

{
1, sgn (κ3 (p)) = sgn (κ3 (p∗))

0, sgn (κ3 (p)) 6= sgn (κ3 (p∗))
(40)

Similarly, the Pearson kurtosis coefficient is a higher order measure of the
degree of mass concentration around E [X]. Namely, small values indicate a
strong concentration, while large values are often attributed to a slowly de-
caying curve or to a big number of outliers. The definition is

κ4 (X)
4
=

E
[
(X − E [X])

4
]

E
[
(X − E [X])

2
]2 =

E
[
(X − E [X])

4
]

Var [X]
2 (41)

As κ4 (X) can by definition take only positive values, only the following
metric can be defined

δ4(p)
4
= |κ4 (p)− κ4 (p∗)| (42)

Table 10 contains the values for δ3(p), π3(p), and δ4(p).
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16 Drakopoulos, Kanavos, Mylonas, Sioutas

Table 10 Differences from the Katz and the TunkRank baselines.

µZ µC µM µE µP µA µS µI µF1

δ3(p) 1.2355 1.1255 2.3321 1.8816 1.7371 1.6368 0.9635 1.0993
π3(p) 1 1 0 1 1 1 1 1
δ4(p) 1.5272 1.3845 2.4449 2.2594 2.0125 1.8844 1.1140 1.3914
µR µC µM µE µP µA µS µI µF1

δ3(p) 1.6899 1.5612 2.0018 1.9032 1.7723 1.3347 1.2261 1.3285
π3(p) 1 1 1 1 1 1 1 1
δ4(p) 1.7993 1.6029 2.2173 2.0992 1.9544 1.4517 1.3324 1.5119

4.8 Combining Metrics

Based on the results of the preceding tests, the following metric ordering can
be inferred when the baseline is µZ

µI � µF1 � µM � µC � µS � µA � µP � µE (43)

which maintains most of the ordering in [18] between the first order metrics

µi � µm � µc � µp � µe (44)

When the reference metric is µR, then the resulting ranking ordering is

µI � µF1 � µS � µM � µC � µA � µP � µE (45)

In both orderings µI is always better than the remaining metrics, while µP

and µE are always dominated by the rest. This can be attributed to the fact
that µI combines the main functional and the primary structural features of
Twitter. On the contrary, it appears that having many followers alone as in
µP or tweeting a lot during a specified interval as in µE is not always a sign
of influence.

The middle part of both orderings reveals some interesting relationships.
Both parts have only one clear difference and it is almost the same, namely
µC � µS and µC � µA -recall that µS and µA depend on different ways
only on the similarities of Φk and Ψk. These distinctions imply that a fair
summary of online activity is probably a better influence indicator than the
follow relationships, even when their bidirectionality is factored. Also, it seems
that µS outperforms µA, probably because the former operates on orders of
magnitude instead on the set cardinalities directly, resulting thus in better
numerical properties and allowing easier handling of uneven set sizes. Since µI

and µC seem to be good choices while µE does not, it follows that tweeting
must be coupled with retweeting in order to yield a more reliable indicator,
meaning that an influential account should not only post reliable or useful
information but it must also relay information of at least equal quality. In
other words, an influential account must act both as an authority and as a
hub, strongly hinting that online influence is of inherently higher order nature.
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Defining And Evaluating Twitter Influence Metrics 17

Similarly, the use of hashtags by µI and µM is important because of their
semantic value. Moreover, it can be argued that an account which strategi-
cally or creatively places hashtags is likely to attract attention and probably
followers, possibly explaining why µM is close to µS or µA and revealing some
correlation between hashtag variability and similarity patterns between Φk
and Ψk. If true, this would add to the evidence suggesting that functional and
structural features should be carefully merged to hybrid influence metrics.

5 Experimental Evaluation

5.1 Execution Time

Besides the correctness and the expressive power of the proposed analytics, an
efficient implementation is also necessary to demonstrate their potential. Two
scenaria were examined following the procedures specified in [17]. According
to the first scenario (s1), our application, composed of the database and the
analytics, was the only one running and, thus, had unlimited access to the
resources shown in table 11. This led to the establishment of the baseline
performance. Then, the system was running with an average workload of 0.5
(s2), a moderate value, and our application was run eleven times in order for
the information shown in table 12 to be collected, where the measurements of
the first execution were ignored. These figures relate to analytics only as the
social graph was already collected at an earlier date. Note that the values of the
analytics themselves were the same in each run regardless of the total execution
time and system workload, as the metrics are deterministic by construction.

Table 11 System specifications.

Property Value
CPU AMD Athlon X4@4 GHz
CPU Cores 4
Hard Disk 1 TB
L2 Cache 4 GB
Memory 16 GB
OS Ubuntu 16.04
Swap Partition Size 16 GB
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18 Drakopoulos, Kanavos, Mylonas, Sioutas

(c) Time (s1). (d) Time (s2).

