In this paper we present a framework for unified, personalized access to heterogeneous multimedia content in distributed repositories. Focusing on semantic analysis of multimedia documents, metadata, user queries and user profiles, it contributes to the bridging of the gap between the semantic nature of user queries and raw multimedia documents. The proposed approach utilizes as input visual content analysis results, as well as analyzes and exploits associated textual annotation, in order to extract the underlying semantics, construct a semantic index and classify documents to topics, based on a unified knowledge and semantics representation model. It may then accept user queries, and, carrying out semantic interpretation and expansion, retrieve documents from the index and rank them according to user preferences, similarly to text retrieval. All processes are based on a novel semantic processing methodology, employing fuzzy algebra and principles of taxonomic knowledge representation. Part I of this work presented in this paper deals with data and knowledge models, manipulation of multimedia content annotations and semantic indexing, while Part II will continue on the use of the extracted semantic information for personalized retrieval.
Springer Multimedia Tools and Applications, Springer, Volume 39, Issue 3, pp.293-327, September 2008.
[ Bibtex ] [ PDF ]