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Abstract. In this paper we present an approach towards human ac-
tion detection for activities of daily living (ADLs) that uses a Convolu-
tional Neural Network (CNN). The network is trained on Discrete Fourier
Transform (DFT) images that result from raw sensor readings, i.e., each
human action is ultimately described by an image. More specifically, we
work using 3D skeletal positions of human joints, which originate from
processing of raw RGB sequences enhanced by depth information. The
motion of each joint may be described by a combination of 3 1D signals,
representing its coefficients into a 3D Euclidean space. All such signals
from a set of human joints are concatenated to form an image, which
is then transformed by DFT and is used for training and evaluation of
a CNN. We evaluate our approach using a publicly available challeng-
ing dataset of human actions that may involve one or more body parts
simultaneously and for two sets of actions which resemble to common
ADLs.
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1 Introduction

Human action recognition still remains one of the most challenging research ar-
eas in the field of computer vision. Several open challenges in this area include
the representation, the analysis and ultimately the recognition of the human
actions [2]. To this goal, machine learning approaches have been widely used.
However, traditional machine learning approaches fail to show robustness when
the number of possible actions increases or when the camera angle changes.
During the last few years, advances in hardware have facilitated training and
application of deep neural network architectures [9] which are able to learn rep-
resentations from data without the need for hand-crafted rules or features, while
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their accuracy may significantly increase when they are provided with more data.
Moreover, recently several publicly available datasets [13] have emerged in the
field of human action recognition, enabling the evaluation of novel architectures
and action representations in real-like scenarios. Apart from the aforementioned
challenges, the design of novel deep architectures and their application in real-life
scenarios, are also among the targets of research in this field.

In this paper, we propose a novel visual representation of human actions,
which based on the Discrete Fourier Transformation (DFT). More specifically,
we concatenate raw signal images that result from the 3D motion of human
skeletal joints. The input required for the extraction of these joints consists
of aligned RGB and depth video sequences and is performed using the well-
known Kinect v2 camera and its accompanying SDK. Moreover, we propose a
novel Convolutional Neural Network (CNN) architecture which uses as input the
DFT transformation of the aforementioned images. We evaluate the proposed
approach using the challenging PKU-MMD dataset [13] consisting of 51 human
actions and we demonstrate that the proposed approach may be used in real-like
environments for the recognition of activities of daily living (ADLs) [10].

The rest of this paper is organized as follows: Section 2 presents state-of-
the-art in the field of human action recognition using deep learning approaches
and focusing on those that work on skeletal information. Section 3 presents the
concepts of deep learning and Convolutional Neural Networks that have been
used in the context of this work. The proposed action representation and deep
network architecture are then described in section 4. Experimental results are
presented in 5 and discussed in 6, which also included plans for further extensions
and applications of this work.

2 Related Work

The problem of human action recognition has attracted many research efforts,
which have been continuously growing during the last decade. In this section
we aim to present approaches that are based on deep networks. Typically, these
works do not include a feature extraction step; they are instead based upon a
representation of the action. However, we should herein emphasize that there
still exist approaches that propose the extraction of features [15].

Skeletal data consist of the 3D positions of human skeleton joints. These
may be considered as high-level features for the recognition process. The most
popular method to extract the skeleton is based on RGB sequences accompanied
by corresponding depth maps, i.e., as the approach adopted by Kinect sensors.
Of course, skeletons are prone to errors, due to e.g., occlusion and viewpoint
changes. Moreover, certain actions may have significantly different appearance
upon abrupt changes of viewpoint. There exist two major categories of tasks: a)
segmented recognition; and b) continuous (online) recognition [17]. The differ-
ence between the two categories is that within the first, we assume that the input
video sequence only contains the action to be recognized, i.e., frames not depict-
ing the action (before/after the action) have been removed. Note, that for the
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first category, common deep architectures used are Recurrent Neural Networks
(RNNs) [6] and Convolutional Neural Networks (CNNs) [11]. For the second
category RNNs are typically used. In case a CNN is used, the majority of the
approaches includes a step of converting skeleton sequences to a single image, in
a way that both spatial and temporal information is maintained and reflected
to low-level image properties, i.e., color and/or texture may be used for the sep-
aration of classes. Note, that the proposed approach uses a CNN and a step for
converting 1D skeleton sequences to a single image, as it will be described in
section 4.

