Image and Video Analysis

Image Indexing and Retrieval using Expressive Fuzzy Description Logics

Signal, Image and Video Processing, Volume 2, Issue 4, pp.321-335, December 2008.

The effective management and exploitation of multimedia documents requires the extraction of the underlying semantics. Multimedia analysis algorithms can produce fairly rich, though imprecise information about a multimedia document which most of the times remains unexploited. In this paper we propose a methodology for semantic indexing and retrieval of images, based on techniques of image segmentation and classification combined with fuzzy reasoning. In the proposed knowledge-assisted analysis architecture a segmentation algorithm firstly generates a set of over-segmented regions. After that, a region classification process is employed to assign semantic labels using a confidence degree and simultaneously merge regions based on their semantic similarity. This information comprises the assertional component of a fuzzy knowledge base which is used for the refinement of mistakenly classified regions and also for the extraction of rich implicit knowledge used for global image classification. This knowledge about images is stored in a semantic repository permitting image retrieval and ranking.

[ Bibtex ] [ PDF ]