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Abstract. Image-To-Class (I2C) distance is first used in Naive-Bayes
Nearest-Neighbor (NBNN) classifier for image classification and has suc-
cessfully handled datasets with large intra-class variances. However, the
performance of this distance relies heavily on the large number of local
features in the training set and test image, which need heavy computa-
tion cost for nearest-neighbor (NN) search in the testing phase. If using
small number of local features for accelerating the NN search, the per-
formance will be poor.

In this paper, we propose a large margin framework to improve the
discrimination of I2C distance especially for small number of local fea-
tures by learning Per-Class Mahalanobis metrics. Our I2C distance is
adaptive to different class by combining with the learned metric for each
class. These multiple Per-Class metrics are learned simultaneously by
forming a convex optimization problem with the constraints that the
I2C distance from each training image to its belonging class should be
less than the distance to other classes by a large margin. A gradient de-
scent method is applied to efficiently solve this optimization problem. For
efficiency and performance improved, we also adopt the idea of spatial
pyramid restriction and learning I2C distance function to improve this
I2C distance. We show in experiments that the proposed method can
significantly outperform the original NBNN in several prevalent image
datasets, and our best results can achieve state-of-the-art performance
on most datasets.

1 Introduction

Image classification is a highly useful yet still challenging task in computer vision
community due to the large intra-class variances and ambiguities of images.
Many efforts have been done for dealing with this problem and they can roughly
be divided into learning-based and non-parametric methods according to [1].
Compared to learning-based methods, non-parametric methods directly classify
on the test set and do not require any training phase. So in most cases, learning-
based methods can achieve better recognition performance than non-parametric
methods as they have learned the model from the training set, which is useful
for classifying test images. But recently a new non-parametric method named as
NBNN et al. [1] was proposed, which reported comparable performance to those
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top learning-based methods. They contribute such achievement to the avoidance
of descriptor quantization and the use of Image-To-Class (I2C) distance instead
of Image-To-Image (I2I) distance, since they proved descriptor quantization and
I2I distance lead to significant degradation for classification.

However, the performance of this I2C distance relies heavily on the large
number of local features in the training set and test image. For example, the
state-of-the-art performance they reported in Caltech 101 dataset is achieved
by densely sampling large redundant local features for both training and test
images, which results in about 15000 to 20000 features per image. Such large
number of features makes the nearest-neighbor (NN) search in I2C distance
calculation computationally expensive when classifying a test image, which limits
its scalability in real-world application. If only small number of local features is
used, the performance of this I2C distance will be poor as shown in the later
experiment section, although it needs less testing time.

In this paper, we aim to enhance the performance of I2C distance especially
for small number of local features, so as to speed up the testing phase while
maintaining excellent result. To achieve this, we propose a training phase to ex-
ploit the training information and suggest a distance metric learning method for
the I2C distance. Our method avoids the shortcoming of both non-parametric
methods and most learning-based methods involving I2I distance and descriptor
quantization. This leads to a better recognition performance than NBNN and
those learning-based methods. For each class, we learn the class specific Maha-
lanobis metric to combine with the corresponding I2C distance. When classifying
a test image, we select the shortest I2C distance among its Mahalanobis I2C dis-
tances to all classes as its predicted class label. Since only the metric of the
belonging class can well characterize the local features of the test image, such
Per-Class metrics can better preserve the discriminate information between dif-
ferent classes compared to a single global metric.

We adopt the idea of large margin from SVM in our optimization problem for
learning these Per-Class metrics, which is also used for distance metric learning
by Weinberger et al. [18] recently. For each training image, we separate the I2C
distance to its belonging class from those to any other class by a large margin,
and form a large margin convex optimization problem as an instance of semi-
definite programming (SDP). Then we apply an efficient gradient descent method
to solve this optimization problem. We also show the incremental learning ability
of our Per-Class metric learning, which enables our method to be used for on-
line learning and it can be easily scaled-up for handling large number of classes.
Figure 1 gives the illustration of our classification structure. Notations used in
the figure will be explained in Section 2.1. Compared to NBNN classifier, the
main difference is that we use Mahalanobis distance with our learned Per-Class
metrics instead of Euclidean distance in NBNN, while the way to classify a test
image is similar.

