We propose a scalable logo recognition approach that extends the common bag-of-words model and incorporates local geometry in the indexing process. Given a query image and a large logo database, the goal is to recognize the logo contained in the query, if any. We locally group features in triples using multi-scale Delaunay triangulation and represent triangles by signatures capturing both visual appearance and local geometry. Each class is represented by the union of such signatures over all instances in the class. We see large scale recognition as a sub-linear search problem where signatures of the query image are looked up in an inverted index structure of the class models. We evaluate our approach on a large-scale logo recognition dataset with more than four thousand classes.
ACM International Conference on Multimedia Retrieval, Trento, Italy, April 2011.
[ Bibtex ] [ PDF ]