Table 12 Execution time for influence rankings (min, max, avg, std in sec).

s1 µZ µR µC µM µE µP µA µS µI µF1

m 2441 2882 1916 1893 2045 1933 2081 2103 2112 4234
x 2816 3194 2378 2450 2542 2481 2589 2623 2653 4692
a 2564 3004 2157 2093 2285 2017 2234 2302 2285 4982
s 111 113 111 111 112 110 113 112 112 42
s2 µZ µR µC µM µE µP µA µS µI µF1

m 3447 3459 2246 2231 2284 2315 2298 2256 2352 4418
x 3911 4025 3773 3725 3777 3721 3844 3856 3929 4678
a 3760 3791 3572 3568 3501 3489 3563 3524 3699 3871
s 117 117 118 117 116 116 116 116 118 39

In general, the computation of baseline metrics µZ and µR as well as µF1

was slower. This can respectively be attributed to the fact that µZ and µR

entail the solution of a large and sparse linear system, whereas µF1 requires the
computation of two metrics. On the contrary, the remaining metrics rely on
matrix-vector multiplications Ax which is potentially an order of magnitude
quicker than a linear system solution A−1x. Also, the standard deviations
in each scenario were very similar with those in the second scenario being
consistently higher and distinctive than those in the first. Finally, in the first
scenario the mean value was approximately equidistant to the lower and the
higher times, whereas in the second the mean is closer to the maximum value.
The information of table 12 is repeated in figures 1(c) and 1(d) for clarity.

5.2 Memory Requirements

The top command was configured in batch mode. Memory use was updated
every ten seconds, a resolution smoothing out any spikes or outliers. The mea-
surments are summarized in table 13 and in figures 1(e) and 1(f).
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(e) Memory (s1). (f) Memory (s2).

Table 13 Memory requirements for influence rankings (min, max, avg, std in MB).

s1 µZ µR µC µM µE µP µA µS µI µF1

m 2048 2048 2048 2048 2048 2048 2048 2048 2048 2048
x 4096 4096 3840 3840 3840 3968 3968 3840 3968 4432
a 3611 3617 3592 3602 3604 3589 3591 3606 3596 4212
s 112 111 112 112 112 111 113 113 113 110
s2 µZ µR µC µM µE µP µA µS µI µF1

m 2048 2048 2048 2048 2048 2048 2048 2048 2048 2048
x 4124 4124 3840 3968 3968 4096 4096 4096 4096 4416
a 3619 3622 3597 3596 3601 3596 3601 3593 3597 4254
s 113 112 111 112 112 111 112 111 112 110

The two baseline metrics µR and µZ had consistently more memory require-
ments as denoted by the high average memory use and the simultaneous low
standard deviation. On the contrary, the remaining seven metrics were less
memory intensive in general with occasional spikes, probably while caching
columns of the adjacency matrix M. µP , µS , and µA are more demanding,
perhaps because they need to compute the cardinality of large sets of follow-
ers and followed. At a relative distance comes µI followed closely by µC and
µE . Their common denominator is that they only rely on a large set and thus,
place less strain memorywise. At the last place comes µM , probably as a result
of dealing only with the smaller set of hashtags.

In contrast to the time measurements, memory requirements, including the
standard deviations, are approximately the same in both scenaria. This can
be attributed to the fact that moving memory blocks back to main memory
or even to the swap partition may be time consuming but imposes no addi-
tional memory constraints. Therefore, the memory allocated to our application
depends solely on the data to be processed as well as on any extra memory re-
quired by the analytics themselves. As these memory factors remain constant
across executions, the total memory needs to remain constant as well.

The above findings depend heavily on the various dataset features. For in-
stance, in a network with lower sets of followers but with more tweets, retweets,
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and hashtags, a commonplace characteristic in news or professional communi-
cation networks [45], memory usage patterns might be different.

6 Conclusions And Future Work

Ranking influential Twitter accounts and evaluating the quality of influence
metrics are addressed in this article. A general algebraic scheme for deriving
higher order Twitter influence rankings from first order rankings was proposed.
At its heart lies a convex combination of the score of a given account and those
of its followers. Moreover, the analytical framework of [18] for assessing the
performance of an influence metric was extended with probabilistic tools from
various field including information theory, data mining, and psychometrics.
The framework was implemented in the Python ecosystem.

In order to reach meaningful conclusions regarding the performance ana-
lysis of Twitter influence rankings the Katz metric µZ and the TunkRank
µR were used as baselines. The former is representative of structural rankings,
whereas the latter is a functional one. Analysis indicates that among the seven
higher order metrics derived by the proposed scheme, namely µC , µM , µE , µP ,
µA, µS , µF1, and µI , µI performs well compared to both µZ and µR, reflect-
ing the fact that it combines structural and functional features, although it
is among the more demanding metrics. Another interesting finding was that
µE , µM , and µC had similar behavior to µR. The fact that µI outperforms
the other digital influence rankings can be attributed to the diverse factors it
combines, which capture a major part of Twitter activity.

Possible algorithmic research can be conducted towards developing sophi-
sticated Twitter hybrid metrics. Moreover, scalability is an issue that should
be taken into consideration. Also, the proposed metrics should be applied to
networks from other domains or to networks from multiple domains, as for in-
stance to a combination of educational and news accounts. Concerning the im-
plementation of the proposed rankings, any sparsity patterns of the adjacency
matrix should be exploited in ranking computation. Matrix free methods or
parallel matrix-vector multiplication, perhaps in combination with advanced
indexing may be a way to achieve lower execution times.

Moving beyond the proposed analytics, Twitter influence metrics should
integrate reputation and trustworthiness in social media as well as their evo-
lution over time as a means to curtail online trolling and the spreading of fake
news, such as topics emphasized during the 2016 US elections. Finally, live
analytics will shed more light to the actual Twitter structure and will be used
to predict online events in real time.
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