Moreover, we adopt the idea of spatial pyramid match [9] and learning I2C
distance function [16] to generate a more discriminative distance for improving
classification accuracy. Since the main computation burden is the NN search in
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Fig. 1. The classification structure of our method. The rectangular and triangles denote
an image and its local feature points respectively. The ellipse denotes a class with images
(rectangular) inside it. The I2C distance from image Xi to a class c is formed by the
sum of Mahalanobis distance between each local feature fij and its NN fc

ij in class c
with the matrix Mc learned for that class. The predicted label of image Xi is chosen
by selecting the shortest I2C distance. Section 2.1 gives a full explanation of these
notations.

I2C distance calculation rather than metric learning, we also propose an accel-
eration method using spatial restriction for speeding up the NN search, which
can preserve or even improve the classification accuracy in most datasets. Our
objectives for improving the I2C distance are twofold: minimizing the testing
time and improving the classification performance.

We describe our large margin optimization problem as well as an efficient
solver in Section 2, where we also discuss our improvements in addition to the
learned metrics. We evaluate our method and compare it with other methods in
Section 3. Finally, we conclude this paper in Section 4.

2 Distance Metric Learning for I2C Distance

In this section, we formulate a large margin convex optimization problem for
learning the Per-Class metrics and introduce an efficient gradient descent method
to solve this problem. We also adopt two strategies to further enhance the dis-
crimination of our learned I2C distance.

2.1 Notation

Our work deals with the image represented by a collection of its local fea-
ture descriptors extracted from patches around each keypoint. So let Fi =
{fi1, fi2, . . . , fimi} denote features belonging to image Xi, where mi represents
the number of features in Xi and each feature is denoted as fij ∈ Rd, ∀j ∈
{1, . . . , mi}. To calculate the I2C distance from an image Xi to a candidate
class c, we need to find the NN of each feature fij from class c, which is denoted
as f c

ij . The original I2C distance from image Xi to class c is defined as the sum
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of Euclidean distances between each feature in image Xi and its NN in class c
and can be formulated as:

Dist(Xi, c) =
mi∑

j=1

‖ fij − f c
ij ‖2 (1)

After learning the Per-Class metric Mc ∈ Rd×d for each class c, we replace the
Euclidean distance between each feature in image Xi and its NN in class c by
the Mahalanobis distance and the learned I2C distance becomes:

Dist(Xi, c) =
mi∑

j=1

(fij − f c
ij)

T Mc(fij − f c
ij) (2)

This learned I2C distance can also be represented in a matrix form by introducing
a new term ΔXic, which is a mi × d matrix representing the difference between
all features in the image Xi and their nearest neighbors in the class c formed as:

ΔXic =

⎛

⎜⎜⎝

(fi1 − f c
i1)

T

(fi2 − f c
i2)

T

...
(fimi − f c

imi
)T

⎞

⎟⎟⎠ (3)

So the learned I2C distance from image Xi to class c can be reformulated as:

Dist(Xi, c) = Tr(ΔXicMcΔXT
ic) (4)

This is equivalent to the equation (2). If Mc is an identity matrix, then it’s
also equivalent to the original Euclidean distance form of equation (1). In the
following subsection, we will use this formulation in the optimization function.

2.2 Problem Formulation

The objective function in our optimization problem is composed of two terms:
the regularization term and error term. This is analogous to the optimization
problem in SVM. In the error term, we incorporate the idea of large margin and
formulate the constraint that the I2C distance from image Xi to its belonging
class p (named as positive distance) should be smaller than the distance to any
other class n (named as negative distance) with a margin. The formula is given
as follows:

Tr(ΔXinMnΔXT
in) − Tr(ΔXipMpΔXT

ip) ≥ 1 (5)

