In this position paper we examine the limitation of region growing segmentation techniques to extract semantically meaningful objects from an image. We propose a region growing algorithm that performs on a semantic level, driven by the knowledge of what each region represents at every iteration step of the merging process. This approach utilizes simultaneous segmentation and labeling of regions leading to automatic image annotation.
1st K-Space PhD Students Workshop, Berlin, Germany, September 2007.
[ Bibtex ] [ PDF ]