In the work of Du et al. [4], the authors divide the skeleton joints into five
groups (arms, legs and trunk), i.e., corresponding joints are concatenated as a
single vector. All five parts are then concatenated so as to capture the spatial
information per frame, while x, y and z components of their 3D coordinates
correspond to the R, G, B components of a color image, respectively. Then, rep-
resentations of all frames of a sequence are arranged chronologically, to capture
its temporal properties. A CNN architecture is used for classification. Wang et
al. [18] propose the use of “joint trajectory maps,” where hue is used to capture
the motion direction information of skeleton joints. Motion trajectories are pro-
jected onto three Cartesian planes (i.e., front, top and side plane) and motion
magnitude is encoded by appropriately settings of saturation and brightness, so
that motion changes are reflected to changes of texture. The resulting maps are
classified into actions by CNNs. Similarly, Hou et al. [5] also encoded skeleton
joints’ sequences into “skeleton optical spectra,” which were also color texture
images. The variation of color was used to introduce the temporal information
to the representation, as changes of hue.

Li et al. [12] proposed the use of “joint distance maps,” which are also texture
images. Contrast to [18] and [5], projections to the three Cartesian planes are
unnecessary. Instead, pair-wise distances of joints are used. 3 maps are used to
encode the distances in the 3 orthogonal 2D planes and a fourth one is used to en-
code distances in the 3D space. Hue is used for encoding variations of distances.
This way, the description is more robust to changes of viewpoint, which as we
have already discussed are common in real-life applications. A CNN is then used
for each map and classification is a result of a late fusion scheme which is ap-
plied. In the work of Liu et al. [14], transforms are applied to skeleton sequences
in an effort to make them invariant to the position and the initial orientation
of the skeleton. Skeleton data are considered as points into a 5D space; each
consists of 3D space coordinates, time and joint label. They are then projected
into a 2D image by selecting two of the aforementioned dimensions, while the
remaining three are used as R, G, B values. This way, color images are formed
and used as input to a multi-stream CNN scheme. Finally, Ke et al. [8] presented
“SkeletonNet,” where contrary to the majority of the approaches, they did not
extract 3D coordinates. Instead, they extracted translation, rotation and scale
invariant features. More specifically, the skeleton was divided into five parts as
in [4]. Then from each part they extracted vector representations which are gen-
erated from pairwise relative positions between joints. Cosine distances between
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the aforementioned vectors within a specific part and normalized magnitudes of
each vector are extracted. These ten representations are concatenated and then
used as input to a two-stream CNN.

3 Deep Learning and Convolutional Neural Networks

Deep learning is a sub-field of machine learning which has attracted a lot of
research interest during the last few years. Its main idea is the use of multiple
layers to non-linearly process the network’s input, so as to “learn” to extract
features. The output of each layer is fed to the next layer. Ultimately, they
become able to learn multiple levels of representations which correspond to mul-
tiple levels of abstraction. Deep network architectures play a key role in several
application fields such as computer vision, audio analysis, speech recognition
etc., i.e., in tasks where traditional machine learning approaches fail to achieve
acceptable levels of accuracy for real-life applications. It is generally accepted
that the computer vision is the area that has benefited the most; a plethora of
deep architectures have been proposed during the last few years and have been
successfully applied to traditional computer vision problems as well as to novel
applications.

The most common approach when dealing with computer vision problems
are the Convolutional Neural Networks (CNNs) [11]. The architecture of a CNN
resembles to the one of a traditional neural network (NN), however, its goal is to
learn a set of convolutional filters. Training takes place as with every other NN;
a forward propagation of data and a backward propagation of error do take place
to update weights. The convolutional layers are those that play the key role in the
whole process. Their neurons are grouped in rectangular grids, so that each would
perform a convolution in a part of the input image. Learning process aims to
learn the parameters of this convolution. Pooling layers are usually placed after
a single or a set of serial or parallel convolutional layers. Their input consists
of small rectangular image blocks from the convolutional layer. The latter are
then subsampled; a single output is produced from each block. Finally, dense
layers (which are commonly referred to as “fully-connected” layers) are the ones
that are responsible for classification, based on the features that were previously
extracted by the convolutional layers and subsampled by the pooling layers. Note
that each node of a dense layer is connected to all nodes of its previous layer.
To avoid overfitting, one approach (which we also adopt in this work) is the
use of the dropout regularization technique [16]. When using this technique, at
each training stage several nodes are “dropped out” of the network. This way,
complex co-adaptations on training data are prevented and this leads to the
reduction or even total prevention of overfitting.