In the regularization term, we simply minimize all the positive distances similar
to [20]. So for the whole objective function, on one side we try to minimize all
the positive distances, on the other side for every image we keep those negative
distances away from the positive distance by a large margin. In order to allow
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soft-margin, we introduce a slack variable ξ in the error term, and the whole
convex optimization problem is therefore formed as:

min
M1,M2,...,MC

O(M1, M2, . . . , MC) = (6)

(1 − λ)
∑

i,p→i

Tr(ΔXipMpΔXT
ip) + λ

∑

i,p→i,n→i

ξipn

s.t.∀ i, p, n : Tr(ΔXinMnΔXT
in) − Tr(ΔXipMpΔXT

ip) ≥ 1 − ξipn

∀ i, p, n : ξipn ≥ 0
∀ c : Mc � 0

This optimization problem is an instance of SDP, which can be solved using
standard SDP solver. However, as the standard SDP solvers is computation
expensive, we use an efficient gradient descent based method derived from [20,19]
to solve our problem. Details are explained in the next subsection.

2.3 An Efficient Gradient Descent Solver

Due to the expensive computation cost of standard SDP solvers, we propose
an efficient gradient descent solver derived from Weinberger et al. [20,19] to
solve this optimization problem. Since the method proposed by Weinberger et
al. targets on solving only one global metric, we modify it to learn our Per-Class
metrics. This solver updates all matrices iteratively by taking a small step along
the gradient direction to reduce the objective function (6) and projecting onto
feasible set to ensure that each matrix is positive semi-definite in each iteration.
To evaluate the gradient of objective function for each matrix, we denote the
matrix Mc for each class c at tth iteration as M t

c , and the corresponding gradient
as G(M t

c). We define a set of triplet error indices N t such that (i, p, n) ∈ N t

if ξipn > 0 at the tth iteration. Then the gradient G(M t
c) can be calculated by

taking the derivative of objective function (6) to M t
c :

G(M t
c) = (1 − λ)

∑

i,c=p

ΔXT
icΔXic + λ

∑

(i,p,n)∈Nt,c=p

ΔXT
icΔXic − λ

∑

(i,p,n)∈Nt,c=n

ΔXT
icΔXic (7)

Directly calculating the gradient in each iteration using this formula would be
computational expensive. As the changes in the gradient from one iteration to
the next are only determined by the differences between the sets N t and N t+1,
we use G(M t

c) to calculate the gradient G(M t+1
c ) in the next iteration, which

would be more efficient:

G(M t+1
c ) = G(M t

c) + λ(
∑

(i,p,n)∈(Nt+1−Nt),c=p

ΔXT
icΔXic −

∑

(i,p,n)∈(Nt+1−Nt),c=n

ΔXT
icΔXic) (8)

− λ(
∑

(i,p,n)∈(Nt−Nt+1),c=p

ΔXT
icΔXic −

∑

(i,p,n)∈(Nt−Nt+1),c=n

ΔXT
icΔXic)

Since (ΔXT
icΔXic) is unchanged during the iterations, we can accelerate the

updating procedure by pre-calculating this value before the first iteration. The
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matrix is updated by taking a small step along the gradient direction for each
iteration. To enforce the positive semi-definiteness, the updated matrix needs to
be projected onto a feasible set. This projection is done by eigen-decomposition
of the matrix and truncating all the negative eigenvalues to zeros. As the op-
timization problem (6) is convex, this solver is able to converge to the global
optimum. We summarize the whole work flow in Algorithm 1.

Algorithm 1. A Gradient Descent Method for Solving Our Optimization Prob-
lem

Input: step size α, parameter λ and pre-calculated data (ΔXT
icΔXic), i ∈

{1, . . . , N}, c ∈ {1, . . . , C}
for c := 1 to C do

G(M0
c ) := (1 − λ)

∑
i,p→i ΔXT

ipΔXip

M0
c := I

end for{Initialize M and gradient for each class}
Set t := 0
repeat

Compute N t by checking each error term ξipn

for c = 1 to C do
Update G(M t+1

c ) using equation (8)
M t+1

c := M t
c + αG(M t+1

c )
Project M t+1

c for keeping positive semi-definite
end for
Calculate new objective function
t := t + 1

until Objective function converged
Output: each matrix M1, . . . , MC

2.4 Scalability and Incremental Learning

Next we analyze the efficiency of this solver and its scalability. Although the num-
ber of triplets is large for dealing with large-scale dataset, for example 151500
triplets in error term for Caltech 101 dataset using 15 images per class for train-
ing, we find only a small portion of them are non-zero, which are put into the
error index set N t and used for updating matrices. To speed up calculating N t

in each iteration, we also keep an active set of triplets as proposed in [20] for
calculating N t rather than scanning over all the triplets in each iteration. So
this solver runs quickly for updating hundreds of metrics. In our experiment, it
needs about 30 iterations to converge for Scene, Sports and Corel datasets, and
about 60 iterations for Caltech 101 dataset to converge with an appropriate step
size. We can further accelerate the training phase by learning a diagonal matrix
for each class, which would alleviate the computation cost especially when there
are even more classes, e.g. thousands of classes.

Our method also supports the incremental learning. When new training im-
ages of existing class or new class are added, Per-Class metrics do not need to be
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re-trained from the beginning. The current learned matrices can be used as initial
estimates by changing the identity matrix I to current matrix for each class in
Algorithm 1, and new triplets are added to update all matrices. The updating
procedure will converge quickly since pre-learned matrices are relatively close
to the optimal. This incremental learning ability shows that our method can be
scaled-up to handle large number of classes and support for on-line learning.

2.5 More Improvements Based on Mahalanobis I2C Distance

To generate a more discriminative I2C distance for better recognition perfor-
mance, we improve our learned distance by adopting the idea of spatial pyramid
match [9] and learning I2C distance function [16].

Fig. 2. The left parallelogram denotes an image, and the right parallelograms denote
images in a class. We adopt the idea of spatial pyramid by restricting each feature
descriptor in the image to only find its NN in the same subregion from a class at each
level.

Spatial pyramid match (SPM) is proposed by Lazebnik et al. [9] which makes
use of spatial correspondence, and the idea of pyramid match is adapted from
Grauman et al. [8]. This method recursively divides the image into subregions
at increasingly fine resolutions. We adopt this idea in our NN search by limiting
each feature point in the image to find its NN only in the same subregion from a
candidate class at each level. So the feature searching set in the candidate class
is reduced from the whole image (top level, or level 0) to only the corresponding
subregion (finer level), see Figure 2 for details. This spatial restriction enhances
the robustness of NN search by reducing the effect of noise due to wrong matches
from other subregions. Then the learned distances from all levels are merged
together as pyramid combination.

In addition, we find in our experiments that a single level spatial restriction
at a finer resolution makes better recognition accuracy compared to the top
level especially for those images with geometric scene structure, although the
accuracy is slightly lower than the pyramid combination of all levels. Since the
candidate searching set is smaller in a finer level, which requires less computation
cost for the NN search, we can use just a single level spatial restriction of the
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learned I2C distance to speed up the classification for test images. Compared to
the top level, a finer level spatial restriction not only reduces the computation
cost, but also improves the recognition accuracy in most datasets. For some
images without geometric scene structure, this single level can still preserve the
recognition performance due to sufficient features in the candidate class.

We also use the method of learning I2C distance function proposed in [16]
to combine with the learned Mahalanobis I2C distance. The idea of learning
local distance function is originally proposed by Frome et al. and used for image
classification and retrieval in [6,5]. Their method learns a weighted distance
function for measuring I2I distance, which is achieved by also using a large
margin framework to learn the weight associated with each local feature. Wang
et al. [16] have used this idea to learn a weighted I2C distance function from
each image to a candidate class, and we find our distance metric learning method
can be combined with this distance function learning approach. For each class,
its weighted I2C distance is multiplied with our learned Per-Class matrix to
generate a more discriminative weighted Mahalanobis I2C distance. Details of
this local distance function for learning weight can be found in [6,16].