4 Human Action Recognition

The proposed approach uses as its input 3D skeletal data that have been captured
by the Microsoft Kinect v2 sensor [19] which combines a traditional RGB and
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a depth camera. Kinect is complemented by its SDK, which among others is
able to provide the 3D positions of a predefined set of human skeletal joints,
in real time. A graph representation has been adopted; nodes correspond to
body parts (e.g., arms, legs, head etc.), edges follow the joints’ structure. Note
that a parent-child relationship is implied, i.e., HEAD is parent of NECK, while
NECK is parent of SPINE SHOULDER, etc. A total of 25 joints are available.
We should emphasize that since for each joint its x, y and z coordinates are
provided. We consider each coordinate of each joint as a single 1D signal, thus
75 1D signals result, for any given video sequence and for each person. In Fig. 1
we illustrate the 25 human skeleton joints, that are extracted using the Kinect
SDK.
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Fig. 1: Extracted human skeleton 3D joints using the Kinect SDK.

Inspired by the work of Jiang and Yin [7], we first create an activity image
by concatenating the aforementioned 75 1D signals. We will refer to the result
of this concatenation as “signal image.” Then, we apply the 2D Discrete Fourier
Transform (DFT) to the signal image and preserve only the magnitude of the
transform (i.e., the phase is discarded). The result is again an image, which we
will refer to as “activity” image. In Fig. 2 we illustrate an example signal image
and the corresponding activity image.

We should herein emphasize that our work focuses only on the classification of
a given action into a set of predefined classes. Therefore, we should clarify that
it does not perform any temporal segmentation (i.e., to detect the beginning
and the ending of a possible action); instead we consider this problem as solved.
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Fig. 2: Left: a signal image. Right: an activity image. For visualization purposes only,
the activity image has been processed with a log transformation. Figure best viewed
in color.

For evaluation purposes we work on pre-segmented sequences of videos, aiming
to only recognize the performed actions within each segment. We also assume
that each segment contains exactly one action. We should highlight that human-
performed actions may typically vary in terms of duration, even when performed
by the same user, thus an interpolation step should be necessary. To tackle this
issue and upon experimentation we decided to set a threshold Ts for the duration
of each action. Signals resulting from all actions with a duration Ta < Ts are
padded with zeros, while the length of those with Ta > Ts is reduced upon
a linear interpolation step. This way, all signal images have a fixed length of
Ts × 75.

The architecture of our proposed CNN is presented in detail in Fig. 3. The
first convolutional layer filters the 159×75 input activity image with 32 kernels
of size 3×3. Then the first pooling layer uses “max-pooling” to perform 2×2
subsampling. A second convolutional layer filters the 36×78 resulting image with
64 kernels of size 3×3.Then a second pooling layer uses “max-pooling” to perform
2×2 subsampling. The third convolutional layer filters the 17×38 resulting image
with 128 kernels of size 3×3. A third pooling layer uses “max-pooling” to perform
2×2 subsampling. Then, a flatten layer transforms the output image of size 7×18
of the last pooling to a vector, which is then used as input to a dense layer using
dropout. Finally, a second dense layer produces the output of the network.

5 Experimental Results

For the experimental evaluation of the proposed approach we used the PKU-
MMD dataset [13]. This dataset aims to provide a large scale benchmark, focus-
ing on 3D human action understanding. It contains approx. 20K action instances
spanning into 5.4M video frames and belonging to 51 action categories. A to-
tal of 66 human subjects have been involved, while video recordings have been
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Fig. 3: The proposed CNN architecture.

captured from 3 camera angles, using the Microsoft Kinect v2 camera. Provided
modalities are raw RGB video, depth sequences, infrared radiation captured by
the Kinect and extracted 3D positions of skeletons.