3 Experiment

3.1 Datasets and Setup

We evaluate our proposed method on four popular datasets: Scene-15, Sports,
Corel and Caltech 101 dataset. We describe them briefly as follows:

– Scene-15. Scene dataset consists of 15 scene categories, among which 8 were
originally collected by Oliva et al. [15], 5 added by Li et al. [4] and 2 from
Lazebnik et al. [9]. Each class has about 200 to 400 images, and the average
image size is around 300 × 250 pixels. Following [9], we randomly select
100 images per class for training and test on the rest. The mean per-class
recognition rate is reported as accuracy.

– Sports. Sports event dataset is firstly introduced in [10], consisting of 8
sports event categories. The number of images in each class ranges from 137
to 250, so we follow [10] to select 70 and 60 images per class for training and
test respectively. Since images in this dataset are usually very large, they are
first resized such that the largest x/y dimension is 500.

– Corel. Corel dataset contains 10 scene categories published from Corel Cor-
poration. Each class contains 100 images, and we follow [14] to separate them
randomly into two subsets of equal size to form the training and test set. All
the images are of the size 384 × 256 or 256 × 384.

– Caltech 101. Caltech 101 dataset is a large scale dataset containing 101
categories [3]. The number of images in each class varies from about 30 to
800. This dataset is more challenging due to the large number of classes
and intra-class variances. Following the widely used measurement by the
community we randomly select 15 images per class for training. For test set,
we also select 15 images from each class and report the mean accuracy.
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Fig. 3. Per-category recognition accuracy for comparison of I2CDML with NBNN

Since the training and test set are selected randomly, we repeat the experiment
for 5 times in each dataset and report the average result. For feature extrac-
tion, we use dense sampling strategy and SIFT features [12] as our descriptor,
which are computed on a 16 × 16 patches over a grid with spacing of 8 pixels
for all datasets. This is a simplified method compared to some papers that use
densely sampled and multi-scale patches to extract large number of features,
which helps in the performance results but increases the computational com-
plexity. We name our method as I2CDML, short for Image-To-Class distance
metric learning.

3.2 Results on Scene-15, Sports and Corel Datasets

We first compare our proposed I2CDML method with NBNN [1] on Scene-15,
Sports and Corel datasets to evaluate our learned metrics. Table 1 shows the
recognition accuracy averaged of all classes for the three datasets. We can see
that our method significantly outperforms NBNN in every dataset, especially in
Sports dataset where the improvement is above 10%. Then we investigate the
details by comparing the classification accuracy for each class in Figure 3. For
those easily classified categories, our method is comparable to NBNN. Moreover,
for those challenging categories that NBNN performs poorly (for example the
worst three categories in Scene-15, the worst four in Sports, and the worst two
in Corel, as indicated in Figure 3), our method can improve the accuracy sub-
stantially. Therefore our method improves the average accuracy by emphasizing
the classification on challenging categories and yet maintains the performance
for the easily classified categories.

Table 1. Comparing I2CDML to NBNN for recognition accuracy (%)

Method Scene-15 Sports Corel

I2CDML 77.0 ± 0.60 78.5 ± 1.63 88.8 ± 0.93

NBNN [1] 72.3 ± 0.93 67.6 ± 1.10 85.7 ± 1.20
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Table 2. Comparing I2CDML to its integration for recognition accuracy (%)

Method Scene-15 Sports Corel

I2CDML 77.0 ± 0.60 78.5 ± 1.63 88.8 ± 0.93

I2CDML+SPM 81.2 ± 0.52 79.7 ± 1.83 89.8 ± 1.16

I2CDML+Weight 78.5 ± 0.74 81.3 ± 1.46 90.1 ± 0.94

I2CDML+
SPM+Weight

83.7 ± 0.49 84.3 ± 1.52 91.4 ± 0.88

NS SSL SPM
0.76

0.78

0.8

0.82

0.84

Scene 15

I2CDML
I2CDML+Weight

NS SSL SPM
0.76

0.78

0.8

0.82

0.84

0.86
Sports

I2CDML
I2CDML+Weight

NS SSL SPM
0.87

0.88

0.89

0.9

0.91

0.92

0.93
Corel

I2CDML
I2CDML+Weight

Fig. 4. Comparing the performance of no spatial restriction (NS), spatial single
level restriction (SSL) and spatial pyramid match (SPM) for both I2CDML and
I2CDML+Weight in all the three datasets. With only spatial single level, it achieves
better performance than without spatial restriction, although slightly lower than spa-
tial pyramid combination of multiple levels. But it requires much less computation cost
for feature NN search.

Then we show in Table 2 the improved I2C distance through spatial pyramid
restriction from the idea of spatial pyramid match in [9] and learning weight
associated with each local feature in [16]. Both strategies are able to augment
the classification accuracy for every dataset, and we find that SPM provides
additional improvement than learning weight in Scene-15 dataset but less im-
provement in the other two datasets. This is likely due to the geometric structure
of Scene-15 that matches with the spatial equally divided subregions very well,
while in the other two datasets discriminative local features for generating the
weighted I2C distance have a more important role for classification. Nevertheless,
by using both strategies we get the best results in all the three datasets.

Since a spatial single level at a finer resolution will reduce the computation
cost required for feature NN search, we also compare its performance with spatial
pyramid combining multiple levels as well as the original size without using spa-
tial restriction. As shown in Figure 4, this spatial single level is able to improve
the accuracy compared to no spatial restriction, not only on scene constraint
datasets (Scene-15 and Corel) but also on Sports event dataset that does not
have geometric scene structure. Though the performance is slightly lower than
the pyramid combining all levels, it saves the computation cost for both feature
NN search and distance metric learning. So this spatial single level strategy will
be very useful for improving the efficiency.
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Table 3. Comparing to recently published results for recognition accuracy (%)

Scene-15 Sports Corel

Ours 83.7 Ours 84.3 Ours 91.4

Lazebnik et al. [9] 81.4 Li et al. [10] 73.4 Lu et al. [13] 77.9
Liu et al. [11] 83.3 Wu et al. [21] 78.5 Lu et al. [14] 90.0
Bosch et al. [2] 83.7 Wu et al. [22] 84.2
Yang et al. [24] 80.3
Wu et al. [22] 84.1

We compare our best results with recently published result for every dataset.
All the results are listed in Table 3. In Scene-15 dataset, many researchers re-
ported their recent results and most of them also incorporate SPM to improve
the accuracy. Lazebnik et al. [9] first proposed SPM and combined with the Bag-
of-Word (BoW) strategy, achieving 81.4%. Bosch et al. [2] also incorporated SPM
in pLSA to achieve 83.7%. The best result so far as we know is 84.1% by Wu
et al. [22], who replace Euclidean distance by histogram intersection in BoW
combined with SPM. Although our result is slightly lower than their results, we
notice they have used multi-scale and denser grid to extract feature as well as
combining additional Sobel gradient, while our feature extraction is very simple
but still comparable to theirs. When using the same configuration, their ap-
proach is worse than ours, as either indicated in [22] as well as implemented by
us using their published LibHIK1 code, which is 81.36± 0.54 using CENTRIST
[23] and 78.66±0.44 using SIFT [12] in our implementation. For Sports dataset,
Li et al. [10] who published them reported 73.4%, and Wu et al. improved it
to 78.5% and 84.2% in [21] and [22] respectively, where the later one used the
same configuration as their experiment in Scene-15. Nevertheless, our result is
still comparable to theirs. For Corel dataset, our result is again better than the
previous published results [14,13] even without using color information. All these
results show that our method can achieve state-of-the-art performance on these
datasets using relatively small feature set.