From this dataset we decided to use 11 classes which in our opinion are the
most close to ADLs or events that should be recorded at a use case of e.g.,
home monitoring. More specifically, these classes were: eat meal snack, falling,
handshaking, hugging other person, make a phone call answer phone, playing
with phone tablet, reading, sitting down, standing up, typing on a keyboard and
wear jacket. As described in section 4, we worked with the provided skeleton
positions. For further evaluation, we also include experiments in all 51 classes of
PKU-MMD. Sample signal and activity images from the 11 classes are illustrated
in Fig. 4. Note the visual difference of these images which may not be significant,
yet allows the CNN to learn the differences between two classes.

a b c d e f g h i j k

Fig. 4: Sample images from 11 actions of the PKU-MMD dataset that have been used
throughout our experiments: upper row: signal images; lower row: activity images. (a)
eat meal snack; (b) falling; (c) hand shaking; (d) hugging other person; (e) make answer
phone call; (f) playing phone tablet; (g) reading; (h) sitting down; (i) standing up; (j)
typing on keyboard; (k) wearing jacket. Figure best viewed in color.
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We have set Ts=158 frames so as to prevent significant loss of information
upon interpolation. The evaluation protocol we followed is as follows: We first
performed experiments per camera position, namely middle (M), left (L) and
right (R). In this case, both training and testing sets derived from the same
position. Then, we performed cross-view experiments, where 1 position was used
for training, while the other two were used for testing. The goal therein was to
test the robustness of the proposed approach in abrupt changes of camera angle,
which are expected to happen in real-life scenarios. In all cases we measured the
accuracy of classification. Detailed results are depicted in Table 1.

As it may be observed, the proposed approach in the aforementioned case of
11 classes is able to achieve accuracy ranging from 0.75 to 0.85 when the camera
angle remains unchanged (i.e., when samples from the same angle have been
used for both training and testing). Also, it achieves adequate performance in
case two “neighboring” angles are used, e.g., M for training, L for testing etc.
In this case, accuracy ranges from 0.56 to 0.64. We noticed that when samples
from the right camera position are used, a significant drop of performance is
observed. Moreover, and as it has been expected, dramatic changes of camera
angle, e.g., when L is used for training, R for testing or vice versa, performance
ranges between 0.35 and 0.40. Finally, when the whole set of 51 classes has been
used, performance is acceptable only in cases where the same angle has been
used for both training and testing; corresponding accuracies range from 0.55 to
0.73. In all other cases, a strong drop of performance is observed.

For the implementation of the CNN we have used Keras [3] running on top
of Tensorflow [1]. All data pre-processing and processing steps have been im-
plemented in Python 3.6 using NumPy (http://www.numpy.org/) and SciPy
(https://www.scipy.org/).

Table 1: Experimental results of the proposed approach. M, L and R denote the mid-
dle, left and right camera angles, respectively. 11 and 51 are the numbers of classes
considered for evaluation. Results indicate the achieved accuracy.

Experiment
Train M M M L L L R R R
Test M L R M L R M R L

Dataset
11 0.82 0.56 0.64 0.61 0.85 0.40 0.56 0.75 0.35
51 0.73 0.29 0.28 0.25 0.55 0.11 0.29 0.73 0.12

6 Discussion

In this paper we presented a methodology for the recognition of human actions
which was based on a novel image representation of 3D human skeletal informa-
tion and a novel convolutional neural network architecture. We used an image
representation of a human action, which resulted upon the concatenation of raw
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1D signals corresponding to 3D motion of skeletal joints’ coefficients and the
application of the Discrete Fourier Transform to the created image.

We evaluated the proposed approach using a state-of-the-art and challeng-
ing dataset, which consisted of sequences corresponding to 51 human actions.
These sequences had been captured with 3 Kinect v2 cameras, under different
camera angles and the skeletal joints of the human actors involved had been
extracted. We performed experiments involving either only one or two cameras
(cross-view). We mainly focused on a subset of 11 actions which in our opinion
are the most close to real-life ADLs. However, we also experimented with the
whole dataset. Our initial results indicate that the proposed approach may be
successfully applied to human action recognition in real-like conditions, yet a
drop of performance is expected when camera angle would change.

Among our plans for future are the following: a) investigation on methods
for creating the signal image, possibly with the use of other types of sensor
measurements such as wearable accelerometers, gyroscopes etc.; b) investigation
on image processing methods for transforming the signal image to the activity
image. To this goal transforms such as wavelets, discrete cosine transformation
(DCT) etc. may be used; c) exploitation of other types of visual modalities in the
process, such as RGB and depth data; d) evaluation of the proposed approach on
several other public datasets; and e) application into a real-like or even real-live
assistive living environment.
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