3.3 Results on Caltech 101 Dataset

We also evaluate our method on Caltech 101 to illustrate its scalability on
datasets with more classes. In our experiment we only select 15 images per class
for training, same as most previous studies. In [1], they extracted SIFT features
using multi-scale patches densely sampled from each image, which result in much
redundant features on the training set (about 15000 to 20000 features per image).
So the NN search for I2C distance calculation takes expensive computation cost.
Even using KD-Tree for acceleration, it takes about 1.6 seconds per class for the
NN search of each test image [1] and thus around 160 seconds for 101 classes to
classify only one test image. This is unacceptable during the testing phase and
makes it difficult for real-world application. In our experiment, we only generate
1 http://www.cc.gatech.edu/cpl/projects/libHIK/

http://www.cc.gatech.edu/cpl/projects/libHIK/
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Fig. 5. Comparing the performances of I2CDML, I2CDML+Weight and NBNN from
spatial division of 1× to 7×7 and spatial pyramid combination (SPM) on Caltech 101.

less than 1000 features per image on average using our feature extraction strat-
egy, which are about 1/20 compared to the size of feature set in [1]. We also use
single level spatial restriction to constrain the NN search for acceleration. For
each image, we divide it from 2×2 to 7×7 subregions and test the performance
of I2CDML, NBNN and I2CDML+Weight. Experiment results of without using
spatial restriction (1×1 region) as well as spatial pyramid combining all levels is
also reported.

From Figure 5 , we can see that without using spatial restriction, the perfor-
mance of NBNN is surprisingly bad. The reason that NBNN performs excellently
as reported in [1] using complex features while poorly in our small feature set
implies that the performance of NBNN relies heavily on the large redundant of
training feature set, which needs expensive computation cost for the NN search.
For comparison, our I2CDML augments the performance of I2C distance signif-
icantly, while combining the learned weight further improves the performance.
Compared to the other three datasets, this dataset contains more classes and
less training images per class, which makes it more challenging. So the large im-
provement over NBNN indicates that our learning procedure plays an important
role to maintain an excellent performance using small number of features under
such challenging situation, which also requires much less computation cost in
the testing phase.

From 2×2 to 7×7 subregions of spatial restriction, due to the regular geomet-
ric object layout structure of images in this dataset, the performance is further
improved for all methods compared to without using spatial restriction. Though
the results on spatial division from 3×3 to 7×7 do not change much, the com-
putation cost for NN search continues decreasing with finer spatial division. For
7×7 spatial division, the size of feature set in the candidate class is 1/49 of the
original image without using spatial restriction. The best result on single spatial
restriction is 63.4% by I2CDML+Weight on 5×5 spatial division, which is close
to the result of spatial pyramid combining all levels (64.4%) but is more effi-
cient. NBNN can also benefit from this spatial restriction, but its result is still
unacceptable for classification task using such small feature set.
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Our best result is also comparable to the best reported result of NBNN (65%)
in [1], which uses large number of densely sampled multi-scale local features as
well as pixel location information for their I2C distances to achieve such state-
of-the-art performance. The size of candidate feature set they used is about 20
times more than ours using the whole image and nearly 1000 times compared
our spatial restriction of 7×7 subregions. So our implementation needs much
less computation cost for the NN search during the on-line testing phase with
the additional off-line training phase, whilst the result is comparable to theirs.
Although we cannot reproduce their reported result in our implementation, we
believe our comparison should be fair as we use the same feature set for all
methods and the experiment has shown that our method achieves significant
improvement on such large-scale dataset with much efficient implementation.

4 Conclusion

Image-To-Class distance relies heavily on the large number of local features in
the training set and test images, which need heavy computation cost for the NN
search in the testing phase. However, using small number of features results in
poor performance. In this paper, we tried to improve the performance of this
distance and speed up the testing phase. We added a training phase by proposing
a distance metric learning method to learn the I2C distance. A large margin
framework has been formulated to learn the Per-Class Mahalanobis distance
metrics, with a gradient descent method to efficiently solve this optimization
problem. We also discussed the method of enhancing the discrimination of the
learned I2C distance for performance improvement. These efforts made the I2C
distance perform excellent even using small feature set. For further accelerating
the NN search in the testing phase, we adopted single level spatial restriction,
which can speed up the NN search significantly while preserving the classification
accuracy. The experiment results on four datasets of Scene-15, Sports, Corel and
Caltech 101 verified that our I2CDML method can significantly outperform the
original NBNN especially for those challenging categories, and such I2C distance
achieved state-of-the-art performance on most datasets.
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